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Abstract
Two families of finite element schemes for vertical discretization are
described for a sigma coordinate version of the ECMWF spectral model. The
first, A-schemes, uses staggered node points which exploit the improved
convergence that can be obtained in this way. The second family,
B-schemes, are, unlike the A-schemes, formally energy conserviﬁg. Five
versions of the B family (BO, B1, ... B4) are presented, each of which

differs in the formulation of the upper (top) boundary element.

All schemes have been tested in a model with a coarse hdrizontal
resolution, whilst schemes A, B0 and B2 have been evaluated in a T63
version of yhe 1983/84 ECMWF operational model. When compared with finite
difference treatments, a systematic improvement in anomaly correlation of
. the height field forecasts was obtained; for the B schemes the average
increase in fhe predictability was 2.5 hr and 6.5 hr, depending on the

method.

In addition to forecast experiments, 50 day integrations with a T42 model
were performed. The numerical schemes and the formulation of the upper
boundary condition had considerable impact on these integrations. The
finite element scheme showed less deviation of the time-averaged fields
from the observations than the control run due to a better positioning of
the troughs and ridges. The finite element scheme also improved the

prediction of the time averaged anomaly field.
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1. INTRODUCTION

Even though computer power has increased enormously in the last 10 years
the vertical resolution in primitive equation models of the atmosphere is
quite low, 10 to 20 levels in the vertical being typical, and these are
generally irregularly spaced to take account of the strong variation of
atmospheric quantities in the vertical. Fig. 1 shows a schematic picture
of the distribution of levels in a sigma coordinate version of the ECMWF
spectral model which has the same resolution as the operational hybrid
coordinate model over flat terrain. 1In comparison to the schemes used for
horizontal discretization, the vertical discretization schemes in use in
the majority of large-scale models of the atmosphere can be described,
fairly, as rudimentary, based as they are on simple divided differences
which provide second order accuracy at best; the irregularity of the level
spacing reducing the local accuracy to first order. Large inaccuracies can

be associated with boundaries.

Very few attempts have been made to employ the use of analytical functions
which are continuously differentiable and defined globally; the two really
potentially useful approaches (by Francis (1972) using Laguerre polynomials
and by Machenhaur and Daley (1972) who used Legendre functions) have not

lead to practical schemes for numerical models of the atmosphere.

In contrast to the global functional approaches of Francis, and Machenhaur
and Daley, the use of local functional approaches based on a Galerkin
implementation of finite elements has been fairly successful. The
advantages of this approach are a better accuracy and, because of the

reduced aliasing error of the Galerkin method, improved nonlinear
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stability. Manton (1978) developed a finite element version of a
one-dimensional boundary layer model. Also, a successful finite element
formulation for the vertical discretization in sigma co-ordinate primitive
equation models was described by Staniforth and Daley (1977), and a 36 hour
forecast from real data demonstrated the viabili;y of the method. The
accuracy of their scheme was analysed by Béland et al. (1983) and the

stability was investigated by C6té et al. (1983).

In this paper we consider two families of vertical finite element schemes.
~Family A is a natural evolution ofVECMWF's basically second order finite
difference scheme which is used for operational medium range forecasting.
A main featurevof this scheme is the use of a staggered system of node
points which results in an increased accuracy for the vertical advection

terms.

A second family, referred to as B-schemes, is formally energy conserving.
Five B-schemes are introduced (B0, B1, B2, B3 and B4); these differ only in

their formulation of the top element.

In Section 2 the various schemes are described, The results of various
numerical experiments are presented in Section 3, and in Section 4 the 50

day integrations are described.



2. THE FINITE ELEMENT SCHEMES

The adiabatic part of the model is based on the primitive equations in
og-coordinates.

Ps + V.(ps Y) + (pso)c =0

i + fkxv + bvo + veVv + V$ + RTV(1n Ps)= 0

. Tw
+ VT o+ - R— =
cppsﬁ' Cpps v. VT CppsdTo_ R~ 0 (1

=0 for 0= 0,1

= .+ .+ -V
W psc g (ps v ps)
Field values are given for full model levels Gv. The operational ECMWF
vertical discretization as described by Simmons and Strifing (1981), uses

half level values © = %(cv + G

vl } to define the finite difference
2

v+1

scheme.

