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Summary: The use of ensembles of integrations for extended range
prediction has been studied with a hemispheric version of the
Meteorological Office 5-layer GCM employing climatological SSTs. In
addition to their actual predictive skill, the ensemble forecasts were
also verified under 'perfect model' conditions. A comparison of the
effects of ensemble averaging with spatial or temporal averaging is
made. The ensemble technique is now being used with the Meteorological
Office global 11-layer model to produce real-time extended range
forecasts for the long range forecasting conference. The first of
these forecasts was made in September 1985, and some results will be
shown. Extended range forecasts have also been studied to determine
the improvement in forecast skill, using observed rather than
climatological SST. These include a number of single integrations on
the 5-layer model, and two ensembles of integrations from the 1982/3 El
Nino winter on the 11-layer model. Results from these forecasts will be
discussed.

1. INTRODUCTION

Integrations of numerical weather prediction models can show extended
range forecast skill. For example, Mansfield (1986) has documented
results from an integration of the Meteorological Office hemispheric
5-layer model (Corby et al, 1977), initialised using data from
14/12/76, where a 15 day average forecast field centred on day 40 has
an anomaly correlation of almost 0.6. However, such cases are

not typicél. In general, the limit of determini§tic predictability of
the 5-layer model is around 10 days. In order to consider the general
problem of extended range skill beyond this limit one must recognise
that an individual (deterministic) forecast represents only one of an

ensemble of equally likely outcomes given, for example, uncertainties
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in the initial analysis. The use, then, of ensembles of integrations
for extended range prediction is compatible with the philosophy that
forecasting beyond the limit of deterministic predictability is

inherently probabilistic.

In this paper, ensembles of extended-range integrations will be
discussed in three different contexts. In section 2 we consider a
number of 7-member wintertime ensembles of integrations of the b-layer
model. Whilst not a state-of-the-art NWP model, it is economical to run
and can be used to assess the potential of the technique. Comparison
with the effects of spatial and temporal averaging will be made. The
results quoted in section 2 are a summary of an extensive study by
Murphy (1986) of extended range ensemble forecasting using the 5-layer

model.

Beginning in September 1985, ensembles of real-time extended range
forecasts have been made using the global 11-layer model (Slingo,
1985), and results from these have been made available for discussion
at the long range forecast conferences in the Synoptic Climatology
Branch of the Meteorological Office. At present, it is envisaged that
a T-member ensemble forecast will be run in this way every three
months. Some results from the first of these real-time forecasts are

discussed in section 3.

It has long been recognised that anomalous SST, particularly in the

tropics, may be an important component of 'lower boundary forcing'

influencing the predictability of extended range forecasts. Results by
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Mansfield (1986) using the 5-layer model appear to confirm this. An
ensemble of extended range forecasts has been run on the 11-layer
model using data from the El1 Nino winter 1982/3, firstly with observed
and secondly with climatological SST. The degradation in
predictability with climatological SSTs is shown in section 4, both in
the tropics and in the extratropics. Results will be compared with
climate sensitivity experiments using seasonally-averaged SST anomalies

(Palmer and Mansfield, 1986).

2. POTENTIAL IMPACT OF ENSEMBLE FORECASTING

We present in this section a brief and informal synopsis of a small
part of the work carried out to determine the extent to which the
extended range predictive skill of a dynamical model (in this case the
5-level model) might be improved by forming an ensemble-mean forecast

from a number of individual integrations. A full description of these

results is given in Murphy (1986).

Eight 50-day ensemble forecasts, each containing seven individual
integrations, were made from winter initial conditions. The ensembles
were created by adding spatially-correlated random perturbations to a
given observed state to simulate the effects of analysis error. The
method used was to take a linear combination of the observed state with
an independent analysis such that the difference between the resulting
perturbed state and the observed state corresponded to a typical
analysis error (30 m rms at 500 mb). Each ensemble forecast was

verified both against observations, and against an additional 'nature'
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integration also produced using the above perturbation technique. The
purpose of the latter was to test the ensemble method under the
(unrealistic) assumption that the model has no systematic biases. With
this so-called 'perfect-model! assumption, the additional integration
can be thought of as a possible realisation of the real atmosphere and
used to verify the forecasts. The predictability limit under a perfect
model assumption can be thought to provide an upper bound to the

model's actual predictive skill.

