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Summary: Several recent lines of érgument and evidence have converged which
point anew to the important role played by the interaction between internal
gravity waves and the synoptic scale flow.' The main source of such wave ac-
tivity in the earth's atmosphere is that associated with stratified flow over
mountainous terrain. Detailed analyses of the nature of the waves generated
through this mechanism, and of the way in which they interact with the mean
flow, demonstrate that conventional schemes for parameterization of the drag
communicated by the waves to the mean flow are at best questionable, The
work which has led to this conclusion is reviewed here and suggestions made
based upon it which should eventually lead to the design of a new and more
effective wave drag parameterization for use in general circulation models

(GeM's),

1. INTRODUCTION

It has been generally well understood since the work of Sawyer (1959)
that the force exerted on the earth when a field of internal waves is set
up by flow over mountainous terrain may be comparable to, or even exceed,
the direct frictional force over areas where significant small scale topo-
graphy exists. It is a consequence of Newtons' second law that this force
which the air exerts on the earth is not directly communicated to the mean
flow of air at the surface; rather, the wave field generated by the topo-

graphy transports counter—-flow momentum in the vertical. It is now known
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that this momentum flux is actually deiivered to the mean flow only under
rather special (if inevitable) circumstances which occur when the waves
"break". The issues of how and where the mean flow is affected in this
circumstance will have to be settled before we will be in any position to
accurately parameterize the influence of internal wave drag in a general
circulation model.

Sawyer's original linear estimates of internal wave drag "potential
were confirmed by Blumen (1965) as being in the range 1-10 dyne em™? in
conjunction with stationary waves having horizontal wavelengths in the
range 10-100 km. Bretherton (1969) applied linear theory to estimate the
drag delivered to the mean flow for an actual combinafion of three dimen-
sional flow and topography at a specific geographic location and also
obtained estimates similar to those of Sawyer. It is crucial to the appre-
ciation of all that will follow in this review to understand that linear
theory predicts that the only occasion in which the inviscid wavefield will
give up its momentum to the mean flow is through the iﬁteraction which
occurs at a critical level, where by definition the horizontal phase speed
of the wave equals the speed of the mean flow (or in circumstances. of strong
wave transience which we will ignofe). As had been demonstrated by Booker
and Bretherton (1967), the.nature of this linear interaction is governed
entirely by the value of the gradient Richardson number Ri. at the critical
level itself (Rip = N%2/(du/dz)? where N is the Brunt-Vaisala frequency and
U the horizontal speed of the mean flow), which is such that the incident
momentum flux is entirely absorbed to the extent that Ri.>> 0.25. This is
the concept from linear theory which Bretherton (1969) employed to estimatev
where and how much wave drag would be communicated to the mean flow in the
case study which he described.

Recent analyses of nonlinear mountain waves (Clark and Peltier 1977,

Peltier and Clark 1979, 1980, 1983, Clark and Peltier 1984) have very
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clearly established that Bretherton's iinear analysis of the wave drag pa-
rameterization problem is severely limited in its applicability. These new
analyses, which will be reviewed below, have demonstrated two important
points which had not previously been understood. - Firstly, they have esta-
blished that the actual interaction between a wave and the mean flow at a
critical level where Ri. >> 0.25 is such that the wave is strongly reflected
rather than being absorbed, a consequence of the nonlinear redistribution
of vorticity which takes place in the critical layer itself. The second
point which these récent analyses have established is that the only occas-
ion in Which strong wave -~ mean flow interaction occurs is when the wave
"breaks" in the sense that streamlines are caused to locally overturn and
thus local vertical temperature gradients are caused to exceed the dry
adiabatic., The idea that breaking internal waves deposit momentum into the
meaﬁ flow at the breaking level is an idea that was first introduced in the
GFD literature in the context of efforts to understand dissipation proces-
ses in the upper atmosphere (Hodges 1969, Hines 1970). It has also been
perceived more recently as being a crucial source of dissipation in the
middle atmosphere, in which context Lindzen (1981) and Holton (1982) have
revived Hodges original idea of "wave saturation" to develop a parameteri-
zation scheme on the basis of which the turbulent dissipation effected by
breaking could be estimated if the incident spectrum of internal waves was
known. Peltier et al. (1985, 1986) have shown that the phenomenon of sud-
den stratospheric warming (SSW) is extremely sensitive to the magnitude and
spatial distribution of the dissipation which is assumed to act in the
middle atmosphere and suggested that SSW might therefore be employed as a
vehicle for testing possible schemes for the parameterization of wave drag.

