124

A second generation
fields database

D.R. Roskilly and J.K. Gibson

Research Department

September 1986 (1st edition); January 1987 (2nd edition)

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

WNANVJOWIWN 1VDINHO4L

n European Centre for Medium-Range Weather Forecasts
— Europaisches Zentrum fir mittelfristige Wettervorhersage
w Centre européen pour les prévisions météorologiques a moyen

CONTENTS

INTRODUCTION

OBJECTIVES

DATABASE ORGANISATION AND DESIGN

SUPPORT SOFTWARE

1. INTRODUCTION

The value of a comprehensive fields database for ECMWF operational products in
field form is well established. The ability to access fields at random to
produce dissemination products, to supply the Operational Watch, and to plot

products in an economical manner is essential to the operational suite.

A comprehensive supporting software package is essential to the success of any
database. FIDABA (see Operations Department Technical Note 26.1.1 dated 17
October 1978) has performed this role for nearly 7 years; thus many of its

design concepts will be carried forward to future supporting software.

Developments in data representation, model resolution, system software and
computer complex composition suggest a current desirability to move the fields
database and other post-processing functions to the Cray X-MP. However, this may
not be the case in 7 yéafs from now. Thus the second generation fields database

(FDB 2) will be designed to be transportable.

An examination of Research Department experiments indicates that many of the
advantages of a fields database extend logically to such applications. This has

been taken into account in the design presented in the following sections.

2. OBJECTIVES

Figure 2.1 illustrates the system configuration envisaged with respect to

FDB 2. The following should be noted:

the main (but not necessarily only) source of data will be the
post-processing and interpolation programme, which processes raw

analysis and forecast results;

the archiving and OPWATCH applications will be common to both

operational runs and research experiments;

the means update, dissemination database feeder, and monthly

verification will be required for operational use only;

the verification package will be required for research experiments

only;

the "other applications" include special research investigations,.’

special non-routine operational jobs, etc.

The purpose of FDB 2 is

to store fields of analysis and forecast results using a machine
independent internationally accepted standard format (FM 92 GRIB),

compatible with the MARS archive format;

to store additional data if required so to do (e.g. graphical

metafiles, verification scores, etc.);
to enable rapid, efficient, random retrieval of the stored data;

to provide a data service to the subsystems that interface through

fields data.

To enable these objectives to be achieved, the supporting software for F¥DB 2
must

write fields to the database

replace fields where necessary

retrieve fields efficiently

recreate database files (or sub-sets thereof) from the MARS archive,

when required

purge files no longer required

maintain appropriate indexes

maintain appropriate statistics.

S3AIHOYY

=

asve vivd
NOILYNINISSIa

S$101d ‘

[]
|

NOILLVOIdI¥3A

(HOLYMdJO)

HOLYM
TVYNOILYY3dO

NOILVOI4I43A
ATHLNOW

SUYIN

430334
iSvE viva

NOILYNIWN3SSIa

asva
viva

(z €gd) uoTjleinbTiuoc) we

sal3id

IS&s :)vz -B1a

AV1dSIa
TAYNSIA / SNOILYOITddY
43HLO
(SFULINTD
Y3H1O0
WoY4 sai3id)
9NIQ023a
J1Y10dY¥3LNI
anNy <€ 213
$S320¥4d-15S0d AYOLSIH

i1lvadn
SNVIWN
3NIT NO

S1INS3Y SISATYNY
aNVY 1SVO3404

3. DATABASE ORGANISATION AND DESIGN

3.1 Conceptual model

23 three level model is used to define the major aspects of the database design
(see Fig. 3.1).
At the DATABASE level

one database shall exist for each operational suite (including

various test suites);
one database shall exist for each active research experiment;

an "active" research experiment shall be defined as any research
experiment currently being examined, or currently accumulating

data;

support software shall limit the number of DATABASES permitted by
reference to a maximum parameter, and a maximum total disk space

utilisation.

At the FILES level

one file shall exist for each verification time, mean period, or

other pre-defined (possibly user-defined) file entity;

FILES on Cray disk shall be unblocked, addressable at 512 word

block boundaries;

support software shall limit the number of FILES permitted within a
DATABASE by reference to a maximum parameter, and to a maximum total

disk space utilisation.

At the FIELDS level

one FIELD shall exist for each meteorological parameter or data

entity;

the FIELD shall be the smallest unit that may be addressed, read

from, or written to the database;

support software shall limit the number of FIELDS permitted within
a FILE by reference to a maximum parameter, and to a maximum total

disk space utilisation.

DATA BASE
DATABASE [~ HLeveL
/ \
/ \
/ \
________________ | _(FILES
il TN LEVEL
\
P /
/ \ /o
/ : \ / /
S | _{FIELDS
FIELD 1 ————— FIELD N LEVEL

Fig. 3.1: Three Level Conceptual Model

3.2 Database indexes

Fig. 3.2 illustrates the three levels of database indexes required to organise,

control, and locate data within the database. They comprise

a DATABASE INDEX, stored as a separate file, containing details of

each existing database;

for éach database, a FILES INDEX, stored as a separate file,

containing details of each existing'filé within that database;

for each file, a FIELDS INDEX, stored at the beginning of the file,

containing details of each existing field within that file.

Appendix 1 contains the specification for the format of the database ihdéx.AThe
formats for the files index and fields index are specified in Appendix 2 and

Appendix 3.

3.3 Data Management

gince the fields database is a means of collecting data, care must be taken to
ensure the safety of data which is of more than transient interest. It is also

necessary to delete data not immediately required, to conserve disk space.
Status patterns will be used to record the current and intended status of data.
Each status pattern will consist of a set of bits, each bit representing a true
(1) or false (0) value in a particular context.

Backing up will be done on 'CFS', archiving will be done on 'MARS'.

Each database will be assigned a status. Fig. 3.3 illustrates the database

status pattern.

INDEX TO 3 FDB 2

DATA BASES LEVEL
[\
/ \
/ \
/ \
/ \
INDEXTO | ~~ |INDEXTO ___3 DATA BASE
FILES (1) FILES (L) LEVEL
[| \ ¥
fo /]
| | | / /
oy /!
/ | | / /
| ' | / /
/ , \
INDEXTO | INDEX TO | (FILE
FIELDS (1) ’ FIELDS (M) LEVEL

Fig. 3.2: Database Indexes

Bit O - Back—-up status

Bit 1 - Intended archive status
Bit 2 - Archive status

Bit 3

- - Not used at present

Bit N

Fig. 3.3: Database Status Pattern

Each file will be assigned a status. This status will represent the over-all

status of the file. Fig. 3.4 illustrates the file status pattern.

Bit 0 - Not used at present
Bit 1 - " won "
Bit 2 - Back—-up status
Bit 3 - Archive status
Bit 4 - Intended archive status
Bit 5 - Abnormal closure status
Bit 6

- - Not used
Bit N

Fig. 3.4: File Status Pattern

The database index and files index will be backed-up (i.e. copied to an on-line,
back-up copy each time they are changed), these back-ups being kept on a Cyber
fileset. The database status will be maintained within the database index and

the file status within the files index.

