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Summary: A review is presented of the various approaches taken to arrive at
the geometrical shape assumed or considered required to represent mountains
in numerical weather prediction and simulation models. Particular attention is
paid to the difference between the so-called envelope and "silhouette”
mountains. An "edge enhancement” effect of the envelope mountains is briefly
analyzed, and results of calculations of ¥2 standard deviation envelope and
sithouette mountains on the Gaussian grid of a wavenumber 40 spectral model
are presented and compared. A survey is made of the definitions of mountains
presently used in a number of leading operational models. Finally, the linear
response of the simplest second-order difference schemes to forcing by
topography on the Arakawa C and the B/E grid is discussed and compared,

- following a recent study by Dragosavac and Janjic.

* Lecture presented by F. Mesinger



I DEFINITION OF MODEL MOUNTAINS - PROBLEMS AND METHODS

orography (e.g., Simmeons, 1985). Are the means of terrain elevation over grid
squares an appropriate choice, or should some kind of enhancement above these
means be undertaken in order to represent the barrier effect of sub-grid scale
ridges? If it should, is there an appropriate way of achieving this
enhancement? |s there a way to account for the directional dependence of the
sub-grid scale ridges? Should an attempt be made to reduce orographic forcing
at the smallest resolvable scales? In addition to these questions, specific
problems arise in spectral models, related to ripples associated with negative
elevations over oceans, and to spreading of continents as a result of spectral

fitting.

In the early days of primitive equation modeling grid-square area averaging of
the actual terrain elevation was apparently readily accepted as the appropriate
method of deriving model mountains. With the limited availability of data sets
at the time, the actual averaging was the problem receiving most attention.
Thus, the subjectively defined mean values of Berkofsky and Bertoni (1955)
were much appreciated and have seen a lot of use. The situation was similar

with the later higher resolution values of Gates and Nelson (1975).

Areference 1o a "severe .. difficuity .. associated with zones of strong
fopographic gradient” can be found in a paper by Charney (1966), addressed to
what he saw as then numerical weather prediction’s "islands of resistance” - a
tarm very appropriate for the problems discussed also from today’'s vantage
point. Des'cribmg an unrealistic result obtained in calculation of a transport of
hypothetical constant volume balloons across the R‘o}cky Mountains, smoothed
through the averaging process, Charney invites the reader to consider "what

would happen if the Rocky Mountains were an infinitesimally thin knife edge



lying along @ meridian and extending to the top of the atmosphere”. Such a
range, points out Charney, "would act as an absolute barrier to the flow, yet the

smoothing would reduce it to zero height and zero effect!”.

With this idea in mind, a radically new approach in representing mountains was
taken by Egger (1972). His mountains consisted of vertical walls, in a sigma
system model, placed so as to block the flow in a given sigma layer or layers
‘and thus simulate the barrier effect of steep mountains. The lowest sigma
surface, on the other hand, was defined so as to describe the topography of
gentle mountain slopes. With this system, Egger has obtained impressive

results in simulation of Aipine iee cyclogenesis.

Even though remarkably successful, the method of Egger had a number of
obvious imperfections, It could not account for the three-dimensional
gecmetry of steep mountains. In addition, the arbitrariness of the definition of
steep mountains and also of the distinction between steep vs. "gentie”
mountains were features clearly needing attention in case a more universal

application of the method were to be considered.

An attempt to define a method which would in a less arbitrary way correct the
problem of area averaging was made by Mesinger (1977). His mountains were
obtained by a "valley-filling" procedure, in which sub-grid scale elevation
values were compared with the nearest neighboring values. In all cases when it
happened that a central elevation value was less than the three greatermost of
the four surrounding values, it was, in a block procedure, set equal to the
lowest of these three values. These "valley-filled” heights were finally space
averaged to obtain model mountains. Justification for the procedure was the
idea that the higher elevation values surrounding a valley were those

responsible for the mountain blocking effect, and not the elevations of valleys



having a neighboring higher elevation value in the directions of both of the two

coordinate axes.

