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1. Introduction

For a long time, there has been an awareness that distributed
drag associated with orographically produced internal gravity waves
might have a significant effect on the general circulation of the
atmosphere. Perhaps the first quantitative estimates of the importance
of wave drag may be found in Bretherton (1969). Lilly (1972) explicitly
suggested that it might be necessary to parameterize mountain wave
drag in general circulation models (GCMs), and carried out a crude
experiment along the indicated lines. The first attempt to incorporate a
complete drag parameterization in a GCM was made by the Canadian
climate group (see, e.g. Boer, et al. 1984), who have carried out an
extensive series of simulations with a fairly low resolution model.
These calculations were important in providing quantitative evidence
that mountain wave drag could produce a significant slowing of the
westerlies in a realistic model; however, the first convincing evidence
that the drag produces a beneficial effect on forecast skill and
systematic error patterns came only with the high resolution
calculations reported in Palmer, et al. (1986). It is becoming generally
accepted that mountain wave drag has a more dramatic impact on the
systematic error than any other improvement in model physics that has
been tried to date, though the physical reality of the gravity wave drag
is still a matter of considerable dispute; the possibility remains that
the missing drag in the models arises from some momentum transport
process other than orographic gravity wave drag.

As of this writing, parameterizations of mountain wave drag
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have been for the most part based on linear theory. However, it will be
seen that under typical atmospheric conditions, flow over even modest
mountains lies in the strongly nonlinear range. Nonlinear effects can
lead to a radical change in the character of the flow and cause
amplifications of the drag by a factor of five or so. Understanding the
implications of the nonlinear behavior for the drag parameterization
problem will be the central concern of this paper.

We shall also discuss the effects of wave drag in simplified and
realistic general circulation models; although an extensive body of
simulations of the effect of wave drag have by now become available,
there has been relatively little attention paid to the subtle dynamical
mechanisms determining the response of the planetary scale
circulations. The results with an idealized model help to elucidate these
effects, while comparison with results from a realistic GCM suggest
that the idealized model yields insights that are useful in a practical
context; the realistic run also shows that earlier beneficial results on
the effects of wave drag can be reproduced with the scheme suggested
herein, which differs in some particulars from the parameterization
described in Palmer, et al. (19886).

In order to concentrate on nonlinear aspects of the problem, we
shall assume a familiarity with the basics of linear mountain wave
theory. Readers requiring a review of this material may find it
profitable to consult the article by Smith (1979).

In §2 we provide an overview of some aspects of nonlinear,
stratified flow over mountains crucial to drag parameterization. This is
followed in §3 by the specification of a parameterization based on these
considerations. The effects of an idealized drag in a simplified GCM are
discussed in §4, while some tentative results on the effects of realistic
mountain wave drag in a full prediction model are given in §5. Our
principal conclusions are rehearsed in §6.

2. - Nonlinear, stratified flow over mountains: an overview

Drag and momentum flux exhibit a rather startling behavior in
the nonlinear regime. In order to highlight the implied challenges for
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the parameterization problem, we shall in this section focus attention on
the simplest configuration which admits an archetype of the nonlinear
behavior. Specifically, we consider two-dimensional nonrotating,
stratified flow over a ridge with height profile h(x). Let z be the
vertical coordinate, w be the vertical velocity and u the velocity in the x
direction. We assume the flow impinging on the mountain to be stably
stratified, with Brunt-Vaisala frequency N(z). In this situation, the
mountain will set up motions ("gravity waves”) which propagate
vertically and horizontally away from the mountain. Before proceeding
further, we shall need a few elementary definitions and properties.

The drag force is the force exerted by the mountain on the
atmosphere (which is equal and opposite to the force exerted by the
atmosphere on the mountain), and is given by

D=-[npds (2.1)
in which p is the pressure, s is the arc length along the mountain and n
is the unit normal to the mountain; for mountains of small slope,
D=-[p(dh/dx)dx. The vertical momentum flux is defined by

z(z)= [puwdx - (2.2)
in which p is the density. The importance of the momentum flux resides
in its role in determining changes in the mean flow. In the absence of
other body forces acting on the fluid, the mean flow change is given by

pdlfudx]/dt=-dz/dz (2.3)
So far we have merely engaged in making definitions. Now we come to
an important and profound properties of mountain waves. In the absence
of transience or dissipation, v is independent of height and equal to the
drag D. Thus, according to (2.3), steady, undissipated gravity waves
exert no force on the atmosphere; the drag force exerted by the
mountain shows up in the vertical momentum flux of the gravity waves
which is carried upward out of the domain without being deposited
anywhere. Therefore, the influence of gravity waves on the atmosphere
is intimately connected with the dissipation of the waves.