The individual files, containing the fields index and the fields data, may or
may not be backed-up. Back-up will depend on the issue of a request for a 'CFS'
Node when the database is opened and a request for the file to be backed up when

the file is closed.
Data management will be organised according to the following strategy:

on creation of a new database, a clean-up process will be initiated.
This process will examine the status of all current databases,
"deleting" files and databases where appropriate. The clean-up
algorithms will be versatile, and able to be adapted to changes in

configuration, disk space availability, etc.;

back-up will be achieved at the file level. Thus back-up intention

will be acted upon when files are closed;

on completion of file back-up, the file status patterns will be

updated;

on completion of archiving, the file status patterns will be updated;

Any on-line back-up will contain the fields index only;

on "deleting" a file, the clean-up process will scan the status
patterns. If data has been archived but not backed-up, the fields
index only will be kept. If data has not been archived and is not
intended to be archived, the file and any back-up will be deleted.
If archiving is incomplete, the database will be reduced to contain
only data required to be archived, with appropriately modified files

status patterns for the deleted files;

Databases will be deleted in the following sequence of operations in the

clean-up process until the amount of space used by FDB2 and the number of

databases on FDB2 are below the maximum allowed.

If an operational database is being created, firstly all operational
databases older than 72 hours will be deleted together with all back-ups.
If space etc., is still above limit, non-operational databases are deleted

in the same manner.

If a non-operational database is being created, only non~operational

databases will be deleted.

Non—-operational databases older than 24 hours, which are backed up on

'CFS', are deleted from the CRAY but back-ups are kept.

If an operational database is being created, operational databases more

than 24 hours old are deleted together with back-ups.

All non-operational databases are deleted together with back-ups.

10

4. SUPPORT SOFTWARE

4.1 Overview

This section describes the concepts governing the design of software to support
FDB 2. Appendix V contains a user manual, indicating the interfaces to the
various routines, methods of use, etc. The support software can be classified
into three sets of routines - high level utilities, general routiﬁes, and
internal routines. The high level utilities enable database creation, database

access, and regeneration of a database from archived data. The general routines

handle single processes such as opening files, reading a field, closing a
database, etc. They are the building blocks for the high level utilities; as
such they provide greater flexibility, but require some knowledge of the FDB 2
structure in their use. The internal routines handle data management, index

processing, status recording, etc., and are not intended for general use.

4.2 Utilities

FIDAPUT enables a new database to be created,or fields to be added to an
existing database. Fields may be passed via memory or by means of a file. Any

number of fields for a given file may be handled by a single call.

FIDAGET enables a set of fields to be read in a given order. Fields may be

retrieved to memory or to a file.

FIDAGEN provides a means of regenerating a fields database from archived data,
using MARS directives to describe the required data. This facility is
particularly useful for regenerating results of experiments or comparative

operational data in database form as the basis for intensive further use.

11

4.3 General Routines

OPENFDB connects the user to the FDB 2 software. When called, it sets up FDB 2

initial parameters.

OPENDB logically connects the user to a specified database. If a new database is
indicated, CLEANDB is invoked to clean-up and manage the FDB 2 data, and a new
database file index is created. If an old database is being used the values on
the File Index are checked and corrected if in error together with the Database
Index. This information then being written off - to the appropriate files. If
any files are to be backed up, a 'CFS' Node is created, if it does not already

exist.

OPENFL logically connects the user to a specific set of fields (a file) within a
database. The appropriate Field Index is read or initialised. If an old database
file is being used, the Field Index values are checked and corrected if in

error together with the File Index and the Database Index. This information then
being written to the appropriate files. If the file opened is an 'old' file a
‘check is made to see if the file was closed correctly on the last access to it.
If not, the user will have a choice of using this latest version or the previous

generation which is backed up on 'CFS' (if a back-up was made).

WRITEFD reserves a buffer for subsequent output and transfers data from the
user's buffer to the reserved buffer and initiates an asynchronous write. The
user may re-use his buffer immediately (i.e. without writing a call to a check
routine). WRITEFD always checks incomplete I/O on the file in use, when called.
Incomplete I/0 from the final WRITEFD is checked when the file is closed

(CLOSEFL) .

READFD reserves an internal buffer and initiates the reading of a field into the
internal buffer asynchronously. Transfer of data to the user's buffer takes
place on a subseguent call to TRANSFD. Checks are made for incomplete I/O. If
incomplete I/0 is detected because a WRITEFD was last issued, it is checked and

completed; if a READFD was last issued, an error condition is flagged.

12

TRANSFD completes the reading of a field initiated by READFD by checking the
I/0, then transferring data from the internal buffer to the user's buffer and

releases the internal buffer.

CLOSEFL releases the internal buffers, updates the Field Index and File Index

and backs-up the file if necessary. The file is physically released.

CLOSEDB updates the Database Index, logically disconnects the user from the
database, backing up the Database Index if necessary and runs the clean up

routine to check the size of FDB 2.

CLOSFDB logically disconnects the user from the FDB 2 software.

4.4 Internal routines

CLEANDB is a data management routine containing the clean-up algorithms for the
management of on-line disk space. These functions have been described in 3.3

above.

Additional internal routines handle essential functions such as status
determination, file existence, archive status, MARS interface, file deletion,

creation, attachment and disposition, database deletion, etc.

4.5 Documentation

Full documentation of the support software is contained in the source code, and

as external documentation available within the Operations Department of ECMWF.

13

APPENDIX T

Database Index

The format of the database index is:

ITEM CONTENTS

1 NDBSTMP-~ Cray time stamp (to nearest second)

2 NDBS - number of data bases

3 NTSP - total disk space currently used by FDB 2 data bases
4 HDB1A - first element of name of first data base

5 HDB1B - second element of name of first database

6 HDB1C - Cray 'ID' of first database

7 NSZ1 - Size of first database

8 NCR1 - date (YYMMDD) when first database was created

9 NAC1 - number of times first data base has been accessed
10 NLAT - date (YYMMDD) first data base was last accessed
11 NDBST1 - database status pattern
12 HDB2A - first element of name of second database
13 HDB2B - second element of name of second database
14 HDB2C - Cray 'ID' of second database

Items 4 to 11 are repeated for each database currently known to exist.

For ¥DB 2 on Cray, the database index is a permanent unblocked data set of 1024
words. Each item in the above definition occupies 1 word, apart from the
database name which uses 2 words. Ttems containing names allow up to 16

characters per name. The data set name and ID of this index is

PDN = FDBMASTER, ID = QZFDB.

APPENDIX IT

Database Files Index

The format of the database files index is:

ITEM CONTENTS
1 NFLSTMP

Cray time stamp (to nearest second)

2 NFILES - number of data files currently existing in this
database

3 NTDBSP - total disk space currently used for this database

4 HFNAMTA - first element of name of first file

5 HFNAM1B - second element of name of first file

6 NFSz1 - 8ize of first file

7 NFAC1 - number of times first file accessed

8 NFLA1 - date (YYMMDD) first file was last accessed

9 NFLST - file status pattern

10 HFNAM2A - first element of name of second file

second element of name of second file

—t
—

HFNAM2B

Items 4 to 9 are repeated for each file currently existing within the database.