The FE treatment is limited to the adiabatic part of the eguations. The
physical parameterisation, as well as the evaluation of the terms involving
the humidity mixing ratio, is performed in node point space, as in the
operational ECMWF model. In addition, the semi-implicit time integration

scheme is taken over from the operational model without change.

A list of all the variables used in this paper is given in Table 1.



CP: specific heat

ez(o), es(o), e:(c), ei(c), ei(c): basis functions belonging to the full
and half levels, and various boundary options.

EF, EH, E1, Ez, E3 = function spaces generated by ei, eg, e;, ei and ei

f : Coriolis parameter

GF, GH, G1, Gz, G3 = Galerkin projections to spaces EF, EH, E1, E2 and E3
M : mass matrix

M ': inverse of M

i surface pressure

R : gas constant

T : temperature

horizontal velocity

I

=

Gi)s+ps<'5

0 : vertical coordinate

Qe

: vertical velocity
¢ : geopotential
¢H: geopotential projected to half level finite element space

Table 1 : List of symbols

2.1 Basic Galerkin equations

We consider here only the semi-discretization with respect to the vertical
coordinate which leaves the horizontal variables undiscretized. Therefore
our finite element schemes will involve just one space variable, and since
we confine ourselves to the o-system, we avoid the additional difficulties
associated with the more general hybrid scheme introduced by Simmons and

striifing (1981).



Consider a system of full level node points (see .Fig. 1)

o, » v e {0, v, NLEVH1]

(2)

with oo 0 and (o] = 1

We associate the following "linear basis functions with these full level

node points v = 1,..., NLEV.

Tv+1 = °
5 - o if 0 € (GV' O‘v+1)
v+1 v
g -0
F V-1 ]
ev(O') = T - if o € (0'\)_1, 0'\)) (3)
v v-1
0 otherwise

To formulate the different finite element schemes considered here, we need
also a set of basis functions eg(o) associated with the half levels Gv+*'
2

For schemes involving only one set of node points Uv' the index F of e in

(3) will be dropped.

To formulate the different boundary treatments, we need three different

versions 1ev(o), 2ev(c), 3ev(0) of the full level basic functionsrez(o).

1 _ _F

ev(G) = ev(U)

2

e1(0) = 1 for 0 € (0, 01)
9

= €
eNLEV(G) 1 for ¢ (GNLEV' 1) (4)
26 (0) = ef(0)  otherwise
v \V

3 -~
e1(0) =0 for o € (0, ©)
3 _ _F .

ev(c) = ev(o) otherwise

with O being a fixed small value of a. Fig. 2 shows the different basis

functions used in this study.
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With any of the full level bases introduced above, we represent a field

E(G) as
h(o) =) &, e, (0) (5)
v=1

The Galerkin procedure allows us to approximate the function h(g), not

necessarily represented by an expansion such as (5), by a function ﬁ(o) of
the class represented by (5). Functionsblike h may arise when forming the
right-hand side of the prognostic equations with fields given by (5). The

approximating equations are:

(evlh) = (e.\,lh) (6)
1

with (e,,h) = [ e (0) h(o) 4o (7
0

Using (5), we can write (6) in the following form:

NE.EV .

(e,re.) h = (e ,h)

=1 v u v

or Mﬂ = {(ev,h)} (8)

with M = {(ev,eu)} and h = {hv}



With the linear elements of (3), M is a tri-diagonal matrix and, being
diagonally dominant, can be inverted by Gaussian elimination without
pivoting. Using the inverse matrix of M, we write (8) as:

B=n" {(e ] (9)
Equation (9), together with

h(o) =) h .,

u

defines an operation G, in which

Gh = h G:H*E ~ (10)

with H being a space of rather general field functions h(c), and E being

the space of approximating functions h given by (5).