Figs 1 and 2 show results averaged over the eight ensembles under this
perfect-model assumption. All the curves refer to results for the 500
mb height field in the area 30-85°N. The skill score is defined by the
anomaly correlation coefficient. To calculate this, model fields are
calculated relative to an estimate of the model climatology obtained by

averaging over the 8 'nature' runs.

Since, under perfect model conditions, the ensemble forecast contains
information about the probability distribution of possible evolutions
of the atmosphere from the initial state, we expect on average the
ensemble-mean forecast to yield an improvement in predictability
relative to an individual forecast. However, we may also expect to gain
some improvement in skill by removing the least predictable scales of

motion by spatial or temporal filtering.
The curves in Fig 1 show the relative effects of spatial filtering and

ensemble-averaging on forecast skill. An improvement in skill is

obtained if we consider only the long-wave component in an individual
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Figure 1 Average 'perfect model' forecast skill for 500 mb height
field from 30-85°N for 5-level model integrations. (
daily unfiltered individual forecast. (=== = — ) daily
individual forecast, zonal waves 0-3 only. (seessse) daily
ensemble-mean forecast. (=+=—-— ) daily ensemble-mean
forecast, zonal waves 0-3 only.
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Figure 2 Average 'perfect model' forecast skill for 500 mb height
field from 30-85°N for 5-level model integrations,(——)
daily unfiltered individual forecast. (——~ =) 15-day
mean individual forecast. (+e+s--+) daily ensemble—mean
forecast., (~-=:~) 15-day mean ensemble-mean forecast.
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forecast. However, if we consider the long-wave component of the
ensemble-mean forecast, the skill is improved still further. 1In terms
of the predictability limit, the spatially-filtered ensemble-mean
forecast offers an improvement of almost 50% compared with the
unfiltered individual forecast; 19 days for an individual forecast and
28 days for the spatially-filtered ensemble-mean forecast. Fig 2
compares the effects of time- and ensemble-averaging. Again we observe
a substantial improvement in skill in the time-averaged ensemble-mean

forecast compared with the time-averaged individual forecast.

The improvement of the ensemble-mean forecast is to be expected if the
spatial variance of each individual forecast anomaly field is greater
than the spatial variance of the corresponding ensemble-mean anomaly
field. When this occurs one can readily show that, if the anomaly
correlation of each individual forecast field is positive, the anomaly
correlation of the ensemble-mean field will be greater than or equal to
the mean anomaly correlation of the individual fields comprising the

ensemble.

This effect appears to be shown when the ensemble-mean fields are
verified against real data. 1In particular, in two of the eight cases
discussed above, the individual forecasts were found to show skill well
beyond the model's average limit of predictability (Mansfield, 1986).
In these two cases the ensemble-mean forecast showed a substantial
improvement in skill. To investigate this further, another three
random perturbation ensemble forecasts were produced for three

independent situations where an individual forecast, run previously,
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had shown an unusually high degree of skill. In two of these three
cases, the average skill of individual forecasts within the ensemble
remained positive throughout, and the ensemble-mean forecast again
showed a significant increase in skill. Fig 3 illustrates the average
improvement in skill given by the ensemble-mean forecast in these four
unusually predictable cases compared with the effect in the other seven
cases where the model did not show any skill beyond the normal
predictability limit. When verified against real data, Mansfield
(1986) has shown that time-averaging also improves predictability of
the 5-layer model, by comparing the rms error of daily and 15-day
average fields. He found that error growth rates of these two fields
are identical. However, because climate-mean variability of daily
error fields is larger than that of 15 day mean fields, the time at
which a daily forecast field ceases to be significantly skilful
(defined by a statistical significance test) is less than the time at

which a 15 day mean field ceases to be skilful.

Since some weather situations are more predictable than others,
forecast skill will vary from case to case. The extent.to which these
variations in skill may be predicted by corresponding variations in
ensemble spread is clearly an important issue. In Murphy (1986), the
correlation between spread and skill has been studied for the 8
ensembles using both amplitude and phase measures of spread and skill.
In the perfect model case there was a significant correlation between
spread and skill, but only for the first half of the period for which

the ensemble-mean forecast retained significant skill. When verified
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against real data, no significant correlation existed during any period

of the forecast.

However, the ensemble distribution may also be used to provide
information about the geographical variation of forecast skill. The
idea is to pick out areas where the ensemble-mean anomaly is
statistically significant and ask whether those areas, on average, show
more skill than the field as a whole. This is testing the notion that

where the ensemble 'clusters together' it is likely to be skilful.