One of the more important outcomes of the above cited new analyses
of nonlinear mountain waves has been the demonstration that the basic

assumption of the Lindzen-Holton (Hodges) parameterization scheme is most
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probably wrong. As we will see in ﬁhaé follows, although the saturation
hypothesis does turn out to be correct, the momentum flux in excess of that
required to maintain saturation is apparently not deposited into the mean
flow where the wave breaks. What actually occurs. is that the excess wave
activity is reflected rather than being absorbed just as has been shown to
be the case for the critical level interactiony It is upon the proper
representation of this dynamical process within general circulation models,
and in particular upon the understanding of its implications concerning
wave-mean flow intefaction, that the construction of a rational wave drag
parameterization scheme must depend.

Tn fact the analyses of the evolution of topographically forced
internal waves which we have performed were not directly motivated by the
wave drag parameterization problem. Rather this work had its origins in a
desire to understand a very specific atmospheric phenomenon, namely the
occurrence of strong downslope windstorms which are variously known in dif-
ferent parts of the world as the Chinook (Canada), the Foehn (Switzerland),
and the Bora (Yugoslavia). When we began this work the prevalent theory of
these phenomena was that they were explicable in tefms of a simple linear
hydrostatic model (Klemp and Lilly 1975) which held that a strong dowvnslope
windstorm occurred ﬁhenever the atmospheric mean state was such that the
phase shift of the forced internal wave across the troposphere was some
integer multiple of II/2, i.e. the height of the tropopause was some integer
multiple of half vertical wavelengths. This theory was more fully elabo-
rated in a number of later articles (Klemp and Lilly 1978; Lilly and Klemp
'1979; etc.) in which the well observed Colorado front range windstorm of
11 January 1972 (Lilly and Zipser 1972) was employed to serve as a test of
the theory's predictions. Our analysis of the same windstorm (Peltier and
Clark 1979) led us, however, to an explanation of this dynamical event which

was completely different from that which had been proposed by Klemp and
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Lilly. This analysis established thatpin fact the process which was cru-
cial to the ability of a numerical model to rather precisely reproduce the
observations of the January 11, 1972 windstorm event was the occurrence of
wave breaking. In that paper.we described two model integrations which
differed from one another only in that, for one, the stratospheric wind
speed was increased above the observed speed by an amount just sufficient
to prevent wave breaking., These models, for which the hydrostatic phase
shift of the wave across the troposphere was identical, evolved in com~
pletely different Wéys such that only the model in which the wave actually
broke in the lower stratosphere was able to reproduce the observations.
Although this conflicting analysis initially led to a good deal of heated
disputation in the open literature (Lilly and Klemp 1980; Peltier and
Clark 1980) the Peltier and Clark analysis has since been reproduced by
othérs and thus shown to provide the only viable explanation of the down-
slope windstorm phenomenon (Hoinka 1985; Durran 1986). Such debate as
continues has become focussed on the interpretation of the processes which
occur subsequent to wave breaking which are responsible for transforming
the flow into one characterized by intense downslope flow in the lee of the
topography (e.g. Durran 1986).