Since molecular viscosity and radiative damping have only a
weak effect on the waves throughout most of the troposphere and
stratosphere, the main dissipation is mediated by turbulent mixing of

253



heat and momentum. Typically the turbulent dissipation arises primarily
through. turbulence induced by the wave itself in regions where it
becomes unstable to small scale instability. The process whereby a
wave becomes unstable to instabilities of a scale substantially smaller
than the wave itself is an instance of what is generally known as wave
breaking (though we hasten to add that the existence of small scale
instability should not be taken as the definition of breaking; any sort of
irreversible wave-induced mixing will do). There are many types of
wave breaking, but the simplest to understand is convective wave
breaking , in which the wave attains at some height sufficient amplitude
to overturn potential temperature contours, advecting a tongue of heavy
fluid over a body of lighter fluid. Such a configuration is unstable to
convection; since inviscid convection sets in preferentially at arbitrarily
short wavelengths, there is no uncertainty in the application of a local
criterion to ascertain stability, as there is a good separation of scales.
As will be shown shortly, much of the momentum flux is deposited
within the breaking region. The breaking process and associated flux
profile is illustrated schematically in Figure 2.1, for flow impinging on
the mountain from the left.
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The flux is approximately constant above and below the breaking region,
but decreases in magnitude as the breaking region is traversed. The flux
is shown as being negative because the drag force in most situations is
opposite to the direction of the oncoming flow (as a well-behaved drag
should be). -

Under what circumstances do waves break convectively, and at
what level do they break? Consider first the case in which the flow
impinging on the mountain has constant velocity U and stability
frequency N far upstream of the obstacle, and in which the effects of
compressibility can be neglected. Since this simple flow will play an
important role in the subsequent discussion, we digress briefly to
consider the nondimensionalization and scaling of the problem. If
horizontal distances are nondimensionalized with the mountain
half-width L, vertical distances with U/N, and times with L/U, one
obtains a problem which is characterized (for fixed mountain shape)
solely by the two numbers Fr=Nhg/U and b=NL/U, where hg is the
mountain height. [f b>>1, the hydrostatic approximation is valid, and the
problem is characterized by Fr alone. For smooth, symmetric mountain
profiles, a range of nonlinear steady and initial value calculations show
that in the hydrostatic range convective breaking occurs when Fr exceeds
approximately .8 (see Pierrehumbert and Wyman 1985, Bacmeister 1986,
and references therein). The breaking level is approximately 3/4 of a
hydrostatic gravity wavelength above the ground (i.e. 31tU/4N), though
for values of Fr above the threshold for breaking, a convectively unstable
region extends both above and below the breaking level. As the mountain
is made narrower and the flow becomes less hydrostatic, the value of Fr
required for breaking becomes larger (see, e.g. Bacmeister 1988); in the
limit b=0, the mountain induces only potential flow, and hence breaking
never occurs. With U=10 m/s and N=.01 sec-!, breaking occurs for
relatively broad (>5km) mountains whenever they exceed 800m in height;
thus, low level wave breaking and the attendant strong nonlinearity are
the rule rather than the exception.

The dramatic alteration of the character of the flow that occurs
in conjunction with wave breaking may be seen by comparing Figures
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2.2a,b. In these figures we show contours of potential temperature
obtained from integrations of a 2D numerical model from shock start-up
initial conditions with uniform N and U. In both cases the incident flow
is from the left, and the mountain was made broad enough that the flow

may be considered essentially hydrostatic. Further details can be found
in Bacmeister (1986).
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The calculation in Figure 2.2a was carried out with Nh/U=.75,
just below the wave-breaking threshold, and the results are essentially
the same as the classical Long's Model steady, nonlinear solutions; they
also qualitatively resemble -the familiar hydrostatic linear mountain
wave. Far upstream and -downstream of the mountain, the flow is
undisturbed, though the wind is locally retarded on the upslope and
locally enhanced on the downslope. Note that near z=5, the isentropes
become nearly vertical, but the mountain is not high enough to cause
overturning. .

Results for a higher mountain (Nh/U=1.5) are shown in Figure
2.2b. Wave breaking has created a deep, stagnant mixed region in the lee
of the mountain. Below this mixed layer lies a strongly stratified,
swiftly moving current, the "downslope windstorm.” As time goes on,
this structure extends arbitrarily far downstream of the mountain,
within the limitations of inviscid, 2D theory. In addition, the flow
exhibits upstream influence and partial blocking: the low level flow is
below the ambient speed within a stretch that extends arbitrarily far
upstream as time progresses. This partial blocking visible in Figure
2.2b as an elevation of the low-level isentropes upstream of the
mountain, terminated by a wave front which is propagating to the left.
In contrast to the non-breaking case, the flow does not return to its
ambient value far upstream and downstream (letting t—e first); the fluid
experiences permanent acceleration as it crésses the ridge. In all, the
low level flow configuration resembles that appearing in one-layer
hydraulic theory. The reasons for this are by no means settied, but some
useful insights may be found in Smith (1985). A residual vertically
propagating wave may be seen above the breaking region; its amplitude is
rather comparable to the marginally non-breaking case shown in Figure
2.2a.

The transition to the asymmetric hydraulic state described in the
preceding paragraph is accompanied by a marked enhancement of the
surface drag and low level momentum flux. These effects are
summarized in Figure 2.3, where we plot the surface drag, the
momentum flux at mountain top level, and the momentum flux aloft
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(above the breaking level, if there is one) as a function of Nh/U. The
estimates were obtained using the same model utilized for calculating
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Figure 2.2, integrated to a quasi-steady state. The drag D and flux ¢ are
nondimensionalized with pgU3/N. All three quantities plotted in Figure
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2.3 are identical in the absence of wave-breaking. As the breaking
threshold is crossed, the drag and low level flux jump by nearly a factor
of 4. Nonlinear drag enhancement of this type (though not the connection
with the asymmetric hydraulic states) was first noted by Peltier and
Clark (1979), in a study of severe downslope wind storms. The residual
flux remains roughly continuous across the breaking boundary, suggesting
the operation of a "saturation hypothesis” in which the flux is limited to
approximately the value for the marginally breaking case. As Nh/U is
increased further, the residual flux increases only weakly, though the
drag and low level flux continue to increase faster than linearly. This
situation leads to large low level momentum flux convergences that are
completely missing in linear theory. In fact, it is this low level
convergence that drives the upstream influence and the downstream-
propagating bore (Bacmeister, 1986).