For FDB 2 on Cray, the database files index is a permanent unblocked data set,
normally of 1024 words. Each item in the above definition occupies 1 word, apart
from the file name which uses 2 words. Ttems containing names allow up to 16

characters per name. Each database files index is saved as

PDN = XXXXXXXXXXXXXX,ID = YYYYYYVY

where XXXXXXXXXXXXXX is the database name and YYYYYYYY is the database ID, as

contained in the database index.

APPENDIX IIX

Database Fields Index

The format of the fields index is:

ITEM CONTENTS

1 NFDSTMP-~ Cray time stamp (to nearest second)

2 NFIELD =~ number of fields currently existing in this file
3 NTFISP - total disk space currently used for this file

4 HFLD1A - first element of name of first field

5 HFLD1B - second element of name of first field

6 NFLEN1 - length of first field

7 NFADD1 - file address of first field

8 NFDST1 - field status pattern

9 HFLD2A - first element of name of second field

Items 4 to 8 are repeated for each field currently existing within the file.
Note that, since the file address for the next field will be computed each time
a field is written, there will always be a value present for NFADD in the entry

NFIELD+1.

For FDB2 on Cray, the database fields index is stored at the beginning of the

dtabase file it refers to, normally occupying the first 1536 words.

Each item of the above definition occupies 1 word, apart from the field name
which uses 2 words. Items containing names allow up to 16 characters per name.
The data set name and ID of the file is

PDN = XXXXXXXXKXXXXXXX, ID = YYYYYYYY

where XXXXXXXXXXXXXXXX is the file name, as contained in the database files

index and YYYYYYYY is the database ID as contained in the database index.

APPENDIX IV

Database Files

Data is stored from word 1537 onwards, each field being padded to a multiple of
512 words. NFLEN (in D.B. Field Index) contains the actual (unpadded) length of
each field; the padded length is obtained by subtracting the NFADD (in D.B.
Field Index) value from that for the next field in the index. Each database file

is unblocked, and is stored as
PDN = XXXXXXXXXXXXXXX, ID = YYYYYVYYY

where XXXXXXXXXXXXXXXX is the file name as contained in the database files index

and YYYYYYYY is the database ID as contained in the database index.

APPENDIX V

FDB 2 USER GUIDE

CONTENTS

Introduction

User Interface and General Subroutine Hierarchy

High Level Utilities

General Routines

Housekeeping Routines

Naming Conventions

Error Codes

Examples of Use

1. INTRODUCTION

The FDB 2 indexes and files in Appendiées I to IV are normally kept on Cray
disk space with the database and file indexes being aufomatically backed up on
Cyber disk space. The choice of backing up individual files containing the
fields index and the fields are left to the user, as described later. File back

ups will be kept on 'CFS'.

At the time of writing the total amount of Cray disk space allowed for FDB2 is
250 million words, with maximum sizes of 25 million words for individual
databases, 1 million words per file and 100,000 words per field. FDB2 software
will allow a maximum of 50 databases to exist at any one time, if space is
available, with a maximum of 150 files on each database and 250 fields on each

file.

FDB 2 software allows access to 5 databases at any one time and a maximum of 20

files on each database.

All files are referenced using internally generated local file names leaving the

user a free choice of FT numbers.
All JCL necessary to access FDB 2 files and indexes is internally generated.

All FDB 2 subroutine calls start with the same two arguments, e.g.

CALL OPENFDB(I1, I2).
The first argument (I1) holds error codes generated by external routines such
as those in ECLIB. This argument is also used to supply the routine with a

failure condition code as follows:
If I1 is set to 0, all processing will abort when any error is encountered.

If I1 is set to 1, all processing will abort only when a 'hard' error is

encountered. The routine will also print out all errors encountered.

If I1 is set to be 1, processing will only stop when a 'hard' error is

encountered and only this error will be printed out.

The second argument (I2) returns error codes generated by the FDB 2 software

(see internal error codes).

FDB 2 software uses the Cray Heap Management routines to create temporary buffer

space to hold FDB 2 fields being accessed by the user.

2. USER ACCESS AND GENERAL SUBROUTINE HIERARCHY

a) Access to FDB 2 software is as follows:

ACQUIRE(DN=LBDB,PDN=LBDB,DF=TR,ID=0ZLIB)

LDR(LIB=LBDB,ECLIB,....)

b) Subroutine calling hierarchy is as per the following table:

OPENFDB

OPENDB

OPENFL

READFD

WRITEFD DELFD , COMPFL, PRNTFL|DELFL | PRNTFDB DELDB*
TRANSFD ' PRNTDB

CLOSEFL

CLOSEDB

CLOSFDB

* DELBD is independent of other FDB2 routines but should not be called between

the calls to OPENFDB and CLOSFDB.

3. HIGH LEVEL UTILITIES

Arguments marked with * are supplied by the user.

3.1 CALL FIDAPUT (I1*,YCRA*,YDATA*,YDBNAME*,YDBID*,YDBST*,

YFLNAME* , YFLSTAT* , YFDNAME* ,YFDSTAT,NFDS*,

YBACKUP* ,NBUF*)

This routine is described in Section 4.2. It uses the FDB2 general‘routines to
attach or create a given database then attach or create a given file and write

user supplied fields to that file.

The fields can be supplied via a local file attached by the user prior to

calling FIDAPUT or passed to FIDAPUT in array NBUF.

In either case the data should be in the form: LENGTH1,FIELD1,LENGTH2 ,FIELD2,

etc.

If the data is on a file, it should be attached or created, using the ECLIB
routines and given a local file name of 1-7 characters. This file will not be

rewound or returned after use by FIDAPUT.
a) I1 error failure code
b) YCRA, character *3, used to supply information to the routine to tell it

what action to take if an abnormal closure is detected on the previous

use of this file.

YCRA = 'CRA' use latest Cray file
YCRA = 'CFS' purge Cray file and use last generation back-up on
'CFS' if it exists. If no back-up exists, the Cray
file will not be purged.
c) YDATA, character *4 indicator for input mode of data. 'FILE' for on

file, otherwise data is expected to be in NBUF.

d)

e)

£)

9)

h)

i)

3)

k)

1)

YDBNAME is the name of the database to be opened, character *16 but only

the first 14 characters will be used (see naming conventions).

YDBID, character *4, holds the four optional characters allowed in the

database 'ID' (see naming conventions).

YDBST, character *3. This is the preéent status of the named database,
'NEW' or 'OLD'.
N.B. If I1 is set to 0 processing will continue if this argument is

not correct, but a warning message is printed out.

YFLNAME is the File name, character *16, but only 14 characters may be

used (see naming conventions).

YFLSTAT, character *3, is the present file status 'NEW' or 'OLD'.
N.B. If I1 is set to 0, processing will continue if this argument is

not correct, but a warning message is printed out.

YFDNAME, character *16 array of field names. All 16 characters may be

used.