The Galerkin operator G provides an approximation Gh for every field h(o)
from a rather general class of fields. The operator G has the following

properties which will be used to provde energy conservation:

a) G is a linear operator

G(a,h, + ash,) = a,Gh, + a,Gh, (1
b} G is self-adjoint

(Gh1,h2) = (h1,Gh2) (12)

with the scalar product { , ) being defined by (7).

c) G2 = G or G(Gh) = Gh (13)

Equation (13) implies that G does not change fields which are already in
the class of approximating functions. Considering H as a Hilbert space
under the scalar product defined by (7), (11)=(13) mean that the Galerkin

operator G is a projection operator.



1

e 2ev, 3¢, defined in (4). The

In the following we will use the bases v

vl
corresponding Galerkin operations will be denoted by Gl, G2, G3; the
operation G3 will be necessary both for full and half levels of 0, the

corresponding basis-functions being defined in (3). We denote the

F H
corresponding Galerkin operations as G and G .

2.2 Description of the A-family

In this section we use the 3ev-basis defined in (4), and the index 3 will
be dropped. The basic fields will be represented by full level nodes, the
corresponding basis being denoted as ez. For some intermediate steps the
half level representation will be used with basis denoted by eg. The
spaces of approximating functions according to (5) are denoted by EF and

H . . F H
E , and the corresponding Galerkin projections are denoted by G and G .

We write the continuity equation as

W '
gt D=0 (15)

with W = cés + p55 and D = V.(psz).

. . . F .
Since v has full level nodes, D is in the space E , and we assume that 0o,

and hence W, has half level nodal points.

F F
D=] D, e, € E
AY)
(15)
H H H
W= % Worr Sy € E

The O belonging to WH, according to (14), is denoted as GH.



For geopotential, which also has half level nodes, we have

H H
o7 =L by ey (16)
Vv

with the equation for the ¢v+l being
2

F 30 ., RT,, _
(eyr (55 57 =0 (17)

In this equation, T is given at the full levels. Since ¢ = ¢s, with

NLEV+%
¢s being the surface geopotential, (17) has the correct number of

equations.

The approximations made in deriving ¢ and ¢ imply the form of the w-term

and the vertical advection term - see Appendix 1 for further details.

The other terms of the prognostic equations are represented by straight
forward Galerkin projections, and we write the prognostic egquations for

v and T as

Vot Fkxv + G (vaVY) + G U Glv) 4+ v (S — 8 Ty
- -7 B - - - PS PS

+ GFV¢H + Rmvznps =0
(18)
P V.(psy)

CpT+CpGv.VT+G [ aMm) +1 (= +
ps ps - o

s P s P

+ GF[(¢H WH)0 + ¢HD + RTY.Vps] =0

10



2.3 Formulation of the B-family

A general form of energy conserving Galerkin discretizations of the
primitive equations is:

.+. + c =

Ps v (Psy) (pso)d 0

Y+ fkxv + G (S v.) + G (veVy) + GV + RG_TVinp_ = 0
- - - a ~-c a-~ = a a s

qppsT + qppsgb(YoVT) + CPpsGb(U To)

- RG @__l) - RG (__E) =0 (19)

L] L]
w =psG+0'psandw

1 = GY'VPS

2
It is assumed that v is represented in the approximation space Ea belonging

to Ga' and T is represented by the approximation space Eb belonging to Gb.

We must require:
1e B (20)
This is satisfied by the space E2 defined in Section 2.1, but not by E1.

Therefore we are led to use the zev representation for the temperature

field.

11



-~ ~
In (12), T and T can be chosen independently. However, the relation

-~ =]
between T, T and T can be obtained by a Galerkin operation, but this is not
essential. In the present study we choose T=T=T for c<01. Only in the top

-~ N
0 interval will different formulations for T and T be used, as explained in

Section 2.4.

Equation (19) gives a rather general form of an energy conserving Galerkin
discretization of the primitive equations. 1In this form it is valid for
high order finite element schemes or other Galerkin methods, for example

those based on Chebycheff polynomials.

If in addition we choose % = % = T, then we obtain a straightforward
Galerkin dicretization. Since energy is essentially a second order moment
in O-coordinates, the PS factor being independent of ¢, then (19) describes
a formally energy conserving scheme (Jespersen, 1974 and Cliffe, 1981).