We have described the breaking criterion for the case of constant
N and U; now we turn-to the general case in which N and U vary with
height .and also allow for compressibility effects. The primary interest
of this problem lies in locating upper atmospheric breaking levels in
cases Where the mountain is too small to permit low level breaking, or
to isolate "secondary breaking regions” aloft where the residual flux
escaping the low layer breaking zone is deposited. The breaking
criterion is most conveniently expressed in terms of a saturation flux,
which is defined as the largest momentum flux which can be carried by
the fluid without the occurrence of breaking. When the saturation flux
is exceeded, breaking occurs and some momentum must be deposited. A
saturation flux formulation of this sort was employed by Lindzen (1981)
in his study of mesospheric gravity wave drag.

Since T=[pu’'w’'dx, the maximum momentum flux for a wave with
typical velocity magnitudes [u']l and [w'] is estimated as z=plu'llw’lL,
where L is the length scale of the mountain (taken also to be the
characteristic length scale of the wave). Now, if D is the characteristic
vertical scale of the wave, [w'l=(D/L)u’l. Further, for convective
breaking [u'l=U, the speed of the ambient wind. Thus, the saturation flux
is
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zg = (pU2D)ot (2.4)

where o is a dimensionless order unity constant dependent on the
geometry. In general, D is a complicated function of height which
depends nonlocally on the flow configuration, and we can proceed no
further without explicit computation of the wave pattern. However, in
the WKB approximation (valid for UN and p varying slowly with z,
compared to a vertical wavelength), the vertical scale is determined
locally. In the hydrostatic case, this characteristic vertical scale is
D=U(z)/N(z) and the saturation flux becomes
T = (pUS/N)ot (2.4")

Since T is constant below the breaking level, it is easy to use (2.4') to
provide an estimate of the breaking level. Increasing U inhibits breaking
by increasing z4, while the decrease of p with height favors breaking.

Because p decreases exponentially while U(z) remains bounded, breaking
inevitably occurs at some level; however, the cubic dependence of zg on

U makes it quite difficult for the density decay to win out over the
general increase of U with height within the troposphere and lower
stratosphere; this is particularly true in the winter hemisphere, where U
does not fall to zero above the tropospheric jet maximum. Let us
assume that T is just slightly below its saturation value at a low level
zy (corresponding to a low mountain, or the residual flux above the low
level breaking zone) and compute where the secondary breaking level
occurs if U increases with height. At one scale height, breaking can
occur if U/U(zg)<e'”3x=1.4; at two scale heights we need
U/U(zg)<e?/3=1.9. Even with a fairly generous estimate of U(zy)=10m/s,
these conditions are unlikely to be met in the wintertime troposphere or
lower stratosphere. This would suggest that convective breaking occurs
predominantly at (a) low levels, and (b) levels which are higher than
generally considered important in tropospheric GCM's. :

It must be admitted however that the use of the WKB
approximation in (2.4') is highly suspect. In the upper troposphere, with
typical wind speeds of 40m/s, the vertical wavelength in WKB theory is
about 40km, which is many times greater than the vertical scale of
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variation of the wind field. It thus remains possible that the strong
curvature above the jet maximum allows wave-breaking by limiting D to
something comparable to the scale of the jet, which is much less than
2T(U/N. This issue cannot be addressed rigorously by means of any local
argument. Nonlinear numerical simulations are required to properly
determine whether breaking occurs, though steady linear theory may
provide some useful qualitative insights. On the other hand,
nonhydrostatic, rotation, and 3D effects all inhibit breaking by
increasing dispersion, and it is not at all clear that a secondary
convective breaking level can exist in the troposphere or lower
stratosphere. ~

We note in passing that other kinds of breaking besides
convective breaking may be possible. The alternate mechanism that has
received the most attention is shear breaking ., in which the wave
induces a wind shear so great that the wave succumbs to local Kelvin-
Helmholz instabilities. Shear breaking is usually ascertained by 'means
of a local Richardson number criterion. It can easily be shown that when
WKB is valid, convective breaking always occurs before the criterion for
shear breaking is satisfied. Thus, shear breaking can occur only in the
context of rapidly varying ambient flow, and in consequence its presence
cannot be rigorously characterized in terms of a local criterion.
Furthermore, when the local Richardson number criterion is satisfied
without flow reversal (and hence convective breaking) the net velocity is
everywhere positive, and it is likely that perturbations will be swept
out of the limited unstable region before they have much chance to grow
and do much damage to the wave structure. Despite these problematic
aspects, shear breaking has been incorporated in-some wave drag
parameterizations (T. N. Palmer, personal communication) where it in
fact plays a key role in permitting secondary breaking levels in the
lower stratosphere. Much additional work is required to assess the
physical reality of this process.