In Peltier and Clark (1979) an hypothesis was presented as to the
physical process which was responsible for effecting this transformation.
This hypothesis, which was suggested to the senior author of this paper on
the basis of work on the stability of stratified parallel flows above the
ground by Davis and Peltier (1976, 1977, 1979), was made more explicit in
Peltier and Clark (1983). The basic idea underlying this hypothesis was
that when a mountain wave field was forced to exceed critical steepness
somewhere (to "break"), the flow thereafter became susceptible to an insta-
bility which consisted of a horizontally localized mode, resonant in the

cavity between the level of breaking and the surface, which would have
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positive growth rates only when the bésic state wave was supercritical in
amplitude. Because this mode turns on just as streamlines overturn, all of
the forcing in excess of that required to support the mode would project
onto this secondary instability rather than onto the freely propagating
wave, The observed linear growth of the wave in the cavity which was re-
vealed by the numerical integrations could then be understood in terms of

a model consisting of a simple harmonic oscillator forced at its resonant
frequency (Peltier and Clark 1983). This‘hyﬁothesis also provided an im-
mediate explanation of the saturation phenomenon. The validity of this
hypothesis has recently been more fully established through a series of
detailed analyses of the stability of the nonlinear wave field (Laprise and
Peltier 1986), upon which we will not have space to provide detailed comment
here but to which we direct the interested reader for further discussion.
In the following sections of this document we will review the basic results
which led to the construction of this theory and will comment upon its
implications for the problem of designing a parameterization scheme for the
incorporation of mountain wave drag in models of the atmospheric general

circulation.

2. LINEAR THEORY FOR MODELS WITH CONSTANT N AND U

The fundamental results in the linear theory of mountain waves were
established in the papers by Quency (1941) and Lyra (1943), For a fully
compressible flow characteriﬁed by constant N and U upstream of two dimen-
sional topography zg(x) (where £ is by definition such that w = UJ3E/dx with
w the perturbation vertical velocity) is:

E(x,2) = Tlexp(a/B) f_ expilkx + (k)7 2'] zg(k) dk (1)

where
(N2/U%) - w2/c?)

[1 - Uv%/c?]

oo
n
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z! = [1 - Uz/Cz:ll/2 z
And c¢ is the contour 0 < k < % along the real axis in the complex k-plane,
w, = g/2C is the acoustic cut—off frequency, and ¢ the adiabatic sound speed.
In the limit of low Mach number M = U/¢ << 1, ké => N2/U2, z! => z and (1)
can be reduced to a form in&olving separate real quadratures in the upstream
and downstream regions. An example of such a solution for symmetric topo~
graphy is illustrated in Figure 1 which shows, in plates (a) and (b) res-
pectively, contdurs of conétant £(x,2z) and W(X,Z). Figure 2 shows the
stream function fieid for this linear steady state flow with the height of
the topography fixed so that the wave just exceeds critical steepness.

vThe height above the ground at which the streamlines first overturn
- may be quite accurately estimated using linear theory and most easily on
the basis of the assumption that the wavefield may be assumed hydrostatic.
In the hydrostatic, long wave limit ké ?> k2, and (1) may be analytically
evaluated for symmetric topography zs(x) = a’h/(x? + a?) using Hi;bert
transforms to give (Miles and Huppert 1967):

2
a‘h ez/ZH

EL(X,Z) = [cossz - f-sinsz] (2)

(x2+a?)
Now the condition for overturning of the streamlines is clearly 93£/9z > 1,
a condition which follows from the conservation of potential temperature
d0/dt = 0 which, expanding 6 = 90 + B8', reduces in the steady state to the
equation 99'/3x + (3&/9x) (deo/dz) = 0., On the basis of the assumption of
no upstream influence this may be integratéd directly to give 8' = -E x
(dGO/dz). Thus the stability of the basic state will be entirely offset
by the wave where (-ae'az)max > (deo/dz) or where (BE/Bz)maX > 1, From (2)
we see by inspection that extrema of BEL/BZ are all found immediately over-
head of the mountain (x=0) and the first steepening level z, is where kG}c

z, = 3I/2. The wave induced critical region is therefore located at a height
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z, = BAZ/4 where Kz = ZII/kG is the vertical hydrostatic wavelength of the
wave,