YFDSTAT, character *8 array holding the status of each field, TADD' or
"REPLACE'.

"ADD' in the case of 'new' fields.

TREPLACE' in the case of 'old' fields.

N.B. If I1 is set to > 0, processing will continue if this argument is

not correct, but a warning message is printed out.
NFDS, number of fields to be written to FDB2.

YBACKUP, character *3.
This argument informs the routine whether the user wishes YFLNAME to be
backed up on 'CFS'.

It is set to 'YES' or 'NO'.

m) NBUF, users data array if YDATA is not set to 'FILE'.
If YDATA is set to 'FILE', the first word of NBUF should hold the local

file name of the data file, - up to 7 characters, left justified.

3.2 CALL FIDAGET (I1*,YCRA*,YDATA*,YDBNAME*,YDBID*,YFLNAME*,YFDNAME*,NLN*,

NFDS* ,NBUF)
This routine is described in Section 4.2. It uses the FDB 2 general routines to
attach a given database, attach a given file on that database and read the
required fields. The fields can be stored in a file or returned in NBUF, in
either case the returned data will be in the form of:
LENGTH1,FIELD1,LENGTH2 ,FIELD2, etc.
If data is required to be put on a file, the file will be created by this

routine, written to, and removed, but not returned.
a) I1 error failure code.
b) YCRA, character *3, used to supply information to the routine to tell it

what action to take if an abnormal closure is detected on the previous

use of this file.

YCRA = 'CRA' use latest Cray file
YCRA = 'CFS' purge Cray file and use last generation back-up on
"CFS' if it exists. If no back-up exists, the Cray
file will not be purged.
c) YDATA, character *4 indicator for output mode of data. 'FILE' for on

file, otherwise data is expected to be in NBUF.

d) YDENAME is the name of the database to be opened, character *16 but only

the first 14 characters will be used (see naming conventions).

e) YDBID, character *4, holds the four optional characters allowed in the

database 'ID' (see naming conventions).

£) YFLNAME is the File name, character *16, but only 14 characters may be

used (see naming conventions).

qg) YFDNAME, character *16 array of field names. All 16 characters may be
used.

h) NLN, array of lengths of fields required.

i) NFDS, number of fields to be read from FDB2 file.

3) NBUF, array holding required data if YDATA is not set to 'FILE'.

If YDATA is set to 'FILE', NBUF should hold the details of the file into

which the user requires the data to be stored in the following way:
NBUF(1) the local file name - up to 7 characters, left justified.

NBUF(2) & (3) the permanent file name - up to 14 characters, left

justified.
NBUF(4) the file ID - up to.4 characters, left justified.

3.3 FIDAGEN has yet to be written.

4. GENERAL ROUTINES

Arguments marked with * are supplied by the user.

4.1 CALL OPENFDB (I1*, I2)

This routine must be called before the Fields Database can be used. No extra

arguments other than the error codes are required.

4.2 CALL OPENDB (I1*, I2, IDB, YDBNAME*, YDBID*, YSTATUS*, YBACKUP*)

OPENDB must be called after OPENFDB and before any given database can be

accessed.

a) IDB: This is a reference number returned by the routine and must be used

in all subsequent calls to this database.

b) YDBNAME is the name of the database to be opened, character *16 but only

the first 14 characters will be used (see naming conventions).

c) YDBID, character *4, holds the four optional characters allowed in the

database 'ID' (see naming conventions).

d) YSTATUS, character *3. This is the present status of the named database,
'"NEW' or 'OLD'.
N.B. If I1 is set to 0 processing will continue if this argument is

not correct, but a warning message is printed out.

e) YBACKUP, character *3.
This argument informs the routine whether the user wishes any files on
this database referenced later in the users program to be backed up on
'CFS'. This information is required at this point in order that the
database "NODE' can be created on 'CFS'.

This argument is set to 'YES' or 'NO'.

4.3 CALL OPENFL(I1*, I2, I3, IDB, IFL, YFLNAME*, YFLSTAT*, YIOSTAT*,

YCRA*)

OPENFL must be called after OPENDB and before any file on the database can be

accessed.

P

a) I3 is an error code returned to indicate previous closure status on
this file and what action has been taken to correct a previous abnormal

closure if it exists.
I3=0 No abnormal closure on the file detected.

I3=1 Abnormal closure on file detected. Cray version of file purged,

previous generation of file used from 'CFS' back-up (if any).

13=2 Abnormal closure on file detected but this Cray version continues

to be used.

b) IDB is the database reference number as supplied by OPENDB.

c) IFL is the file reference number returned by this call and must be used

in any subsequent calls to this file.

d) YFLNAME is the File Name, character *16, but only 14 characters may be

used (see naming conventions).

e) YFLSTAT, character *3, is the present file status 'NEW' or 'OLD'.
N.B. If I1 is set to 0, processing will continue if this argument is

not correct, but a warning message is printed out.

£) I0OSTAT, character *8, '"WRITE' or 'READ'. This is the mode in which the
user requires the file to be opened. Some FDB2 routines will only operate

if the file is opened in 'WRITE' mode.

At present they are as follows:
WRITEFD,DELFD,DELFL,COMPFL.

READFD will operate in any mode.

g) YCRA, character *3, used to supply information to the routine to tell
it what action to take if an abnormal closure is detected on the previous

use of this file.

YCRA = 'CRa' use latest Cray file

I

YCRA 'CFSs' purge Cray file and use last generation back-up on
'CFS' if it exists. If no back-up exists, the Cray file

will not be purged.

4.4 CALL WRITEFD (I1*, I2, IDB, IFL, LEN*, NBUF*, YFDNAME*, YFDSTAT*)

WRITEFD must be called after OPENFL on the same database and file with OPENFL

. in "WRITE' mode.

The call may be repeated as many times as required by the user after OPENFL and

before CLOSEFL for that file.

a) IDB is the database reference number.

b) IFL is the file reference number.

c) LEN is the size of the array in words being written.

d) NBUF is the users array containing the data. (This need not be in

multiples of 512).

e) YFDNAME, character *16, is the Field name. All 16 characters may be
used.
d) YFDSTAT, character *8, 'ADD' or 'REPLACE'.

'ADD' in the case of 'new' fields.
'REPLACE' in the case of 'old' fields.
N.B. If I1 is set to 0, processing will continue if this argument is

not correct, but a warning message is printed out.

4.5 CALL READFD (I1*, 12, IDB, IFL, LEN*, YFDNAME¥)

This call reads fields from a file. READFD can follow a call to WRITEFD on the
same file, but READFD must be followed by a call to TRANSFD prior to the data

being used.

a) IDB is the database reference number.
b) IFL is the file reference number.
c) LEN is the length of the data in words being moved.

N.B. If this value is greater than the length of the data available the

true amount of data will be returned in the call to TRANSFD.

d) YFDNAME, character *16, is the Field name (see naming conventions).