Concerning parameterization, the most unpleasant implication of
the results described in this section is that the surface drag and low
level flux cannot be determined independently of the existence and
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location of the breaking level; the two are inextricably tied up via
nonlinear processes of considerable subtlety. In the case of general
U(z), N(2), very little has been firmly established about this problem.
Certainly, for relatively uniform U,N, there is nonlinear "low level” drag
enhancement, which is quantified in Figure 2.3. Although we refer to this
flux absorption as a "low level” phenomenon, it should be noted that in
some cases “low level” could extend right to the stratosphere; since the
vertical scale in Fig. 2.2b is U/N, this could occur for a high mountain
when there is a deep layer of large U (but not so large as to prevent
breaking).

The nonlinearly enhanced low level drag has been left out of all
parameterizations that have been attempted to date- what would its
effect be in a GCM? Note that the physical effect of low level drag is to
create an upstream blocked region and downstream stagnant mixed
region; to the extent that envelope orography attempts to represent the
same features, the employment of low level drag in conjunction with
envelope terrain may be redundant.

3. Formulation of a parameterization

We shall now formulate a simple drag parameterlzatmn based on
the considerations outlined in §2. Any parameterization of mountain
wave drag must address two issues: how much momentum flux to launch
into the atmosphere at the lower boundary, and how to distribute its
absorption. As we have seen, these problems cannot really be addressed
independently, because the presence of absorption (wave-breaking), and
its location, greatly affects the net drag. This difficult problem will be
finessed in the following treatment. The low-level wave breaking
regime is accompanied by very large low level decelerations - amounting
to perhaps 100 (m/s)/da; it is uncertain whether a large scale model
can reproduce the correct physical response to such large localized
momentum sinks. Hence, in the parameterization to follow, we attempt
to represent only the residual momentum flux that escapes the low level
breaking region and can affect the upper atmosphere. It will be seen
that earlier parameterizations (Palmer et al. 1986) have in effect
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accomplished the same thing, though based on very different physical
reasoning. In the spirit of a sensitivity study, this decision is safe, as
it almost inevitably results in an underestimate of wave drag effects on
the atmosphere.

The wave drag due to subgrld scale momentum flux appears as an
additional body force on the rhs of the momentum equations. The
momentum equations become:

atU + ...
atV + ...

-p~1o,zy = 99Ty | (3.1a)
(3.1b)

_p-1 -
p azz:!J = gep'c!J

where the symbols represent:
u zonal wind

v meridional wind

p density

g acceleration of gravity
z height

P pressure

Ty flux of zonal momentum
tg flux of meridional momentum

In terms of the subgrid scale velocities u',v’ and w’', the momentum
fluxes are |
' Ty = (AxAY)-! [fdx dy pu'w’ (3.2a)

Ty = (AxAY)T! [fdx dy pv'w’ (3.2b)

where Ax and Ay are the grid increments and the integrals are to be
taken over an area of a grid box.

Suppose that the waves are due to a two-dimensional ridge h(x);
we think of the ridge as being isolated (i.e. h»0 as x»tx). The net
vertical momentum transport over a region of length Ay, expressed in
dimensional terms is
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Sy = [ oS dx pu'w’lAy (3.3)
Note that this differs from the stress definition (3.2) in that it is not
averaged over the grid area. Also, the stress is proportional to the
length of the region in question because h is independent of y. The
actual stress is given by

Ty = Sy/(AXAY) _ (3.4)

The flux is a function of the mountain height, mountain shape, the
ambient flow profile, and altitude; clearly, some drastic approximations
must be made if we are to make any progress. We begin by writing the
flux as :

t)(:(t)(/-cﬂ)zﬂ ' (35)

in which zgy is the momentum flux evaluated at a low level; when there
is low level breaking, it is the residual flux measured just above the
primary breaking layer. We shall refer to z( as the base level flux. <,
is no longer a function of height, but its value could well be sensitive to
the profile of U and N aloft. The nondimensionalized flux (zy /<)

contains the information about how the momentum is to be distributed in
the vertical. Assuming no internal sources, its magnitude must be a
monotonically decreasing function of height, and everywhere less than
unity. Our ansatz in connecting the parameterization with the results of
§2 {s that the base level flux has the same behavior as in a model with
constant N and U, where N and U are set equal to the average "low level”
values prevailing in the atmosphere at the grid point in question. The
precise definition of "low level” is, at this point, a matter of
engineering.

Nondimensionalizing lengths by the mountain length L, depths by
D=U/N, horizontal velocities by U and vertical velocities by UD/L, then
the resulting nondimensional base flux is a function of Fr only (in the
hydrostatic approximation). Thus the dimensional base flux due to a
single ridge of length L and height hy can be written

To = [pUS/(NAX)] G(Fr) (3.5)

where G(Fr) is some monotonically increasing function of Fr. Equation
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(3.6) gives the stress in a grid box due to a single mountain of length L.
If there are m such mountains in a grid box, then
Ty = mlpUS/(NAX)] G(Fr) (3.7)

where m is the number of mountains (m<Ax/L).