Although the prediction from linear theory of the height at which
wave overturning first occurs is rather accurate, even for flows with va-

riable N and U in which case the WKBJ generalization

Z
foc kq(z") dz' = 31/2

may be employed, the linear prediction of the height of the topography
necessary to induce this condition may be extremely inaccurate, For exam-
ple, the results in Figure 2 were obtained from a linear calculation with
h = 500 m, but inspection of the apparent topography based upon the relief
of tﬁe streamline Whichventers the domain at z=0 upstream is considerably
less than this. According to this linear theory the height of the topo-
graphy necessary to induce the critical condition corresponds to a height
h = 400 m or to a Froude number Fr = h/U/N) = 1.00 where the Froude number
is clearly the ratio of the height of the tobography to the vertical hy-
drostatic wavelength of the forced internal waves. As we will see in the
next section, however, for symmetric topography z_ = a’n/(x? + a?) the
critical Froude number Frc = 0.85 so thét the error in the linear prediction

of the critical topographic height is greater tham 20%.

3. LONG'S MODEL: EXACT NONLINEAR SOLUTIONS WITH CONSTANT N AND U

Long (1953) was the first to realize that under certain circumstances,
which essentially reduce to constant N and U, it is possible to obtain
exact nonlinear steady state solutions to the mountain wave problem. He
showed that the solution to the full non-linear Boussinesq problem, in
terms of the free stream deflection £, was provided by the solution to the

equation:
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which is clearly a nonlinear equation if U and p are arbitrary. However,

if Uz(zo)p(zo) and dp/dzo are ‘both constant then (3) reduces to

V2E + 6% =0 | (4)
where o2 = gldp/dzol/pU2 = constant also. However in the Boussinesq ap-
proximation subject to which (3) was derived, 02 = -N2/U? and (4) may be

re-written, after Fourier transformation of the x-dependence, as:

AN
= - [—N——kz]z=o (5)

U2 x

which is exactly the same wave equation which arises by application of
linear perturbation theory, thus demonstrating that for mean flows with
constant N and U, linear theory delivers exact nonlinear solutions to the
problem but for a topography which is determined a-posteriori as that dis-
cussed previously with respect to Figure 2.‘ This suggests a simple ite—
rative technique with which exact nonlinear solutions for any desired to-
pographyAmay be simply constructed. What one does is simply to continue to
adjust the topography employed in the linear calculation until the "actual"
topography coincides with that desired. One example from such a construct-
ion is shown in Figure (3) which is from Laprise and Peltier (1986) in which
plate (a) is for a flow which is essentially hydrostatic and plate (b) one
for which non-hydrostatic effects have begun to become important.

This construction may be employed to compute the dependence of the
critical Froude number Frc = th/U upon the second nondimensional parameter
Na/U which is the non-dimensional mountain half-width, Clearly, in the
limit Na/U -> o the long wave hydrostatic approximation must apply, in
which limit Miles and Huppert (1969) have shown for symmetric topography

z = a’h/(x% + a?) that the critical Froude number Frc = 0.85. Figﬁre 4,
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from Laprise and Peltier (1986), shows the dependence of this critical
Froude number on Na/U for the general nonhydrostatic problem which demons-
trates that the asymptbtic (hydrostatic) condition essentially obtains

for Na/U > 10 whereas for Na/U < 5 non-hydrostatic effects are large.