To identify significant areas, a statistical t-test was applied to
15—déy mean ensemble-average forecast fields, and areas significant at
levels greater than 5% were picked out. Fig U shows an example of
this. Anomaly correlation scores were then calcﬁlated for each area,
and compared with the full field anomaly correlation score. It was
found that, averaging over all the ensemble forecasts, the skill score
for the limited areas was greater than the full field score by an
amount statistically significant at the 10% level in those cases where
the full field score was positive. In the example given in Fig 4, the
full field score is 0.57, whereas the avebage score within the shaded

regions is 0.90.

3. REAL-TIME EXTENDED-RANGE ENSEMBLE FORECASTS ,

A global 11-layer climate model was used for the real-time
integrations. The model, similar in many respects to the 5-layer model,

has a regular latitude/longitude grid with 21/2 X 33/M° resolution, and
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is described in detail by Slingo (1985). The 11-layer model was
designed for long period integrations and has an energy conserving
finite difference scheme. It also has sophisticated physical
parametrizations all described in Slingo, op cit. For these reasons,
it was thought to be the most appropriate model available to us for
long range forecast integrations. Whilst it was not primarily designed

as an NWP model, de facto, we treat it as such in this paper.

Instead of the spatially correlated random perturbation technique used
to generate the 5-layer model ensembles, seven consecutive operational
analyses at 12 hour intervals between 00Z 12.9.85 and 00Z 15.9.85
inclusive were used for initial conditions for the real-time forecast.
The correspondence between this 'time-lagged' technique for generating
initial conditions for an ensemble and the 'random perturbation'
method depends on the forecast skill of the model, and it is still an
open question as to which technique is more appropriate in practice.
The initialisation dates were chosen to be as close as practicably
possible to the date of the long range forecast conference on 17

September.

As in section 2, results are expressed as anomalies with respect to an
estimate of the model's autumn climatology. ‘- The latter was formed from
a set of eight integrations employing a selection of initial conditions
at least 10 days apart from September and October of 1983 and 1984.

These integrations used climatological sea surface temperatures (SSTs).
For the forecast integrations, fixed SST anomalies based on operational

SST analyses averaged over the 10 days preceding the iInitialisation
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date of the first of the forecasts were added on to a SST climatology

which was updated every 5 days during the integrations.

From each forecast, time-mean fields were produced corresponding to the
5-day period immediately following the long range forecast conference
(18.9.85-22.9.85), the next 10 day period (23.9.85-2.10.85) and the
following 15 day period (3.10.85-17.10.85). (Clearly these fixed
verification periods correspond to different model forecast times in
each of the seven integrations.) Results from the ensemble of
forecasts were considered, together with the multivariate statistical
model (Maryon and Storey, 1985), in producing the mid September long

range forecast.

The five days 18-22 September represent a medium-range period of the
forecast during which there was a relatively small spread between the
ensemble members and there was a reasonable degree of skill in their
predictions. Fig 5 shows the ensemble-mean 500 mb height anomaly field
for this period compared with the verifying actual anomaly field. Most
of the major centres have a coﬁnterpart in the ensemble-mean, the most

notable exception being the deep low of -30 decametres centred just off
the pole. There is a fairly close correspondence between the

individual forecasts in most areas at this stage (not shown).

The correlation between the ensemble-mean and obServed anomaly
patterns, for the northern hemisphere north of 15°N, is 0.49 (table 1).
At this range we could of course improve the skill somewhat by

weighting the more recent individual integrations more highly when
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Forecast

Figure 5 Ensemble-mean forecast and observed 500 mb height anomaly
patterns for 18-22 September. Contour interval 3 dam.
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forecast

period
18-22 23 SEPT- 3-17
SEPT 2 0OCT OCT

integration
1

(00Z 12.9.85) 0.09 0.16 -0.01
2

(12Z 12.9.85) 0.21 0.10 0.08
3

(00Z 13.9.85) 0.14 0.01 -0.05
4

(12Z 13.9.85) 0.46 0.18 -0.05
5

(00Z 14.9.85) 0.51 0.34 0.09
6

(122 14.9.85) 0.65 0.21 0.02
7

(00Z 15.9.85) 0.60 0.23 -0.07

1-7 average

individual

forecast score 0.38 0.18 0.00

1-7 ensemble-mean

forecast score 0.49 0.25 -0.12

TABLE 1. Anomaly correlation scores for forecast 500 mb height anomaly
fields from 15°N-90°N for the three periods of the long-range
forecast discussed in section 3.
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forming the ensemble-mean as they are likely on average to be more
skilful than the earlier ones (Table 1 confirms this to be so in the
present case). However, since we are mainly interested in the extended
range forecast periods, for which we can treat the integrations
essentially as equally likely realisations, such a procedure was not

used.