In fact, we can define the effective mountain length to be 2*=Ax/m.
Next we must determine G(Fr). For small Fr the wave field is

linear and both u’ and w' are proportional to the mountain height; hence,

we must have ' :

G=a (Fr)2 for Fr<<1 (3.8)

where a is an order unity constant determined by the mountain shape.

On the other hand, the nonlinear results given in Figure 2.3 suggests that

G saturates to an upper bound at large Fr. A plausible form for G is then

G= TFr2/(1+Fr?) (3.9)

where z is an order unity nondimensional saturation flux.

In the present formulation, the base flux is applied as if it were
at the ground, and the flux convergence due to low level breaking is
ignored. We note in passing, though, that a similar scaling argument can
be used to parameterize the low level drag. in the breaking case. The
nondimensional flux above the breaking layer is still given by (3.9), but
the true ground level flux based on Figure 2.3 would be

G(Fr), for Fr<frg

G'(Fr)= (3.10)
3.+5.(Fr-Frg)2, for Fr>Frg

where Fr.=.8 is the critical value for breaking. Between the ground and

the top of the breaking layer, the flux would be relaxed from the value
indicated by (3.10) to that indicated by (3.9); based on numerical
simulations, a reasonable estimate for the top of the low level breaking
zone is (3/5)TU/N.

The use of (3.9) has the effect of not allowing the height of the
mountains contributing to the drag to exceed some (flow dependent)
critical value. In this regard, it is similar to one of the schemes
employed by Palmer, et al. (1986). Palmer, et al. argue for a cutoff
height on the grounds that high mountains block the low layer flow so
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that the atmosphere sees an effectively smaller mountain.  This
argument does not imply that there is any low-level drag that has been
left out of the parameterization. However, for ridgelike mountains, there
is little blocking in the range Fr<2, and total blocking does not appear at
the ground until Fr=2 (Pierrehumbert and Wyman 1985). For ridgelike
mountains, then, the wavebreaking picture is on a firmer physical footing
and moreover suggests a possible refinement of the parameterization.
For axisymmetric or conelike mountains, though, flow does tend to be
diverted around the obstacle for Fr>1 without any need for wavebreaking,
and a blocking formulation may be more appropriate.

Table 1

Source Nh/U |z(Ntm=-2) | = (nondim)
Lilly 1982 (Rockies) 2.0 2 . A
(WAMFLEX avg., at 6 km)

Cox 1986 (Pyrenees) 2. 12 4 1.2

(3/23/82, at 300 mb)

Hoinka 1985 (Alps, 11/8/82) 2.5 3 1.213)
Linear theory. h=exp(-x2) 2. -- 3.8
Steady, nonlinear hydrostatic S -- 25
theory (Long’s model) - 75 -~ .61
h=exp(-x2) 1.0 1.2
2.0 -- 8.3

() Based on N=1.25 x 10-2, U=10m/s (similar to 600mb composite
WAMFLEX upstream soundmg) and h=2km.

‘2) Based on values of N and U at 1km height in Toulouse sounding.
) Based on N=1.5 x 10~2, U=15 m/s (similar to Milan sounding at 2km.)
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Based on U=10m/s, N=.0lsec~!, £*=100km, and z=-1 the
saturation flux indicated by (3.7) and (3.9) is 1 Pascal; if this flux is
made to go to zero linearly in pressure over the depth of the atmosphere,
the corresponding deceleration would be about 10(m/s)/da. How well do
these numbers accord with observations? In Table 1 we compile some
observed fluxes aloft in dimensional and nondimensional terms. The data
is scanty; it does not represent a climatology as the observations were
for the most part taken on days when there was some reason to suspect
appreciable wave activity. Nevertheless, it is interesting that the
fluxes are generally consistent with the (rather small) fluxes predicted
by the parameterization. For comparison, we also give some fluxes
predicted by steady linear and nonlinear theory neglecting the effects of
wave-breaking. It is clear that considerable overestimates are obtained
if the effects of low level breaking are not taken into account.

The choice of the vertical profile T/z, is problematic. In §2 we
have seen that a local convective saturation criterion is unlikely to yield
much breaking, and that the physical importance of shear breaking is
questionable. In the experiments to be discussed in §5, we adopt the
simple expedient of making the flux go to zero linearly in pressure.
Insofar as we have a physical justification for doing this, it is that the
strong curvature above the tropospheric jet may cause breaking aloft,
and that the atmospheric response may not be fatally sensitive to the
details of the vertical distribution. Its chief virtue, though, is as a
base case with which other experiments can be compared; in the spirit
of a sensitivity study, it also tells us whether fluxes of the indicated
magnitude can conceivably yield an appreciable change in the circulation
supposing that they are absorbed within the troposphere and lower
stratosphere. ‘

The above discussion has assumed that the mountain height h is a
function of x alone, whence zg=0. We have little to say about the

‘general case in which h=h(x,y) and the wind direction may turn with
height, as nonlinear, three-dimensional mountain waves represent largely
unexplored territory. In the experiments described in §5, we have
assumed that all fluxes behave as in the unidirectional case, provided we
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transform to a coordinate system aligned in the direction of the low
level wind. This at least has the effect of imposing some retardation of
largely meridional flow over largely zonal ridges, such as occur in the
Himalayas. No attempt has been made to take into account the
anisotropy of the terrain distribution.