4, SUPERCRITICAL FLOWS WITH CONSTANT N AND U: THE SATURATION CONCEPT

The above described technique for the construction of nonlinear -
steady solutions, fqr flows with constant N énd U, is of course based on
the assumption that such a steady state solution exists. We might reaso-
nably ask, however, whether any such steady state solution existsin the
supercritical states in which Long's model predicts that streamlines over-
turn. We might furthermore speculate on the events which would occur in
a flpw which was forced to enter the supercritical regime. A detailed
numerical analysis of what does in fact occur in such.circumstances was
presented in Peltier and Clark (1983), amplifying considerably the discus-
sion in Clark and Peltier (1977). In terms of wave drag the result is
clearly éummarized in Figure (5) which shows surface wave drag DW(O) as a
function of time for two experiments (numbered 34 and 36) which differ from

one-another only in terms of vertical spatial resolution (34 has 97 vertical

grid points and Az = 153.6 m and 36 has 192 vertical grid points and Az

79.3 m: both experiments héve 136 grid points in the horizontal with Ax
58.9 m). In these experiments, which both are for topography zS(x) =
a?h/(x? + a?) with a = 3 km, h = 400 m, and N = 0.99 x 10~%2-s~!, the flow
is siowly accelerated to a speed of 5 m s ! for which case the Froude num-
ber is Nh/U = 0.792 < 0.85, so that the flow is subcritical. After about
150 min the mean flow is decelerated to U = 4 m s™! in which case Nh/U =
0.9905 which is supercritical. Figure (5) shows that after deceleration
the wave drag first falls and then rises dramatically and in a quasi-linear

fashion. According to Long's steady state model, results of which are also
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Figure 5: Surface wave drag as a function of time from two
nonlinear simulations which differ only in their
numerical resolutions. Symmetric topography,
constant upstream N and U.
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shown on Figure (5), the wave drag should fall somewhat when the flow is
decelerated. In fact it rises to levels which are more than double the
Long's model prediction.

Some indication as to the nature of the physical process responsible
for the rapid increase of drag in the supercritical regime is provided by
Figure 6 which shows profiles of Reynolds stress as a function of height
through the phase of strong amplification of the wave drag. Plates (a)
and (b) of this Figure are for the low and high resolution experiments
respectively. The thin vertical line on each of these plates corresponds
to the Reynolds stress (momentum flux) which would be associated with a wave
field in which the maximum streamline steepness was precisely critical.

The thin horizontal line corresponds to a height z = 3ké/4, which is the
critical height in the wavefield at which streamlines would first be forced
to exceed the critical steepness. These data clearly demonstrate that in
the supercritical state the momentum flux in the wavefield above the cri-
tical height is "exactly" that which would be associated with a wave of
critical steepness, No energy in excess of that associated with the cri-
tical condition is transmitted through the critical height. Rather, as is
evidenced by the continuous increase of the stress in the lower levels, the

"excess" is trapped in the cavity between the critical height and the

surface, This is what is meant by the saturation concept. This concept

is at the basis of the Lindzen-Holton (Hodges) scheme for the parameteri-
zation of wave drag. Unfortunately, in that scheme it is assumed that the
excess energy and momentum are deposited into the mean flow at the height
where breaking occurs. The model calculations demonstrate, on the contrary,
that the excess flux is reflected, not absorbed, and it is this reflection
which is responsible for the continuous amplification of the surface wave
drag, As we will show in the next section, it is the low level amplifica-

tion due to this cause which is at the heart of the downslope windstorm

phenomenon. 236



5. SUPERCRITICAL FLOWS WITH VARTABLE N AND U: SEVERE DOWNSLOPE WINDSTORMS
That the above described transition mechanism plays a crucial role
in the downslope windstorm phenomenon was first demonstrated in Peltier
and Clark (1979) in their disﬁussion and simulation of the storm which
occurred at Boulder, Colorado on Januéry 11, 1972. A sequence of total
horizontal velocity field plots from this simulation is reproduced here as
Figure 7 and the surface wave drag vs. time history of the simulation is
shown in Figure 8. The first plate in Figure 7 corfesponds to a time just
prior to the time the wave breaks in the lower stratosphere (t = 3200 s or
n = 800 in Figure 8 since the time step is 4 s) which is the time numbered
2 on Figure 8. As the drag curve enters the phase of prolonged linear
amplification subsequent to breaking, the horizontal velocity in the lee
is strongly amplified, eventually reaching speeds in excess of 60 m s-1,
The lower stratospheric wave breaking itself is seen mbre clearly in the
evolution of the corresponding potential teﬁperéture field which is shown
on Figure 9. Also evident in this simulation is the intense train of
trapped lee waves which fill the domain downstream of the topography, a