The proof of energy conservation is given in Appendix 2.

It should be noted, that the diagnostic equations in (19) contain no
approximation operators at all. This means that :5, ¢ and w must be
obtained by exact integration using the linear spline assumption for the
other fields. For g and w this is achieved by representing them as

quadratic splines.

The basic B-family scheme, scheme B0, is defined by
Ga = G1 ’ qb = G2 , T =T (21)

Other schemes, called B1, B2, B3 and B4 will be introduced which differ

from BO only in their formulation of the top element.

12



2.4 Definition of top element formulations for
the B-schemes

To illustrate a deficiency of the BO-scheme near the boundary, Fig. 3a
gives the ® field resulting from an exact integration. Linear elements are
assumed for the temperature representation, with the temperature element
being constant in the top interval (0,01). The nodal values of the
temperature are those of a randomly chosen gridpoint from an ECMWF
analysis. Because of the interpolation assumption in the top interval, a

logarithmic singularity in ® appears.

Fig. 3b shows the Galerkin projection of this field on the test-function
space used for the representation of the velocity field in the B0 scheme.
Noise is generated near the top of the model. This effect is almost
certainly physically unrealistic, particularly since it is dependent on the
choices of the interpolation for the temperature and velocity fields in the

top interval.

Tt should be noted that the interpolation of the temperature field leading
to Fig. 3a imposes the T-gradient at G=01 on the interval(0,01). Therefore
the numerical bias shown in Figs. 3a,b will appear in the same way for the

approximation of V¢.

We have used two principles to guide our choice of the top element

function:

(a) For appropriate amplitudes, the chosen functions for the top element
should allow geostrophic balance throughout the top interval (0,01).

(b) The geostrophic wind should remain finite for o+0.

Condition (b) is equivalent to the condition:-

13
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In the model of Machenhauer and Daley (1972), (22) was used as a boundary
condition when using Legendre polynomials for vertical discretization.

With the finite element scheme, it would formally be possible to satisfy
condition (a) whilst violating condition (b). If the elements for the
T-representation approach some constant value for o+0, the appropriate
elements for the velocity fields would contain a logarithmic singularity at
0=0. Since all powers of log(c) are integrable, the corresponding finite
element scheme is well defined. We would, however, expect problems with
the CFL-criterion for the upper levels. In this study, this possibility is

not followed further.

We will not necessarily assume that for every state of the temperature
field we find a métching velocity field. For example one possibility is to
provide a temperature amplitude for ¢=0 and leave it to the model to
produce condition (a)e. The elements for the velocity fields will then be

chosen to allow matching only for cases when (22) is satisfied.

In the following we denote the basis functions used for the representation

T
of v and T in (19) as e: andAev.

Method B1
2
c2=cP=g> T (23)
~ i}
T=T=T
Method B2
Ga=Gb=G2 T
T
~ ~ 1
T =T=—GC for o € (0,0.) (24)
01 1
-~ E=3
PT=7T=T otherwise

15



Method B3

A rather good consistency of the T and v elements can be achieved by
introducing a top amplitude To for 0=0; this then becomes the same as the
B2 scheme with 0 ,=0. We should expect that grad To approaches zero during

1

the forecast.

The integrations with boundary treatment B2 were somewhat noisy at the top
most level; this noise was geographically related to the orography field.
However, in the course of ten day integrations, this noise did not
contaminate the other levels. It was caused by the B2-scheme not allowing
the representation of an isothermal atmosphere and appeared in all

integrations.

Method B4
Scheme B4 has evolved from B2 in order to solve this noise problem. A test
integration gave similar results for schemes B2 and B4, except for the top

level.
~
The scheme is as B2, but with T=T everywhere.

In the integration reported in Section 4, this scheme was used in the
simplified form:

T W, T W,
R G (=) = R G () | (25)

[ ~
R G Tlnp_ => R G_ Tl
a nPS a nps

This latter form implies a deviation from energy conservation for the top

level.