4. Effect of momentum sink in idealized GCM

In order to assess the accuracy of wave drag parameterizations
and identify their deficiencies, it is necessary to understand the manner
in which a general circulation model responds to wave drag. In essence,
wave drag parameterizations introduce momentum sinks above the rugged
mountains of the Earth; intuitively, one expects the -dominant effect of
such sinks to be a deceleration of the westerlies. However, the factors
determining the strength and distribution of the deceleration are subtle
and various. The westerlies are maintained by a delicate balance
between surface stress, mean meridional circulations, thermal forcing,
and stationary and transient eddy fluxes. The introduction of a new
momentum sink disrupts the balance, and the concomitant change in the
zonal mean flow depends on the shifts in the terms in the balance.

Understanding the response of a realistic GCM to realistic wave
drag is a formidable task, owing both to the complicated spatial
distribution of the drag and the nonlinear interplay of the various
processes in the model. For example, if the wave drag leads to an
alteration in the zonal mean flow, then the Rossby wave trains
emanating from the mountains will change; it would be difficult to
distinguish anomalous wavetrains forced by this mechanism from
wavetrains directly forced by the momentum sink. Thus, instead of
attempting to diagnose the effects of realistic drag in a full GCM, we
will look at the effects of an idealized momentum sink in an idealized
GCM (1IGCM).

The model used for these experiments is a simplified version of
the GFDL Climate Group spectral GCM, with 15-wave rhomboidal
truncation. Orography and all other zonally asymmetric boundary
forcings (sea-surface temperature, inhomogeneous clouds, land-sea
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contrast, etc.) were eliminated, and swamp boundary conditions were
employed at the ground (inexhaustible moisture source, with surface
temperature determined by local heat budget). The model was driven by
annual mean solar forcing. A 1400 day control run was conducted in
order to establish the (zonally symmetric) climatology of the base
model. Next, a 1400 day “"drag run” was conducted, in which a localized
momentum- sink was introduced in the vicinity of 330N, 900E. The
momentum sink was chosen to have a Gaussian profile in the horizontal
with 159 half-width in longitude and 5?2 half-width in latitude; the
vertical profile of the drag force was chosen so as to correspond to a
fixed deceleration of 10 (m/s)/day independent of height. A fixed
momentum sink of this sort was employed in preference to a true
parameterized drag dependent on surface wind in order to minimize the
number of feedbacks in the model that need to be considered. The
response of the model to the drag was evaluated by taking the difference
between the drag run and the control run. :

The response to the drag may be divided into a zonal-mean and
zonally asymmetric component. Figure 4.1 shows the zonally
asymmetric response of the (a)geopotential height and (b)meridional
wind component, at 20Smb. The response takes the form of a wave train
emanating from the drag region, with a maximum amplitude of Z2'=-100m
and v'=-6 m/s in the immediate lee of the drag region. The response
appears predominantly to the north of the drag maximum; the flow bends
anticyclonically around the drag reglon -and there is a pronounced
cyclone about 459 to the east.

Some aspects of this pattern can be explained in terms of the
following barotropic 8-plane argument. If F(x,y) is the (negative) drag
force appearing in the zonal momentum equation, the vorticity equation
linearized about a constant wind U is

9, (UV2y + BY) = -9yF (4.1)

where { is the streamfunction. A localized drag region thus leads to a
negative vorticity source to the north of the drag maximum and a
positive vorticity source to the south; if F is symmetric in y, ¥ will be
antisymmetric. Supposing that the length scale of the drag region is
small enough that the 8 term does not overwhelm the relative vorticity
term in (4.1), to the north of the drag maximum the fluid will pick up
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-180 0

Figure 4.1a
IGCM Geopotential Height Response (zonal mean removed)

Contour interval is 10 meters. Shaded area is negative. Stippled disk gives
location of drag region.

-180 0 180

Figure 4.1b
IGCM Meridional Wind response (zonal mean removed)

Contour interval is 1m/s. Shaded area is negative. Stippled disk gives location
of drag region.
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negative vorticity and curve anticyclonically as it enters the drag region;
the flow splits, and the streamlines suffer a net meridional
displacement in traversing the drag region. This excites a free Rossby
wave in the lee, giving rise to a trough roughly a half wavelength
downstream. The resulting pattern is sketched in Figure 4.2.

Figure 4.2
Schematic of Rossby Wave Driving by Localized Drag

(Actually, this description is greatly oversimplified; the linear equation
(4.1) exhibits surprisingly subtle behavior when F has a nonzero zonal
average, which we do not intend to discuss here). There are clear
similarities between the northern parts of the patterns seen in Figure
4.2 and 4.1; however, the IGCM shows little response to the south of the
drag maximum. This is perhaps connected with the fact that the zonal
mean wind is easterly at low levels equatorward of 300, so that only
the drag on the northern flank sees a westerly current throughout the
depth of the model. Absorptive or other critical level effects may inhibit
the response to the south.

The properties of wavetrains such as described above can be
understood in great detail in terms of linear Rossby wave theory, and so
we will not dwell further on this part of the response. In fact, some
preliminary calculations with a linear primitive equation model on the
sphere indicate that the patterns can be reproduced quite accurately
( both qualitatively and quantitatively) within linear theory.