10

4.6 CALL TRANSFD (Ii*, I2, IDB, IFL, NBUF¥*, ILEN)

This routine must be called before the data in 'NBUF' can be used and after a

call to READFD.

a) IDB is the database reference number.

b) IFL is the file reference number.

c) NBUF is the destination array for the data.

d) ILEN - returns the actual length of data in NBUF.
4.7 CALL CLOSEFL (I1*, 12, IDB, IFL, YBACKUP*)

A call to this routine must precede a call to CLOSEDB on the same database and

follow the last operation on the file.

a) IDB is the database reference number.
b) IJFL is the file reference number.
c) YBACKUP, character *3, 'YES' or 'NO'.

Indicates whether the user wishes the file to be backed-up on 'CFS' or

not.

4.8 CALL CLOSEDB (I1*, 12, IDB)

The call must follow all operations on the database and precede a call to

CLOSFDB.

a) IDB is the database reference number.

4.9 CALL CLOSFDB (I1*, I2)

This must be the last call to the FDB 2 software.

11

5. HOUSEKEEPING ROUTINES

As part of the housekeeping work needed to be done on the Fields database

(FDB 2) a number of routines have been written which may be run by users of the
system. In fact, users should not delete or modify fields, files or databases on
FDB 2 by any other means. At present, they are as follows; others will be added

as they become available. Arguments supplied by the user are marked with *.

5.1 Deletion of a Field on a database File

CALL DELFD (I1, I2, IDB, IFL, YFDNAME¥*).
This routine must be called after 'OPENFL' and be followed by 'CLOSEFL'. The

file in guestion must also be opened in 'WRITE' mode.

I1, I2 return internal and external error codes respectively but cannot be used
to supply 'soft' or 'hard' error failure conditions to the routine. IDB is the
database number supplied by 'OPENDB' and IFL is the file number supplied by
'OPENFL'.

YFDNAME is the field name as in 'READFD' or 'WRITEFD'.

All indexes will be updated accordingly if ‘this routine is run correctly but the

file may still need compressing later (see 'COMPFL').

5.2 Deletion of a File on a FDB 2 database

CALL DELFL (I1, I2, IDB, YFLNAME¥*).

This routine must be called after 'OPENDB' and before 'CLOSEDB'.

The file is attached in 'WRITE' mode. As in 'DELFD' I1 and I2 are used to return
internal and external error codes respectively but cannot be used to supply
"soft® or 'hard' error failure conditions to the routine.

IDB is the database number and supplied by 'OPENDB'.

YFLNAME is the file name as used in 'OPENFL'.

If this routine is run correctly, all indexes will be updated accordingly and
all file back-ups deleted. It also overrides any retention periods relating to

the file.

12

5.3 " .-+=Deletion of a FDB 2 database

CALL DELDB (I1, I2, YDBNAME*, YDBID¥).

Can be called independently of other FDB 2 routines.

As in the above routines I1 and I2 return internal and,external erroxr codes but

may not be used to supply 'soft' or 'hard' failure conditions to the routine.

YDBNAME is as used in 'OPENDB'.

YDBID is as used in 'OPENDB'.
If run correctly, this routine deletes all files and indexes and back-ups
relating to the database in question, overriding any retention period that may

be set.

5.4 Compression of FDB2 database files

If fields of differing sizes are overwritten, modified or deleted frequently,
the gpace on the file may get fragmented. This can be overcome by compressing

the file by using the following routine:

CALL COMPFL (I1, I2, IDB, IFL).
This routine must be called after 'OPENFL' and before 'CLOSEFL'.
I1 and I2 operate as in all the above routines.

IDB is the database number supplied by 'OPENDB'.
IFL is the file number as supplied by 'OPENFL'.

The compression is carried out as follows:

a) a copy of the 'active' fields on the file is made to a new file named

'FTEMP01' together with the fields index.

b) The '0ld' file renamed 'FTEMP02'.
c) The "new' file 'FTEMP01' is renamed with the 'o0ld' file name.
d) The 'old' file, at present called 'FTEMP02'is deleted.

If this routine completes normally the only action required by the user is to

close down FDB2 in the normal way.

13

However, if this routine aborts prior to returning control to the user program

the following courses of action may be necessary:
e) If abort occurs during a) abovg delete '"FTEMPO1' if it exists and re-run.

£) If abort occurs during b) above rename 'FTEMP0O2' to 'old' file name,

then delete 'FTEMPO1' and re-run.

g) If abort occurs during c) above rename 'FTEMP01' to 'old' file name,

delete 'FTEMPO2'.

h) If abort occurs during d) delete 'FTEMPO2' if it exists.

5.5 CALL PRNTFDB (NUM* ,YPRNT* , NTOT,NTSIZI,YNAME,YIDS,NSIZE)

this routine must be called after a call to OPENFDB. It prints out and

returns details of databases on FDB2.

a) NUM is the total number of databases for which details are required.

Arrays NAME, YIDS and NSIZE must be dimensional to this size or larger.

b) YPRINT, charactexr *3, 'YES' or 'NO'. Indicates whether print out is
required.

c) NTOT returns the total number of databases on FDB2.

d) NTSIZE returns the total size of FDB2.

e) YNAME, character *16 array of dimension NUM or greater, returns the

database names.

£) YIDS, character *8 array of dimension NUM or greater, returns the

database IDs.

g) NSIZE, array of dimension NUM or greater, returns the database sizes.

5.6 CALL PRNTDB (NUM* ,IDB* ,YPRNT* ,NTOT,NTSIZE,YNAME,NSIZE)

The routine must be called after a call to OPENDB. It prints out and returns

details of files on a given database.

a) NUM is the total number of files for which details are required.

Arrays YNAME and NSIZE must be dimensions to this size or larger.
b) IDB is the database reference number.

c) YPRINT, character *3, 'YES' or 'NO'.

Indicates whether print out is required.

14

d) NTOT returns the total number of files on the database.

4

e) NTSIZE returns the total size of the database.

£) YNAME, character *16 array of dimension NUM or larger, returns the file
names .

qg) NSIZE, array of dimension NUM or larger, returns the file sizes.

5.7 CALL PRNTFL (NUM*,IDB*,IFL¥*,YPRNT* ,NTOT,NTSIZE,YNAME,NSIZE)

This routine must be called after a call to OPENFL. It prints out and returns

details of fields on a given file.

a) NUM is the total number of fields for which details are required.

Arrays YNAME and ZSIZE must be dimensional to this size or larger.

b) IDB 1is the database reference number.
c) IFL is the file reference number.
4d) . YPRINT , character *3, 'YES' or 'NO'.

Indicates whether print out is required.

e) NTOT returns the total number of fields on the file.

£) NTSIZE returns the total size of the file.

g) YNAME, character *16 array of dimension NUM or greater, returns the field
names.

h) NSIZE, array of dimension NUM or greater, returns the field si=zes.

15

6. FDB 2 NAMING CONVENTIONS

CRAY NAMES

DATABASE NAME Ip
CHARACTER NO:{ 1 |2 3 4 5|6 7|8 9 10 11 12 13|14 15 12 31415 6 7 8
"FDB! EXP.NO.
'X'| Class Date or
YYMMDD VERSION
| I |
1st two Time Character 2 from Name
characters in N.B.: If it is numeric
of TYPE : hours this character is set
to 'X'.
- Fig. 1 -

N.B. The characters 2 to 15 of the name are supplied by the user in the

characters 1 to 14 of YDBNAME.