16



3. FORECAST EXPERIMENTS

3.1 The numerical experimentation

The main numerical experimentation was based on a set of 6 cases; the
initial dates of these are given in Table 2. Control runs were provided by
a sigma coordinate version of the 1983/84 ECMWF operational spectral model,
as described by Simmons and Striifing (1981). This model has a triangular
truncation for the horizontal representation, and the main comparisons were
carried out with a T63 model (triangular truncation at total horizontal
wave number 63). In addition many preliminary experiments were performed
at reduced resolution of T21 and for the A scheme some extra T63
computations were carried out from dates not listed in Table 2. The

vertical resolution is illustrated in Fig. 1.

Experiment No. Date
1 10.01.84
2 01.01.84
3 25.12.83
4 16.08.83
5 < 07.04.83
6 23.08.83

Table 2 The initial dates of the test experiments the
B-gchemes.

The objective comparison of the different schemes is based mainly on a
predictability measure. For this study, our measure of the predictability
of a meteorological element is the number of days into the forecast before

an anomaly correlation threshold (usually 60%) is first reached.

17



The largest improvements obtained with the A-scheme was for the forecast
from 24.1.82. Fig. 4 shows the anomaly correlations of height for two T63
integrations - control and scheme A. For this case the use of scheme A
produces a 6 hour increase in predictability over that of the conﬁrol.
Because of its lack of energy conservation, most of the experimentation

was carried out with the B-schemes.

As a preliminary test of the different B-schemes, an initial set of
experiments was performed with T21 horizontal truncation. Although there
was little to choose between the various B-schemes at this resolution,

they were all slightly better than the control. However, some of these
schemes needed a rather small timestep in order to be stable. The required

timesteps were investigated experimentally and are given in Table 3.

Method Timestep
ECMWF=-operational 45 min
BO 45 min

B1 15 min

B2 45 min

B3 10 min

Table 3: Stability timesteps for T21 model runs using
different treatments of the vertical coordinate

for tests with a higher resolution, schemes B0 and B2 were chosen and
experiments were carried.out from the dates given in Table 2. The time
step for most of these forecasts was 20 minutes. However, some of the
integrations with the B2-scheme turned out to be unstable; stable results

were obtained with a 15 minute timestep.

18
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Fig. 4 Mean 200-1000 mb anomaly correlation of height (wavenumbers 1-3)

for scheme A (initial date 24 December 1984).
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Fig.

5

SLLLLLELY.

Anomaly correlation of the 1000 mb heights for 6 cases using the B2
scheme (dates indicated in Table 2). Thick line - persistence,
dashed line - control thin line - scheme B2.
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Fige 6 Mean 1000 mb anomaly correlation for 6 cases using the BO scheme.

Lines labelled as in Fig.

5.
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Fige 7 Increase in predictability at the 60% anomaly correlation threshold
for scheme BO and B2 compared with the control.
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Fig. 8 As Fig. 7, but for the 50% threshold.
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3.2 Results from forecast experiments with the T63 model

Fig. 5 shows the anomaly correlations of 1000 mb height for the B2-~scheme.
Four cases show an appreciable improvement over the control in the
correlation which ranges between 5 and 10% at about day 6; cases 3 and 5
are neutral. Fig. 6 shows the corresponding results for the B0 scheme.
The improvements for the BO-schemes are generally smaller than for the
B2-scheme. However, in all cases the B0 scheme produced an improvement

over the control or was neutral.

Figs. 7 and 8 gives the increase in predictability for schemes B2 and B0
for the 60% and 50% thresholds respectively. The average increaée 6f
predictability obtained from Fig. 7 is 6.5 hr for the B2 scheme and 2.5 hr
for the B0 scheme. For the 50% correlation threshold the values are 11 hr

and 3.5 hr.

These results suggest that the formulation of the top boundary elements
might have a considerable influence on the forecast scores. This finding

is consistent with the results obtained by Beaudoin et al. (1980).

In the southern hemisphere the finite element forecasts are a little better
than those from the control, however the largest improvements occur at very

low levels of skill.

In spite of the improvement in the objective scores, for the cases
evaluated so far there appears to be little synoptic difference between
finite element and finite difference forecasts. This is probably due to
the fact that the finite element treatment has imprbved the largest scales
only. Therefore we give here only a few examples to illustrate the

synoptic differences due to difference numerical treatments.