phenomenon which was also first simulated in the 1979 paper of Peltier and

Clark.,

6. THE CONCEPT OF SPONTANEOUS RESONANT AMPLIFICATION

In attempting to explain the physical process responsible for the
strong amplification of the wavefield in the low levels which is observed
Wheﬁ the critical condition is exceeded, Peltier and Clark (1979) appealed
to the notion that the full wave field could be understood as a super-
position of two components, The first consists of a part with structure

identical to that of the wavefield which would exist if the flow consisted
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Figure 7: Total horizontal velocity as a function of time from

the January 11, 1972 Boulder windstorm simulation of
Peltier and Clark (1979).
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n(at)

_Figure 8: surface wave drag vs. time curve from the January
11, 1972 Boulder windstorm simulation of Peltier and
clark (1979). Point 1 marks the end of the stage of
model initialization while Point 2 marks the time at
which the wave breaks in the lower stratosphere.
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Figure 9: Potential temperature field as a function of time

from the January 11, 1972 Boulder windstorm
simulation of Peltier and Clark (1979).
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entirely of a wave of preéisely criticél amplitude. The second consists

of a part forced by the topography in excess of that which would be required
to maintain the critical flow. This part is nonzero only in the region
beneath the critical height and can be understood on the basis of the
hypothesis that beyond the critical threshold the basic state wavefield
supports a normal mode of instability, with growth rate o + 0 as Fr ~ Frc,
which is excited by the supercritical component of the forcing.

A very simple heuristic model as to how this would work was des-—
cribed in Peltier and Clark (1983) using the following linear time depen-
dent hydrostatic internal wave equation for the densitf weighted perturbat-
ion vertical velocity W = pw as:

W
9z29t?

- k2N?W = 0 ' (6)

We méy solve (6) Subject to the b.c.'s (i) w = v exp(-i wt + ikx) on 2z=0
and (ii) perfect reflection at =z ; 3kz/4, as suggested by the fesults shown
on Figure 6., Peltier and Clark (1983) show that (6) subject to (i) and
(ii) has the solution

wt -

w = [at sin(mz) + b [z —%) cos (mx)]g_i (N

in the frame of reference in which the reflection occurs at the height
z=d /2 and the ground is at z = -d (d =vkz/2 = IIm). 'Also, since we are
seeking a slowly growing solution (slow on the scale ofbthe period of the
wave), the wave frequency w = kU = Nk/m. Substituting (7) info (6) we
confirm the former as a valid solution if:

iwm®a + 2w?mb = O ~ | (8)
and if a and b are such that the lower boundary condition is satisfied.
Since sin(mz) = 0 on z = -d the lower b.c. is satisfied if

b = wo/(3d/d) . ‘ (9a)

Therefore from (8),
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a= (2iw/m) b . _ (9b)

From (9b) and (9a) it is clear that the growth rate a depends oﬁ the degree
of supercriticality of the forcing through LS which is the strength of the
forcing on z=0 in excess of that required to maintain a "background"
disturbance which is of exacfly critical amplitude. Although (7) shows
that v is not time dependent (Wo = w (z=0)), the horizontal velocity
perturbation, since u' = -(1/ik) (3w/9z) is:

u' = - (1/ik) [mat cos(mz)-mb(z - %Vd) éin(mz) + becos (mz)]
or

u'(z = -d) = (m at/ik + b/ik) . (10)
Thus u' grows linearly with time and so DW(O) = < pou'w' > will also, in
accord with the results of the numerical simulation shown in Figures (5)

and (8).