- The ensemble-mean forecast for the 10-day period 23 September-—

2 October (days 6-15 of the ensemble forecast) and the actual anomaly
map are -not shown for reasons of space. There is a reduction in the
intensity of the ensemble-mean anomaly field compared with
observations, which reflects the spreading of the ensemble towards loss
of predictability. Nevertheless a‘degree of coherence still appears to
exist between the individual patterns. To determine objectively whether
the ensemble-mean anomaly field represented anything more than random
noise would require a series of point-by-point statistical t-tests on
the ensemble-mean ancmaly field as, for example, shown in Fig 4y to
ascertain whether the number of points at which the anomaly was
significant was greater than that expected by chance. Table 1 reveals
that all the individual forecasts retain a positive anomaly correlation
at this stage, although the level of correlation is low, with an
average score of 0.18 compared with a score of‘0.25 fof the
ensemble-mean. This difference in skill, although modest, illustrates
the principle of increasing the signal-to-noise ratio through ensemble

averaging.
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Fig 6 shows the forecast patterns from each integration for the 15 day
period 3-17 October (days 16-30 of the ensemble forecast). The
ensemble-mean pattern has a featureless 'washed-out' nature suggesting
initially that the ensemble distribution has become essentially random
by this point. It is certainly true that, as measured by anocmaly
correlation, the forecast has completely lost skill at this stage

(table 1).

In section 2 we considered only the full ensemble-mean of all seven
integrations. If an ensemble forecast is always normally distributed
about its mean, this is an appropriate quantity to consider. However
if, as postulated in the introduction, ensemble distributions tend to
cluster into a small number of distinet groups, the full ensemble-mean
may become less meaningful and we should alternatively form
'sub-ensemble-means' from the members of each separate cluster,
presenting the final forecast as a series of probabilities based on

each of the sub-ensemble-means.

Interestingly there does aﬁpear to be some evidence of such clustering
among the individual integrations in Fig 6. In integrations 5-7 there
is a pattern showing areas of low anomaly centred in the Pacific and
near Hudson Bay with an area of high anomaly between, somewhat similar
to the wintertime Pacific/North American (PNA) pattern of Wallace and
Gutzler (1981). In contrast integrations 1-4 show no sign of this
pattern, but all show a low anomaly centred near Alaska. Thus we could

consider that, at least in the Pacific/North American region, the

169




L

l\ iz NN
‘!i' Pl s
¢

Gl

. ;60N

AN R ,,’,"'5

Pa

W

r e ~., n
NCRLi
) ey =3 4
| 4 )
L
- 2 $
- 4 o
. ‘ ‘

) \
e
¢it‘;‘f s
\§ Y
. O,
¥

Figure 6 Individual and ensemble-mean forecast 500 mb height
ancmaly patterns for 3-17 October. Contour interval
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Figure 6 (Cont.)
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Figure 7 500 mb height anomaly for 3-17 October. Contour interval
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(a) sub-ensemble-mean forecast formed from integrations
(1-4)
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(5-7)

(¢) observed pattern.
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integrations have split into two definite groups. The two relevant
sub-ensemble-means are shown in figure 7a,b. Despite the slack pattern
of the full ensemble-mean this clustering suggests that the ensemble
distribution has not yet become randomly distributed. Furthermore the
actual atmospheric anomaly pattern (Fig 7c¢) in the Pacific/North
American area does show a structure similar to that of the 5-7
sub-ensemble-mean. However, since the latter incorrectly predicts high
anomalies in polar regions and also underestimates the broadness of the
high part of the pattern at lower latitudes, the correspondence in type
does not show up in terms of objective skill. Nevertheless it is
certainly encouraging that the actual pattern seems to bear a notable
subjective resemblance to that which defines one of the two subsets

predicted by the ensemble forecast.

To demonstrate such clustering behaviour objectively would require a
method of cluster analysis, possibly based on a criterion of maximising
the phase correlation between cluster members rather than the more
conventional one of minimising rms difference. Such a method will be
developed to aid the investigation of this intriguing phenomenon in

future long-range ensemble forecast experiments.

b, INFLUENCE OF SEA SURFACE TEMPERATURE ANOMALIES ON LONG RANGE

FORECASTS
From a set of 9 50-day 5-layer model forecasts, over 5 separate
winters, Mansfield (1986) concluded that there is evidence of increased

extratropical extended range forecast skill when observed as opposed to
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climatological SSTs are used in the integrations. 1In spite of the
hemispheric domain of the model, Mansfield notes that, on occasion,
this increase in skill is quite substantial. (Though, averaged over

all 9 cases, improvement was modest).