23



a) Analysis

30°W 0t 30°E

Fig. 9 1000 mb height fields for a 6 day forecast from 25 December 1983 for
(a) verifying analysis, (b) control, (c) scheme B2 and (d) scheme
BO0. Contour interval 4 dkm.
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¢) Scheme B2

Q03 192 (1984/ 1/ 2 126GMT) 1000 MB INT=4 DKM
150" 180°E 150°E

120 }...

d) Scheme BO

Q01 192 {1984/ 1/ 2 12GMT) 1000 MB INT=4 DKM

4] 0%

~1 60°E

Figs. 9 (Contd.)
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a) Analysis
ISQ'H

120% }... (] 120°E

S0"H

| 90

60 | N

30°H . il 3 30°E

30°H 0°E 30°E

Fig. 10 D+7 for forecast form 23.8.83, 1000 mb height field. a) Analysis,
b) control, c¢) scheme B2.
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c) Scheme B2

Fig. 10 (Contd.)
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a) Analysis
day 5 ™[\ T ~T
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Fig. 11 Day 5-9 for forecast from 17.1.84, 1000 mb height field.
a) Analysis, b) control, c¢) scheme B2.
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b) Control ¢) Scheme B2

day 5 90H \
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Fig. 11 (Contd.)
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a) Analysis
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b) Control
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S0°W

;.:j 90°F
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Fig. 12 Time averaged 1000 mb height field day 5-10 for T63 forecast from
17.1.84 a) Analysis, b) control, c) scheme B2
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c) Scheme B2
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Fig. 12 (Contd.)
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Fig. 9 shows 8 day forecasts of the 1000 mb heiéht field for the control
and the two fiﬁiie element séhemes,.and the veriffing analysis; the initial
Aate was 25 February 1983. aAll forecasts a;e good with many of the major
highs and lows being captured by all‘schemés: the anémaly correlations for
this case (see case 3 in Fig. 5) remain above 60% for the whole 10 day
period. With respect fo ﬁhe objective scores thé finite element schemes
did not improve on the control run for this.particular case (seé Fig. 5).
The onlj difference of any significance between the forecasts is'the

prediction of the low-at 170°W in the B2 forecast.

Fig. 10 shows day 7 forecasts from 23.8.83 for the control and scheme B2.
The main difference between these is the ﬁreatment of the Atlantic low near

30°W which the B2 scheme positions more accurately.

In addition to the 6 cases liéted in Table 2 a T63 forecast was run from
17.1.84}'this was a period of strong cyclonic activity over the Atlantic.'
Fig. 11 shows the 1000 mb height field for days 5 to 9. A difference in

- the development of thé Atlantic;European lows is noticeable atfabout day 7;
this can also bg_seen:in the time averaged fields (days 5 to 10). Fige. 12
shows:the averéged>1000 mb height-fields»for days 5-10. Note that the B2
scheme gives a better representation of thg elongation of the Atlantic

Pacific lows.
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4. 50 DAY INTEGRATIONS

50 day integrations (initial date 17 January 1984) were performed in order
to investigate the influence of the different numerical schemes on the
model's climate. The integrations were carried out with a T42 model. For
the case chosen the objective scores are high. This is illustrated by
Fige 13 which shows the anomaly correlation and the standard deviation of
height for the first 20 days of the forecast for the control run and runs
with the finite element schemes B0 and B4. The B4 scheme was chosen
because it evolved from the B2 scheme and avoids the problem of the noise
in the top most level associated with the B2 scheme. The control run
maintains a correlation over 60% up to day 10; after day 10, the finite

element integrations are somewhat better.

Fig. 14 shows the time-averaged 500 mb height fields for days 25 to 50 of
the finite difference control experiment, the B0 and B4 forecasts, and the

verifying (mean) analysis. The main deficiencies in the control run are as

follows:
L] The polar vortex is too strong and incorrectly orientated.
® The troughs over the Pacific and North America are out of phase, with

the model producing a ridge at 120°W where there should be a trough.
L The split of the flow at 0°E is only poorly represented by the

control integration.