7. RESONANT AMPLIFICATION AND THE NONLINEAR MOUNTAIN WAVE CRITICAL LAYER

An initial test of the above described resonant amplification hypo-
thesis was provided in Clark and Peltier (1984) wherein was described a
further series of numerical simulations of nonlinear mountain waves but for
mean statés characterized by the presence of a wind direction reversal at
some height above the surface. For these calculations wind speed was assumed
to vary as U(z) = Uo tanh [(z - zi)/b] with Uo =8ms-!, b =0600m and the
height of the wind reversal zg variable. The Brunt-Vaisala frequency was
fixed at N = 0.02 s~'. With these parameters the value of the gradient
Richardson number at the critical level is Ric = szleg = 2,25 so that
linear theory predicts that internal waves should be absorbed. This mean
flow was forced with topography zs(x) = a’h/(x?> + a?) with h = 300 m and
a =3 km. This implies that the Froude number at asymptotic wind speed,
Fr = Nh/Uo = 0.75, is subcritical (< 0.85), and therefore in the absence

of the sharp decrease of wind speed aloft the forced internal waves would
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not break. What actually occurred in fhese simulations is summarized by
the surface drag vs. zg data for the quasi-steady flows which obtained in
the 1limit of long time shown here as Figure 10. On this figure the height
of the wind reversal is shown. non-dimensionalized with the asymptotic
vertical hydrostatic Waveleﬁgth of the internal wave (Az = 2l Uy/N).
Inspection of these data shows that the flows are characterized by
extremely high drag when zi/}\Z = 0,75 or 1.75 but by markedly lower drag
than that predicted by the asymptotic Long's'ﬁodel solution (dashed line)
when zi/Az differs éufficiently from these critical values. Detailed ana-
lysis presented in Clark and Peltier shows that for Zijkz close to .75 or
1.75 there is intense resonant growth of the waves in the cavity between

z =z and z=0 which is strikingly similar to that observed in flows with
U(z) constant when the waves were forced to break., On this basis it was
arguéd that the self induced resonance observed in a supercritically forced
field of mountain‘waves occurred simply because the mean (wave deformed)
state was automatically tuned when the topography was.symmetric since then
the first level of breaking was always at z = 3Xz/4 as demonstrated pre-
viously in Section 2,

These data were construed by Clark.and Peltier to argue that
resonant growth of the waves occurred for z, = (3/4 +n) Az because the wave
reflected from the critical level was then in phase with the incident wave
when this quantization condition was satisfied. When it was not satisfied,
on the other hand, the reflected wave interfered destructively with the
incident wave causing the Reynold's stress in the low levels to be reduced
considerably below the magnitude predicted by the appropriate asymptotic
lLong's model. When the system was "on resonance' the Reynolds stress pro-
file was strongly divergent throughout the cavity between the critical
level and the ground whereas when the system was "off-resonance" the stress

divergence was confined to the critical level itself suggesting that in the
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Figure 10:

Surface wave drag in the limit of long time as a
function of the height of the critical "level above
the ground from the analyses of Clark and Peltier
(1984).
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latter case internal wave momentum was being absorbed and the mean flow
decelerated in consequence although not to the extent which Wouid be
expecﬁed in the absence of significant reflection.

It should be noted that the mechanism of wave~mean flow interaction
envisioned here involves variations in thé effective reflection coefficient
of the "mean-flow" which depend on the phase of the incident wave, an effect
whose existence clearly depends in turn upon the nonlinear interactions
involved in the reflection process. For this reason one simply cannot
understand this new phyéical process by appeal to arguments which view the
critical level reflection as in any way analogous to a free surface re-
flection., If the latter analogy were in any sense reasomnable then clearly
the appropriate quantization condition would predict adjacent wave drag
peaks on Figure 10 separated by half vertical wavelengths (AZ/Z) rather than
full vertical wavelengths as is in fact the case. This is a consequence of

the strong nonlinearity involved in the reflection process.