In order to test this conclusion further, two ensembles of 90 day
forecast experiments were run from 127 ECMWF analyses from the 15th,
16th and 17th December 1982. One ensemble had seasonally varying
climatological SSTs (Alexander and Mobley, 1976); the other had
observed SST anomalies (from the Climate Analysis Center) added to
these climatological values. In both ensembles, SSTs were updated
every 5 days. Similar experiments have been performed by other centres
in a cobrdinated modelling effort (Shukla, 1986). In the following,

day 1 is taken toc be 18 December for all integrations.

The difference in 200 mb streamfunction for days 1-30, between each of
the three forecasts from 15th, 16th and 17th December with observed and
climatological SSTs is shown in Figure 8a)-c) respectively. Apart from
the anticyclone pairs over the tropical East Pacific, the westerlies
elsewhere in the tropies and the cyclonic centres over the Southern
United States, there are considerable differences between each forecast
difference field, indicating the strong influence of the initial
conditions in the first 30 day mean. The ensemble~mean difference
field, shown in Figure 8d, shows a very weak PNA pattern. For days
31-60 (Figure 9) the PNA pattern has stronger amplitude than in Figure
8d). Iﬁ both Figures 8 and 9, an anomalous tropical westerly band is

apparent.
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The 200 mb streamfunction difference between the ensemble-mean fields
and verifying data is shown in Figures 10~11 for days 1-30, 31-60
respectively. For both periods there is a clear and unambiguous
improvement in forecast skill in the tropics with observed rather than
climatological 8STs. In the extratropics there is no discernible
difference for days 1-30 between the forecast skill with observed and
climatological SSTs. For days 31-60 (and 61-90), however, especially
over the PNA area, there is a visually discernible improvement in

forecast skill with observed SSTs.

An objective measure of skill (30 day mean 200 mb rms wind speed error)
is shown in Figure 12a)-c) for the areas 905-30S, 30S-30N, 30N-90N.
Forecast skill is improved throughout with observed SSTs, though

improvement in tropical forecast skill is the most spectacular.

The ensemble-mean difference fields shown in Figure 8d and Figure 9
closely resemble the 'equilibrium' response to a composite December
1982-February 1983 SST anomaly discussed by Palmer and Mansfield
(1986). 1In this climate sensitivity study, the 11-layer model was
integrated from one set of initial conditions, for 540 days, in
perpetual January mode. Interestingly, the t-statistic for the 540 day
mean field also gives a good indication of the consistency of the
ensemble-mean response from one individual forecast to another. For
example, the tropical Pacific anticyclone pairs and the cyclonic

anomaly over the southern USA shown in Figures 8 and 9 are all highly
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Figure 8 200 mb streamfunction difference field for days 1-30
between integrations with observed SST and climatological
SST. Contour interval 6 x 106m2s7 7,
(a) Initial date 15th December
(b) Initiel date 16th December
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Figure 8 200 mb streamfunction difference field for days 1-30
between integrations with observed SST and climatological
SST. Contour interval 6 x 106m2s™1.
(a) Initial date 15th December
(b) Initial date 16th December
(¢) Initial date 17th December
. (d) Ensemble mean
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Figure 9 200 mb streamfunction difference field for days 31-60
between integrations with observed SST and climatological
SST. Ensemble-mean only. Contour interval 6 x 106m s7T.
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200 mb streamfunction difference field between
ensemble-mean fields and verifying data for days 1-30.
Contour interval 6 x 100m2s™1, ’
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As Figure 10 but for days 31-60.

Figure 11
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significant in the equilibrium response (see Figure 9 of Palmer and

Mansfield, 1986, part II).

In summary, while the impact of SST anomalies on an individual forecast
is strongly dependent on initial conditions, a lagged-average ensemble
of three forecasts shows, even in the first 30 days, and certainly in
the next 30 days, the extratropical PNA pattern obtained in a 540 day
perpetual January mean. The ensemble-mean extratropical response is
weak in the first 30 days and does not noticeably improve forecast
skill. In the next 30 days, however, forecast skill is noticeably
improved. 1In the tropics, it is dramatically imprbved, even in the

first 30 days.
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