The characters 5 to 8 of the ID are supplied by the user in the characters 1 to

4 of YDBID.

FILE NAME
b
CHARACTER NO: 112 31456 7|8 9 10 11 12 13114 15 ID is the same as
FILE: gt TIME DATE DATABASE 1D
FIELD INDEX: b & STEP YYMMDD
| |
Time
1st two characters in
of REPRESENTATION hours
- Fig. 2 -

N.B. Characters 2 to 15 are supplied by the user in the characters 1 to 14 of
YFLNAME in the call to OPENFL.

16

CHARACTER NO: 123 4]5 6 7 8|9 10 11 12113 14 15 16
PARM. LEVEL LEVEL
TYPE

- Fig. 3 -
N.B. 2All 16 characters may be used if the user so requires.

The example shown above is only one possible configuration of the names but when
a user is constructing his names the following rules or suggestions should be
followed:

1. The first character of 'YDBNAME', when calling 'OPENDB', will be used as
the fourth character of the 'ID'. This character is also the first
character of the 'NODE' name on 'CFS', if files on the database are to be
backed-up, and as such it should be an alphabetic character. If it is not

it will be changed to 'X'.

2. It is best if characters 7 to 12 of 'YDBNAME' are a valid date in the
form 'YYMMDD' as they are converted to the century day when used in the
"CFS' 'NODE' name. If one of these characters is not numeric the first
four (i.e. characters 7 to 10 of YDBNAME) will be used in the place of

the century day in the "NODE' name.
3. For operational jobs the first two characters of YDBNAME must be 'OD'.

4. For research and operational jobs the four characters supplied in YDBID
in the call to "OPENDB' should be either the EXPERIMENT NUMBER or the

VERSION as used in the 'MARS' classifications.

5. The first character of 'YFLNAME' as supplied by 'OPENFL' should be an
alphabetic character as it is used as the first character of the 'CFS'
file name, if the file is backed-up. If it is numeric, it will be changed

to an ‘X',

6. Also it is suggested, as in this example that the parameters used are the

same as those used for "MARS'.

17

7. All users should note that the last four characters of the ID (i.e.
YDBID) and the last eight characters of the database and file names are
used to associate all database indexes and files with one another.
Therefore these ID characters and/or name characters should be allotted

in such a way as to make this possible (see Figs. 1 and 2).

8. Apart from the above all other characters are interchangeable as long as

they are alphanumeric.

CYBER NAMES

1. One fileset is required to hold the database index and all the active

Database file indexes.

The name of this fileset and ID will be the same as the field database

index name and ID.

The name of the database file indexes on this fileset will be constructed

as follows from the Cray database file index names.

CRAY NAME: CRAY 1ID
CHARACTER NO. 112 3 4 5|6 7|89 10 11 12 13}14 15 1 2 31415 6 7 8
'X'{ CLASS |TYPE DATE TIME 'FDB' EXP.NO.
YYMMDD IN or
HOURS VERSION

CYBER FILESET r———JI————J
MEMBER NAME

CHARACTER NO.] 1 2 |3 415 6 7 8{9 10 11 12113 14
CLASS |TYPE|EXP.NO. DATE TIME
1st or CENTURY IN
two VERSION|{DAY, IN HOURS
char. "HEX'

CHARACTERS

18

In order to hold these 14 characters on a Cyber fileset, they are split

into 2 groups of 7 in the form of GROUP/ELEMENT.

2. One fileset is requiredlfor each database to hold all the active field

indexes for that database.

The name of the database fileset will be as the database file index on the Cray,
but with the first character removed, it will also have the same ID.

The names of the field indexes will be as the field index names on the Cray but
with the first character removed and the remaining 14 characters split into two

groups of 7 characters in the form GROUP/ELEMENT.

N.B. There is no need to pack the ID into the name as this will be the same as

the fileset ID.

'CFS' FILE BACK-UPS

1. FDB 2 will have one ROOT on 'CFS' as follows:
NAME : FDBASE
ID: OZFDB

PASSWORD: DATABASE.

2. Each archived database will have a NODE attached to the above ROOT. The
NODE name will bé the same as the database index name on the field

database fileset on the Cyber (see Cyber Names, Para.l).

3. Files to be archived will be attached to the database '*NODE' and have the

same name and files on the Cray but with the first character removed.

N.B. The ID will be held in the compressed version of the database name

used as the 'NODE' name.

19

7. ERROR CODES

All FDB 2 routines return two error codes, e.g

CALL OPENDB (I1, I2, «s-.)

I1 is used as a means of supplying failure conditions to the routine (as
described earlier), and is also used to return 'EXTERNAL' error codes. EXTERNAL
error codes being those generated by COS Library routines or ECLIB routines

etc.

I2 is only used to return INTERNAL error codes. These are codes only generated

by FDB 2 software.

The following list shows in which routine they are generated, their numerical
value, a description of their meaning and whether they are 'SOFT' or 'HARD'

errors (S or H).

N.B. The 'SOFT' or '"HARD' error option only exists if I1 is set 0, if 1I1=0

all errors will be 'HARD'.

20

INTERNAL ERROR CODES

ROUTINE ERROR DESCRIPTION ERROR TYPE
OPENDB 1001 Database found when supposed to be 'NEW' s
1002 Database not found when supposed to be 'OLD' S
1003 Max. space or max. database numbers
already reached H
1004 Database already open S
1005 Max. number of databases already attached S
OPENFL 2001 File found when supposed to be "'NEW' S
2002 File not found when supposed to be 'OLD' S
2003 File removed prior to use H
2004 Max.space or max.file numbers already reached H
2005 File already open s
2006 Max. number of files already attached S
from this database
OPENDB or) 1101 Database removed prior to use H
OPENFL)
CLOSEFL 3001 Field index corrupt H
3002 I/0 not complete on last read s
CLOSEDB 4001 Database index corrupt H
READFD 5001 Field not found H
5002 I/0 not complete on last read S
TRANSFD 5003 No data to transfer S
WRITEFD 6001 Field found when supposed to be 'NEW' s
6002 Field not found when supposed to be 'OLD' S
6003 Previous read not completed S
6004 File not opened in 'WRITE' mode S

21

INTERNAL ERROR CODES (cont.)

ROUTINE ERROR DESCRIPTION ERROR TYPE
WRITEFD 6005 No space available H
6006 No room on index for field details H
DELDB 7001 Database not found on index S
DELFL 8001 File not found on index S
DELFD 9001 File not opened in 'WRITE' mode. H
9002 Field not found on index S
COMPFL 9101 File not opened in 'WRITE' mode H

22

8.

(1)

QoOomMmMman

momoooononooooonomoooonoomooomooo

EXAMPLES OF USE

PROGRAM TEST1

PROGRAM TEST1
TEST1 - TO DEMONSTRATE WRITING TO FDB2.