Understanding the response of the zonal mean winds is a far
more difficult problem. Yet, the structure of the zonal mean wind is
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critical in a full GCM, as Rossby wave paths are very sensitive to the
wind field. Hence, an accurate zonal wind climatology is essential if the
model is to correctly simulate response to forcing from mountains or
sea surface temperature anomalies. In addition, the strength of the
westerlies affects the propagation and steering of synoptic eddies. The
zonal mean zonal wind response (drag run minus control run) is shown in
Figure 4.3. Within a broad region in the vicinity of the drag maximum,
the shift is negative, corresponding to a weakening of the westerlies. It
is highly significant that the effect becomes more pronounced with
height, even though the imposed deceleration was independent of height;
we will see in §5 that this is precisely the vertical structure needed to
25
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Figure 4.3
Response of Zonal Mean Zonal Wind to Drag
Contours of zonal mean zonal wind for (drag run)-(control run). Contour interval is
.5m/s. Lightly shaded regions are <-2m/s, and darkly shaded regions are >0 (i.e.
accelerated). :

272



cancel . the systematic error in a full GCM. The decelerated region
extends well beyond the range of latitudes where appreciable drag is
applied; this phenomenon will be addressed shortly. To the north of the
decelerated region, there is a region of accelerated westerlies. There
is very little response in the Southern Hemisphere.

Some insight into the zonal mean response can be obtained from
an examination of the vertically integrated angular momentum budget.
Schematically, the budget may be written

(Drag force)-(Convergence of transports)=(Surface stress)

Since the surface stress is a monotonic function of surface wind speed,
the imbalance on the left hand side determines the surface wind. The
transport term may be further subdivided into transports due to (a) the
mean meridional circulation, (b) the stationary eddies, and (c) the
transient eddies. We examined the changes in all these terms upon
introduction of drag (defined as drag run minus control run). It was
found that the change in the transport term was strongly dominated by
the transient eddy angular momentum flux. The resulting balance, as a
function of latitude, is shown in Figure 4.4. Near the drag region the
surface stress change is positive, reflecting the fact that the drag
weakens the westerlies in this region. The transient eddy term is
comparable in magnitude to the explicit drag, and in fact cancels out
more than half of the peak value of the drag; on the flanks of the drag
region, the transient eddy term reverses sign, tending to enhance the
local deceleration. The net effect of the eddies is thus diffusive,
reducing the peak of the effective drag while spreading out the region
which experiences drag.. Linearizing the surface stress, the surface wind
response U’ can then be represented by an equation of the form

kd2U'/dy? + CU' = F (4.2)
where F is the vertically integrated drag force, C is the surface drag
coefficient, and k is a (model-dependent) effective diffusion.
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, Figure 4.4
Anomaly Angular momentum budget for IGCM drag run
This figure gives the changes (Drag run - Control run) in the dominant terms in the
angular momentum budget. Curve marked “transient eddies” gives change in
transient eddy angular momentum flux convergence; Curve marked “Drag” is the
imposed momentum sink. The sum of the drag and the surface stress term
approximately balances the transient eddy term. Units are 10-8 Nt/m.

This observation by no means accounts for all the important
features of the zonmal wind response. In particular, the weak
acceleration to the north of the drag region, the vertical structure of the
response, and especially its sharp peak near the top of the model, have
not yet been explained. Nonetheless, the angular momentum budget
suggests that the nonlinear eddy fluxes are likely to be critical to the
understanding of these features.

5. Tests in a prediction model

In this section we provide an indication of the effect of the drag
parameterization of §3 in the GFDL global spectral model described in
Gordon & Stern (1982). In implementing the scheme, N and U were taken
from an average of the lowest three model layers, the mountain height
was estimated from subgrid orographic variance (based on (1/6)0 data,
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and we set 2*=100km and z=-1. Wave drag and control-model 30-day
forecasts were carried out for four January cases; each case was run
with R30L9 and R42L18 resolution. The systematic error was estimated
by taking the ensemble average of the time-averaged day 20-30 forecast
error over the four cases. This is a rather modest series of
experiments, but given the strength of the signal there is some hope that
useful insights can be obtained by analyzing the results.

Anomaly correlation coefficients for the10-day mean 500mb
height forecasts (averaged over all four cases) in the R30 model are
shown in Figure S.1. It is clear that the wave drag has a substantial
beneficial impact on the accuracy of long-range forecasts. The
improvement persists throughout the time period, and in the wave drag
run the correlation coefficient asymptotes at a time when that of the
control run is still dropping precipitously. This probably reflects the
arrest of the climate drift by the wave drag, about which more will be
said shortly. Insofar as the results presented in Figure 5.1 are
representative, they confirm the beneficial impact of wave drag found at
medium-range and climate time scales in Palmer et al. (1986). The
results also indicate that the miscellaneous differences between our
wave drag scheme and that of Palmer et al. have not destroyed the
favorable effects. As a further comparison, we also include in Figure
5.1 results for a run including both wave drag and /2 o envelope
orography. For the medium range (roughly the first 10 days) the
combination produces a clearly superior forecast; after. that, the
forecast deteriorates precipitously, until the combination becomes far
worse than wave drag alone. To some extent, the degradation comes
from an excessive buildup of planetary wave amplitude in the Pacific,
suggesting that deep wave drag and envelope orography may duplicate the
same physical influence in the forcing of planetary waves.