The finite element simulations (particularly the B4 integration) are less

zonal than the control, and both have a more accurate description of the

elongation of the polar vortex.
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Both finite element schemes provide a better description of the troughs and
ridges over North America and the Pacific; the B4 simulation being
particularly good. However, only the B4 model produced a good description
of the split of the flow near 0°E. It is interesting to note that the only
difference between the B4 and BO schemes is the treatment of the upper

boundary condition.

Fig. 15 shows time averaged (days 26 to 50) differences of the 500 mb
height fields from the climate for analyses, control run and schemes B0 and
B4. The finite element integrations give the better anomaly patterns,
mainly by not over developing the main two large negative anomalies in the
northern hemisphere. However, since we are dealing with only one case,

there may be a large sampling error involved.

The impact of the numerical treatment on the model climate is also
reflected in the fluxes. Fig. 16 shows the zonally average meridional heat
flux vT for days 26 to 50; the B4 finite element model giving the best

results, in particular near the top level.

The strong impact of different top boundary formulations on the forecast is
intriguing and it is worth investigating if similar improvements could be
obtained by changing the upper boundary in the finite difference model. 1In
this model the geopotential for full levels k is computed as:

RT

S = Oar T ORERTy

For the operational version of the model, o=4n2 is used for the top level.
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Fig. 13 Mean 1000-200 mb standard deviation and anomaly correlations of
. height for the forecast starting 17 January 1984 for control,
schemes BO and B6, and persistence.
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a) Analysis
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Fig. 14 500 mb height fields averaged over days 25 to 50 for (a) analysis,
(b) control, (¢) scheme BO and (d) scheme B4.
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Fig. 14 (Contd.)
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a) Analysis
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Fig. 15 As Fig. 14, but for the deviation of the 500 mb height field from
the climate.
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¢) Scheme BO
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Fig.

a) Scheme B4
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Fig. 17 As Fig. 14, but for the finite difference scheme with a modified
top boundary.
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The simplest way of introducing the features of finite element schemes into
existing finite difference codes is to consider them as finite element
schemes with piece-wise constant basis functions, as proposed in Steppeler
(1982). The ECMWF operational difference scheme can be obtained as a
B-scheme with piece-wise constant basis functions. The basis functions for

full level k are 1 for 0 € (O and 0 otherwise. The full level

k-4, k437
amplitudes ¢k are obtained as layer averages of the exactly integrated

hydrostatic equation.

To obtain the B2 boundary with piece-wise constant elements, we have to

assume

g =0
T=T1%ford € (0,03/2
3/2 "1/2

and that 5 is piece-wise constant for the other levels. For ¢1, we obtain,

)

with the averaging operation corresponding always to the interval

(Gq4/20 T5/3)

g 0’—0’1/2

. =¢ =9 -J RT, ——————,dc¢
1 3/2 1 0(o -0 )
93/ 3/2 1/2
o -0
= ¢35 - Ry 5 iéz )
3/2 1/2
RT o
_ _ 1 3/2
B ¢3/2 (0. -0 )Z'f (o 03/2) do

3/2 "1/2 0

+ -
43/ T +3 RT,

Therefore, with a1=0.5, we obtain the equivalent of the B2 scheme for the

ECMWF finite difference model.

Fig. 17 gives the time averaged 500 mb height field. The difference

between this and the control run given in Fig. 14 is considerable. BAn
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improvement in the shape of the polar vortex is apparent. There is also a
significant difference compared to the control run in that some splitting
of the flow over the Atlantic is produced and the trough at 120°W has a

greater amplitude.

5. CONCLUSIONS

Several finite element schemes for vertical discretization have been
implemented with the ECMWF spectral model. Two energy conserving schemes
were tésted on 7 cases and these resulted in a systeﬁatic improvement of
the anomaly correlation of height; when compared to a single differencing
technique the average increase of predictability for the two finite element
schemes was 2.5 his (scheme B0), and 6.5 hrs (B2 scheme). In addition the
use of the finite element schemes led, for a few cases, to synoptic

improvements after day 7 of the forecasts.