PURPOSE

TO SHOW HOW FDB2 IS OPENED AND HOW TO CREATE
A 'NEW' DATABASE AND A 'NEW' FILE ON FDB2 AND
THEN WRITE TO THAT FILE.

INTERFACE.

DATA IS READ INTO *BUFF*, THEN FDB2
SOFTWARE IS USED TO OPEN FDB2, CREATE
THE NECESSARY DATABASE AND FILE AND
TO WRITE THE DATA TO A FIELD ON THE

NEW FILE.

EXTERNALS

OPENFDB - READS IN FDB INDEX.

OPENDB - CREATES NEW DATABASE.

OPENFL - CREATES NEW FILE.

WRITEFD = WRITES FIELD TO FILE.

CLOSEFL¥ - CLOSE FILE, UPDATE FILE AND FILE INDEXES.
CLOSEDB - CLOSE DATABASE, UPDATE FDB INDEX.
CLOSFDB - DISCONNECT FDB2

NONE

AUTHOR

DIMENSION IBUFFER(512)

CHARACTER*3 YDBSTAT,YFLSTAT, YBACKUP, YC
CHARACTER*8 YFDSTAT

CHARACTER*16 YDBNAM, YFLNAM, YFDNAM
CHARACTER*8 YIOSTAT

CHARACTER*4 YIDDB

23

g* 1.0 __OPEN D.B. MASTER INDEX AND READ IN. ____

100 CONTINUE
IFAIL=1
CALL OPENFDB(IFAIL,IX)
G* 2.0 __OPEN D.B. FILE INDEX AND READ IN_______ e

200 CONTINUE
IFAIL=1
YDBNAM="'ODXXFC86072100"
YIDDB='0001"'
YDBSTAT="NEW'
YBACKUP='YES"
CALIL OPENDB(IFAIL,IX,IDB1,YDBNAM,YIDDB,YDBSTAT,YBACKUP)

S e e e e A o o S AR S S P A T e D A D P Sl P S N U A S AR S O N U P S S S T S D A A S D D S S G O S S B S s 5 o

300 CONTINUE
IFAIL~=1
YFLNAM="'SH000086072100"
YFLSTAT='NEW"
YIOSTAT='WRITE'
YC='CFs'
CALL OPENFL(IFAIL,IX,NR,IDB1,IFL1,YFLNASM,YFLSTAT,YIOSTAT,YC)

c
g¥ 4.0 _ _WRITE REQUIRED FIELD(S). ___ e - -
400 CONTINUE
IFAIL=1
TLNGTH=512

YFDNAM="'TXXXPLXX0500"'
YFDSTAT="'ADD'
CALL WRITEFD(IFAIL,IX,IDB1,IFL1,ILNGTH,IBUFFER,YFDNAM,YFDSTAT)

g* 5.0 _ UPDATE FIELD INDEX AND CLOSE FILE: o oo R

500 CONTINUE
IFAIL=1
CALL CLOSEFL(IFAIL,IX,IDB1,IFL1,YBACKUP)

600 CONTINUE
IFAIL=1
CALL CLOSEDB(IFAIL,IX,IDB1)

700 CONITINUE
IFAIL=1
CALL CLOSFDB(IFAIL,IX)

C
€ e o e o o e e e S
c

RETURN

END

24

This example opens the Fields Database, creates a 'new' data base named
'ODXXFC86071200'. Then creates a 'new' file named 'SH000086071200' on this data

base and writes a new field named 'TXXPLXX0500' of size 512 words to it.

The indexes are then closed in the correct order.

(ii) PROGRAM TEST2

PROGRAM TEST¥*

Ck**% *TEST2* - TO DEMONSTRATE THE READING OF A FIELD FROM FDB2.

8 PURPOSE

c TO SHOW HOW FDB2 IS OPENED AND AN EXISTING FIELD ON A FILE IS
TRANSFERRED TO A USER'S BUFFER

8** INTERFACE.

C

C NONE

C

e METHOD

C AFTER THE FDB2 FILE IS OPENED THE REQUIRED DATA IS READ INTO DYNAMIC

SPACE BY *READFD* THEN TRANSFERRED TO THE USER'S BUFFER BY *TRANSFD*.
FDB2 IS THEN CLOSED IN THE NORMAIL, WAY.

C

s EXTERNALS

Cc

C *OPENFDB¥* - READS IN FDB INDEX.

C *OPENDB* - CREATES NEW DATABASE.

C *OPENFL* — CREATES NEW FILE.

C *READFD* ~ READS REQUIRED FIELD

C - *TRANSFD* - TRANSFERS DATA TO USER'S BUFFER

Cc *CLOSEFL* - CLOSE FILE, UPDATE FILE AND FILE INDEXES.
C *CLOSEDB* - CLOSE DATABASE, UPDATE FDB INDEX.

C *CLOSEFDB* - DISCONNECT FDB2

C

C

C

C

C NONE

C

e AUTHOR

C

s CREATED BY D.R. ROSKILLY. 21/07/86._____________________________

25

100

200

8*

300

400

DIMENSION IBUFFER(600)

CHARACTER*3 YDBSTAT, YFLSTAT, YBACKUP,YC
CHARACTER*4 YIDDB

CHARACTER*8 YFDSTAT

CHARACTER*16 YDBNAM, YFLNAM, YFDNAM
CHARACTER*8 YIOSTAT

1.0 OPEN D.B. MASTER TNDEX AND READ IN.

CONTINUE

IFAIL~=1

CALL OPENFDB(IFAIL, IX)

2.0 OPEN D.B. FILE INDEX AND READ IN.

CONTINUE

IFAIL=1

YDBNAM="'0ODXXFC86072100"

YIDDB='0001"

YDBSTAT="'OLD'

YBACKUP='YES'

CALL OPENDB(IFAIL,IX,IDB1,YDBNAM,YIDDB,YDBSTAT,YBACKUP)

3.0 OPEN FILE AND READ IN FIELD INDEX.

CONTINUE

IFAIL=1

YFLNAM="'SH000086072100"

YFLSTAT="OLD'

YIOSTAT='READ'

YC='CFS"'

CALL OPENFL(IFAIL,IX,NR,IDB1,IFL1,YFLNAM,YFLSTAT,YIOSTAT,YC)

4.0__ READ REQUIRED FIELD(S).

CONTINUE

IFATL=1

YFDNAM="TXXXPLXX0500"'

ILNGTH=512

CALL READFD(IFAIL,IX,IDB1,IFL1,ILNGTH,YFDNAM)

5.0 TRANSFER DATA TO USERS BUFFER.

26

500

This

CONTINUE
IFAIL=1
CALL TRANSFD(IFAIL,IX,IDB1,IFL1,IBUFFER,ILEN)

CONTINUE
IFATIL~=1
CALL CLOSEFL(IFAIL,IX,IDB1,IFL1,YBACKUP)

7.0 UPDATE FILE INDEX AND CLOSE DATABASE.

CONTINUE
IFATL=1
CALL CLOSEDB(IFAIL,IX,IDB1)

8.0 UPDATE D.B. MASTER INDEX AND CLOSE.

CONTINUE
IFAIL=1
CALL CLOSFDB(IFAIL,IX)

example opens an old data base named 'ODXXFC86072100', then opens an old

file on that data base called 'SH000086072100' and reads a field 'TXXXPLXX0500'

from it which is transferred to array NBUFFER.