In Figure 5.2 we show the systematic error of the zonal-mean
zonal wind for the R42L18 model. The control case is shown in Figure
5.2a, while the wave drag case is shown in Figure S5.2b. The error
pattern for the control case is dominated by excessive strength of the
midlatitude westerlies, with the magnitude of the error increasing with
height. The deep wave drag response from the idealized GCM (Figure 4.3)
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Figure S.1

Anomaly correlation coefficients for R30 forecasts.
Correlation coefficients are for 10-day mean fields. Models used are: Control
model (R30E), Wave drag model (R30EM), Wave drag + Envelope orography (R30EM2).
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Figure 5.2a
R42 Control Run Zonal Mean Wind Systematic Error
Contour interval 2m/s. Lightly shaded areas are negative, darkly shaded>2m/s.

has precisely the structure needed to remove this error. Indeed, the
northern hemisphere zonal wind error has practically vanished in the
wave drag run (Figure 5.2b).

However, the systematic error analysis also casts considerable
doubt as to the physical reality of the orographic wave drag effect.
Specifically, the signature of the midlatitude wind error is very similar
in the Northern and Southern hemispheres, even though there is radically
less orography in the latter. It is evident from Figure 5.2 and from the
IGCM results that orographic wave drag has little impact on the Southern
Hemisphere circulation. Thus, the orographic wave drag is very good at
removing in the Northern Hemisphere a component of the error that is
relatively symmetrical between the hemispheres, and which therefore is
unlikely to be due in reality to orographic effects.
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Figure 5.2b
R42 Wave Drag Run Zonal Mean Wind Systematic Error
Plotting conventions as for Figure 5.2a

This result is based on a small number of cases, and at this
point provides no more than a cautionary note. Some confidence is lent
to the results by the fact that Tibaldi (1986) found a similarly
symmetric zonal wind systematic error for a large ensemble of 10-day
forecasts. If the result holds up in the face of further investigation, it
would suggest that the missing drag is due to some internal momentum
transport mechanism other than orographic gravity wave drag, and that
deep orographic wave drag exerts a spurious (though beneficial) effect on
the westerlies aloft which should in reality be attributed to other
physical causes.

B. Conclusions ‘
Elementary considerations regarding the stratified flow of a
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fluid over an obstacle imply that in typical circumstances gravity waves
generated by air flow over rugged terrain will be in the strongly
nonlinear range. One manifestation of this nonlinearity is the presence
of a low level wave breaking zone; the onset of low level breaking is
accompanied by greatly amplified drag, which is typically felt at low
levels. Some momentum flux escapes the low level breaking zone and
may be deposited elsewhere in the atmosphere, though it is not at this
point clear that there can be a secondary breaking level in the lower
stratosphere. The nonlinear phenomena known to occur in the simplest
stratified flow problems pose the following questions for those of us
seeking to parameterize wave drag effects: (1) Should low level
nonlinear drag be parameterized? What are its effects in models? To
what extent does it reproduce envelope orography? (2) How can the
nonlinear amplification of drag associated with wave breaking be
parameterized? What is the dependence of this effect on the height of
the breaking level? (3) Can shear breaking occur? How efficient is it at
removing momentum? How can the shear breaking level be determined?
(4) Is there in reality a secondary breaking level in the lower
stratosphere? ,

Tests with an idealized GCM have shown that momentum flux of
a magnitude consistent with that escaping from the low level breaking
layer (and also consistent with observed fluxes aloft) can exert a
substantial influence on the zonal mean wind, provided that the
momentum is distributed throughout the troposphere and lower
stratosphere. The dominant effect of the drag is to slow down the
westerlies within a broad band centered on the drag region. An
examination of the angular momentum balance in the drag run shows that
the shifts in surface wind are determined primarily by a balance
between surface stress, wave drag, and transient eddy momentum flux;
the transient eddy fluxes are predominantly diffusive in nature.

Besides its effects on the zonal mean wind, localized wave drag
excites a pronounced planetary wave. The wave train resembles that
found in linear theory and its dominant feature is a trough just
downstream of the drag region. Thus, orographic wave drag can act to
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directly enhance planetary wave amplitude, in addition to any effects
mediated by the changes in the zonal mean wind. It has not yet been
established whether this direct forcing effect has a beneficial impact on
full GCM's. ~ ‘

Tests of upper-level residual wave drag in a series of 30-day
forecasts with a full GCM confirm earlier results of beneficial impact of
such drag, particularly with regard to systematic error. A careful
examination of zonal mean zonal wind errors, however, indicates that
wave drag eliminates in the Northern Hemisphere alone a component of
error that is quite symmetric between the hemispheres. These
admittedly tentative results cast some doubt on the reality of orographic
wave drag as the source of the missing drag in the models.

Although incorporation of orographic gravity wave drag has
Jielded remarkable amelioration of the formerly resistant problem of
climate drift in general circulation models, a vast number of
mathematical and physical problems need to be surmounted before it can
be said that the drag represents a real effect. Considering where to go
from where we are now leads us into very deep questions concerning the
fundamental nature of stratified flow over obstacles, and the effect of
internal drag on large scale circulations. Whatever the eventual outcome,
an exciting new chapter has been opened in the study of large scale
effects of mesoscale phenomena.
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