Following about the same reasoning, but without resorting to the use of actual
sub-grid scale data, Bleck (1977) has simply multiplied his height values by a
factor of 2, and subsequently applied a smoothing procedure. He found a
mountain enhancement procedure necessary to obtain cyclogenesis in the Genoa
lee cyclogenesis cases he was simulating. Indeed, after this rather effective
mountain enhancement, Bleck obtained results substantially more successful

than those reported earlier (Bleck, 1976).

Less encouraging were the resuits of Hills (1979). Increasing also rather
drastically the height of mountains in the UK Meteorological Office S-level
general circulation model, he found some aspects of the mean flow improved,
but a reduced transient behavior was an undesireable feature of his
experiments. However, it is now known that a much too fow level of transient
activity observed in the control version of the model was due to reasons other
than the representation of mountains, so that the discouraging result would
have been avoided had the experiments been done using a model with a higher
level of transient activity as indeed has been done later by Wallace et al.
(1983).

Following-up on the method of Mesinger (1977) but not satisfied with the
effect achieved, Mesinger and Strickler (1982) have in addition to the valley
filling added to their terrain heights one half of the standard deviation of the
original values. This has raised the maximum elevation of their Alps from
2107 to 2417 m, a much more reasonable value from the point of view of the
visual inspection of maps of Alpine topography. They point out that the

procedure "would have left the elevation of a flat plateau unchanged, but would



raise the elevation of a ragged mountain chain, the more so the more rugged the
mountain chain is”. This exira enhancement Mesinger and Strickler have
performed for one of their two lee cyclogenesis cases in which mountains were
found necessary for cyclogenesis. Of these two cases, that with the extra

enhancement was clearly one in which they have been more successful.

Independently, and following a suggestion of J.-F. Geleyn, Wallace et al. (1983)
have enhanced the grid-square mean terrain values by adding two standard
deviations of the sub-grid scale orography. Their "sub-grid scale” orographic
values, as well as those of very many authors since, were mean crographic
heights for 10" x 10" grid squares contained in a data set made available by the
U.S. Navy. Wallace et al have aiso added a contribution meant to account for
the blocking effect of still smaller scale features, again using the information
contained in the U.S. Navy data set. The multipticative constant of the standard
deviation, 2 in their work, would yield a model orography equal to the maximum
sub-grid scale values in the case that the sub-grid scale orography has a
2-dimensionally sinusoidal shape. Comprehensive experimentation was
performed to assess the effect of the resulting "envelope” orography: a ciear

improvement in forecast accuracy beyond day 4 was established, as well as a

reduction in time-mean error near the end of the forecast range. Forecast
improvement was confirmed by further experimentation for another period by
Tibaldi (1986), and for that period the rate of growth of systematic error was

substantially reduced.

Later experiments done mostly with spectral 763 and subsequently 7106
resolution led to the adoption of less enhanced "2 sigma®, and "1 sigma”
envelope orographies for these two consecutive versions of ECIMWF operational

models. For a comprehensive review of various related experimentai result
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the reader is referred to a report by Jarraud et ai (1986b), as well as to papers



by ECMWF authors in the present volumes. An interesting result of these
experiments is that some detrimental effects identified at lower resoiution
were found not to be present at the 7106 resolution (Simmons, 1985; Jarraud
et al., 1986D).

As opposed to the envelope approach which, based on a sinusoidal idealization
of the sub-grid scale topography, obviously involves only a very modest effort
of taking advantage of the available information on its actual shape, a number
of authors did continue looking at ways of arriving at grid-square heights
which would to a greater degree and perhaps more appropriately be based on
that information. One of such attempts is that of Radinovic (1985). He has
used a "valley-filling" approach similar to the method of Mesinger (1977), but
had the valleys filled according to independent one-dimensional height
compariéons along each of the two axes. Thus, he obtains a more intensive
orographic enhancement than that which would have resulted from a

two-dimensional comparison.