The indexes are then closed in the correct order.

(iidi)

Chkdkx

*
*

aaQaoomMmaoaoaoman o

PROGRAM TEST3

PROGRAM TEST3

TEST3 - TO DEMONSTRATE HOW TO DELETE AFDB2 FIELD AND
COMPRESS THE FILE.
PURPOSE

TO SHOW HOW FDB2 IS OPENED AND A NAMED FIELD IS DELETED AND THE REMAINING
FIELDS ON THE FILE COMPRESSED.

INTERFACE.

THE FDB2 FILE IS OPENED IN THE NORMAL WAY.

DELFD IS THEN USED TO DELETE THE REQUIRED FILE, AND
COMPFL THEN COMPRESSES THE FILE. FDB2 IS THEN CLOSED
IN THE NORMAI WAY.

27

§ EXTERNALS
c
C *OPENFDB* - READS IN FDB INDEX.
Cc *OPENDB* - CREATES NEW DATABASE.
C *OPENFL* - CREATES NEW FILE.
C *DELFD¥* -~ DELETES A FIELD FROM A FILE.
C *COMPFL* - COMPRESSES A FILE.
C *CLOSEFL* -~ CLOSES FILE, UPDATES FILE AND FILE INDEXES.
C *CLOSEDB* ~ CLOSES DTABASE,UPDATES FDB INDEX.
C *CLOSFDB* -~ DISCONNECTS FDB2
C
Cc
C
C
C NONE
C
C
§ AUTHOR
c
§ CREATED BY D.R. ROSKILLY. 21/07/86. ________________________
CHARACTER*3 YDBSTAT,YFLSTAT, YBACKUP,YC
CHARACTER*4 YIDDB
CHARACTER*8 YFDSTAT
CHARACTER* 16 YDBNAM, YFLNAM, YFDNAM
CHARACTER*8 YIOSTAT
c
C
§* 1.0 _ OPEN D.B. MASTER INDEX AND READ IN.
100 CONTINUE
IFAIL=1
CALL OPENFDB(IFAIL,IX)
G* 2.0 OPEN D.B. FILE INDEX AND READ IN.

200 CONTINUE
IFAIL=1
YDBNAM="'0DXXFC86072100"
YIDDB='0001"'
YDBSTAT="'OLD"
YBACKUP='YES'
CALL OPENDB(IFAIL,IX,IDB1,YDBNAM,YIDDB,YDBSTAT,YBACKUP)

300 CONTINUE
IFAIL=1
YFLNAM='SH000086072100°
YFLSTAT='OLD'
YIOSTAT="WRITE'
YC='CFs'
CALL OPENFL(IFAIL,IX,NR,IDB1,IFL1,YFLNAM,YFLSTAT,YIOSTAT,YC)

28

8* 4.0 DELETE REQUIRED FIELD(S).

400 CONTINUE
IFAIL=1
YFDNAM="'TXXXPLXX0500"'
CALL DELFD(IFAIL,IX,IDB1,IFL1,YFDNAM)

&* 5.0 __COMPRESS FILE. ______________

500 CONTINUE
IFAIL=1
CALL COMPFL(IFAIL,IX,IDB1,IFL1)

E* 6.0 UPDATE FIELD INDEX AND CLOSE FILE(S)

600 CONTINUE
IFAIL=1
CALL CLOSEFL(IFAIL,IX,IDB1,IFL1,YBACKUP)

E* 7.0 UPDATE FILE INDEX AND CLOSE DATABASE.

700 CONTINUE
IFAIL=1
CALL CLOSEDB(IFAIL,IX,IDB1)

8* 8.0 UPDATE D.B. MASTER INDEX AND CLOSE.

O Tt o e s o o T T A S S M o T " o - o s s - -

800 CONTINUE
IFAIL=1
CALL CLOSFDB(IFAIL,IX)

C
C ——
c

RETURN

END

This example opens a database named 'ODXXFC86072100' and then opens an old file
on that database named 'SH000086072100'. A field '"TXXXPLXX0500' is then deleted

from this file and the file is compressed.

The indexes are then closed in the correct order.

29

(iv) PROGRAM TEST4

PROGRAM TEST4

QQ
*
*
*
*

TEST4 = TO DEMONSTRATE DELETING A FILE FROM FDRB2

PURPOSE

TO SHOW HOW A FDBZ FILE CAN BE DELETED.

*
*

INTERFACE.

FDB2 IS OPENED IN THE NORMAL WAY.
DELFL IS THEN USED TO DELETE THE REQUIRED FILE.
FDB2 IS THEN CLOSED IN THE NORMAI. WAY.

EXTERNALS

OPENFDB - READS IN FDB INDEX.

OPENDB - CREATES NEW DATABASE.

OPENFL - CREATES NEW FILE.

DELFL - DELETES A FDB2 FILE.

CLOSEFL - CLOSE FILE,UPDATE FILE AND FILE INDEXES.
CLOSEDB - CLOSE DATABASE, UPDATE FDB INDEX.
" *CLOSFDB* - DISCONNECT FDB2

NONE

AUTHOR

maoanonaaooaoaoaoaooaoaoaaooomancooomannoaoanma

CHARACTER¥*3 YDBSTAT,YFLSTAT,YBACKUP,YC
CHARACTER*4 YIDDB
CHARACTER*8 YFDSTAT
CHARACTER* 16 YDBNAM, YFLNAM, YFDNAM
CHARACTER*8 YIOSTAT

c

C

30

& 1.0 __OPEN D.B. MASTER INDEX AND READ IN.

100 CONTINUE
IFAIL=1
CALL OPENFDB(IFAIL,IX)
g% 2.0 __OFEN D.B. FILE INDEX AND READ IN. ___ o

200 CONTINUE

IFAIL=1
YDBNAM="'ODXXFC86072100"'
YIDDB='0001"

YDBSTAT="OLD'
YBACKUP='YES'
CALL OPENDB(IFAIL,IX,IDB1,YDBNAM,YIDDB,YDBSTAT,YBACKUP)

8* 3.0 DELETE FILE.

300 CONTINUE
IFATL=1
YFLNAM="'SH000086072100"
CALL DELFL(IFAIL,IX,IDB1,YFLNAM)

8* 4.0 UPDATE FILE INDEX AND CLOSE DATABASE.

400 CONTINUE
IFATL~=1
CALL CLOSEDB(IFAIL,IX,IDB1)

c
&* 2:0___UEDATE D.B. MASTER INDEX AND CLOSE. _______________
500 CONTINUE
IFATL=1
CALL CLOSFDB(IFAIL,IX)
c
RETURN
END

This example opens an o0ld database named 'ODXXFC86072100' and deletes an old
file named 'SH000086072100' from it. The indexes are then closed in the correct

order.

31