8. A DEFINITIVE TEST OF THE RESONANCE HYPOTHESIS

In order to finally prove or disprove the above described resonance
hypothesis of the origin of downslope windstorms we are clearly obliged to
give greater substance to the assumptions which underly it. The most
important of these is clearly the notion that as the mountain wave field is
caused to exceed critical steepness at z = 3Az/4, then the region of over-
turned streamlines begins to act as a reflector of all wave energy in excess
of that required to establish the critical condition itself. This is an
hypothesis which is clearly amenable to direct test in principal. All we
would need to do to establish it, is simply to show that as the critical
Froude number is exceeded the wavefield predicted’by Long's model becomes
unstable to a mode of instability trapped between the ground and the wave
induced critical region. We could then compare the perturbation stream
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function of this mode with difference étream functions computed from the
nonlinear model through the period of low level Reynolds stress amplifi-
cation. If these fields were the same. then the resonance hypothesis would
be firmly established.

Obviously the above sﬁggested test of the resonance hypothesis would
involve an analysis of the stability of a complicated two dimensional non-
linear flow over an irregular lower boundary. This is a nontrivial techni-
cal problem. In fact, however, a formalism hés recently been developed
with which such a caiculation can be performed. This formalism, which may
be used to solve any two dimensional non-separable bounéary value pxoblem,
has been employed by Klaassen and Peltier (1985a,b) to investigate the
problem of the transition to turbulence in a field of nonlinear Kelvin-
Helmholtz waves and by Moore and Peltier (1986a,b) to investigate the
probiem of the origin of frontal cyclones. The same methods have now been
applied by Laprise and Peltier (1986a,b) to analyse the stability of the
nonlinear field of internal waves generated by Long's model. Without
going into any detail at all in the description of the results which have
very recently been obtained in this work, suffice it to say that this ana-
lysis has.fully confirmed the validity of fhe basic assumption underlying
the resonance hypothesis. Just as the critical Froude number which charac-
terizes the steady state wavefield exceeds the critical value, the flow
becomes unstable to a single trapped mode whose growth rate increases from
zero as the Froude number is further increased. We see linear rather than
exponential low level growth in the windstorm simulations simply because,
immediately as the critical condition is established in the time dependent
model, this region in the fluid begins to reflect the excess energy in the
wavefield. The structure which grows is thereéfore that of the mode with
zero growth rate which is the one Which exists at Fr = FrC and it is this
structure which plays the role of the eigenfunction of the 1-D harmonic
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oscillator in the schematic theory of Section 6.

9.  CONCLUSIONS

The nature of the wave-mean flow interaction which occurs in a field
of large amplitude topograpﬁically forced internal waves bares no resem-
blance at all to the interaction predicted by linear theory. Strong
interaction occurs only when the waves break and appears to be characterized,
at least for symmet?ic topography, by a réfléction of the "supercritical"
component of the wave from the level of breaking. In such circumstanceé
the deposition of momentum which decelerates the mean flow is apparently
not restricted to the height at which breaking occurs but rather is dis-
tributed throughout the fluid from the breaking level to the mountain
crest. Below the mountain crest and in the lee of the topography, on the
other hand, the mean flow is simultaneously accelerated and a low level
"jet" forms which has maximum intensity in the immediate lee of the topo-
graphy where it explains the downslope windstorm phenomenon. Therefore,
although the saturation hypothesis of Lindzen-Holton (Hodges) is nicely
verified by the nonlinear time dependent simulations of the nonlineaf flow,
the assuﬁption that the excess momentum is simply deposited into the mean
flow at the breaking level has been shown to be erroneous. This clearly has
rather important potential implications for the problem of wave drag para-
meterization, since it shows that although breaking usually occurs in the
lower stratosphere, the wave-mean flow interaction will extend thfoughout
the troposphere. In any event, the schemes which are currently beingk
employed in general circulation models to parameterize the influence of
mountain wave drag will have to be modified considerably to represent the

actual hydrodynamic processes which our simulations have revealed to occur.
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