Different épecifications of the top elementé had a substantial impact on
the forecast, and the impact of the discretization and the different
boundary formulations on the model climate appears to be substantial.

50 day integrations for one case showed that for one case finite element
schemes had more skill in predicting the anomaly of the time averaged

fields than a finite difference shceme.
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APPENDIX 1

DERIVATION OF SOME EQUATIONS FOR THE A-SCHEME

a) The continuity equation

The Wk+i of (15) are determined by the eguation
2

H
F oW
(ek' (55— D)) =0 (A1)
The scalar product being defined in (7) together with

NrEv+s 2 (n2)

g =
%
provides the right number of equations for the NLEV+2 quantities °v+l and
2
P .
s

b) ‘The W term of the thermodynamic equation

The approximation G for @ provides the w=term of the thermodynamic

1/2
equation by using
H
w=wW +0 yngS (A3)
In (A3) WH is given by (15) in the half-level representation. Since V is

defined for full levels, the second term of (A3) is represented at full

levels.

According to (17), w is represented partly by half and full level basis
functions. Using the non-discretized form of (17), and the hydrostatic

equation, we obtain

RT RT
—w=—=—W+ .V
o g W RIT-VPg

= - ¢cW + RTY'VPS (3d)

- (¢w)0 + ¢ Wyt RTVPS
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Observing that w is approximated on half levels,.and using (14), we obtain

RT _F., _HH _ H
o Olapp = G [-0W), ¢"D + RIv.Vp_] (a5)

In (A5), the fields without index H are represented by full levels.

c) The vertical advection term

For the vertical advection term of temperature, we write

GTO_ = (oT)0 - Tco

. p, V.(p_¥)

= (0T)  + T (— + —=— ) (n6)
g P

S pS

For (A6), we introduce the approximation

: : b, Ve(p ¥
o1 =& @ @+ T =+ —5 ) (27)

O1A
PP s Py
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APPENDIX 2

PROOF OF ENERGY CONSERVATION FOR THE B-SCHEMES

To prove energy conservation, we use the vertical integrals of kinetic and
potential energy, and show that the time derivative of their sum can be
written as a horizontal divergence. The proof mainly uses the fact that
the energy expression contains only two factors actually dependent on the
vertical coordinate. ‘It is well known that energy conse;vation is a
property of the straightforward Galerkinlmethod in c#ses where it 1is a
second order moment of the fields (Jespersen 1974). The method of proof

was for a simplified case used in Steppeler (1982).

With X = $ v.v we obtain for the vertically integrated kinetic energy

1 1 1
equation (f p Kdo) = f p_Kdo + p_ [ xao
0 0 0

(n8)

and from (25b) we obtain, using (7) for the definition of the scalar

product ( , ),
1 ] ~ =]
| xdo = (v, 6 v.Vy + G,V¢) - (¥, G RTVinp ) (n9)

0

We apply (12) to bring the Galerkin operations in (A8) to the other side of

the scalar product. From (13) it follows that G,V = V.
L] b
[ %do = = (v,0v) - (v,v.V¥) = (v,V9) - (V,RTVinp ) (A10)

(A10) contains no approximating Galerkin operators G; also the first term

of (A8) does not contain approximating operators because of the exact

computation of o and bs'

47



We now obtain the following when the Galerkin operations are removed from

the thermodynamic equation as in (A8):

1 1 1
= +
(f CPpST) qpps | mao gpps [ Tdo (A11)
0 0 0
1, .
= - .v —
CPPS (f) Tdo (Cpps V. VT) (cpps, oT ) (a12)
~ ]
TW T W2
+ (R, ) + (R, 5 )

With all Galerkin operations removed, the usual transformations used to
prove energy conservation in the continuocus case can now be applied to
write the time derivative of the total energy as a horizontal divergence
1
i’—f(1<+<1> +CpT do
ot 0 Py sPs pps
1

1 1
= - V. Kdo) - V. do) - Vu() C_p_vTd
‘£ P VKdO) (gps‘_fcb ) <(f) P YTdo)
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