Another such attempt is that of Pfaendtner gt al. (1985). They introduce what

they call "signiﬁéant height” orography, designed "to emphasize the effect on

the atmospheric flow of the tallest peaks in regions of rugged terrain”. This™

Pfaendtner et al. do by averaging only the highest one third of their sub-grid
scale values. In this way, as they have put it, "the deep vélleys and canyons of
the Andes Mountains, for example, are not allowed to over exaggerate the
effective height of that range as they do (through their substantial contribution
to the standard deviation of height) in the Wallace et al. scheme”. The cvoncept,
Pfaendtner et al. point out, borrows from the approach used by oceanographers

to determine "significant wave heights”.

The approach of this group following perhaps the most obvious physical concept



is that of "silhouette” mountains (Mintz, personal communication; Mesinger,
1985). As silhouelte mountains, the average heignht of the silhouette which
sub-grid scale terrain presents to the horizontal airflow 15 calculated.

Average height of the silhouette can of course be calculated independently for
the projections of the grid-square terrain onto the yz and onto the xz plane, and
the two values obtained can subsequently be averaged; or, if this is felt
justified by the difference schemes of the model, a more complex averaging
scheme can be used (e.qg., Mesinger et al., 1987). Silhouette mountains have
peen used in an analysis model by Bergporsson {WMO,1983), and they have been
implemented in an operational spectral model at the U.S. National

Meteorological Center (NMC; for test results see Caplan, 1985).

As referred here as,well as in other papers in these volumes, many tests have
been made on the impact of various enhanced orographies as compared to
control results obtained using (grid-square) mean orography. [n experiments
with no gravity wave drag parameterization, these tests have generally shown
that a substantial reduction of the systematic model errors can be achieved by
the use of enhanced orographies. Results, of course, are resolution dependent,
since more and more of the actual orography is resolved as the resolution is
increased. On the other hand, tests of the impact of the differences among
various enhanced orographies may not have been so numerous, and, because of
reduced sensitivity, are more difficult to interpret. The situation is further
complicated by the fact that the reduction in systematic errors that can be
achieved by the parameterization of gravity wave drag, without an enhancement
of orography, is simiiar to that achieved by various enhanced orographies.

Moreover, as noted by Jarraud et al (1986b),a third physical process, sub-grid

(_ﬂ

scale stress due to mountains, acts alse largely in the same direction as it
pr‘imarﬂy reduces overall westerly flow in middle latitudes. Thus, a danger

exists (e.g., Wallac

H
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3: Simmons, 1985), that by optimizing resuits



for longer forecast ranges and climate simuia'tions, orographic representation
may be tuned to compensate for deficiences (or absence) of another of these
mechanisms. In addition to sophisticated experimentation, therefore, it seems
advisable to seek guidance also from various physical as well as simple model

considerations.

Regarding the definition of model mountains, an interesting attempt from that
point of view is that of Chouinard et al. (1986). In one set of their
experiments, the envelope used for orographic enhancement was based‘on the
orographic variance in those sub-grid scales only for which they have
considered the effective Rossby number likely to be less than unity. The
remainder of the sub-grid scale variance Chouinard et al. have used to
construct gravity wave launching heights needed by the gravity wave drag

parameterization scheme.

Of course, adequate treatment of the blocking effect of sub-grid scale
orography should also include anisotropic influences due to dominant
orientation of mountain ranges in each grid-square (e.g., Sadourny, 1985).

While, to the authors' knowledge, no attempt of this kind has as yet been made,

it would seem that the construction of an ad-hoc technigque accounting for

these influences should not cause great probiems.

As to the reduction of orographic forcing at the smallest resolvable scales,
perhaps most of the authors as a final step did apply to their terrain fields
smoothing procedure of one kind or another (e.g., regarding grid point modeis,
Wallace et al., 1983, p. 698; Pfaendtner et al, 1985, p. 333). it appears
generally believed that,because of the inadequate performance of difference
schemes at the smallest scales,orographic forcing at these scales is likely to

do more harm than good. The understanding of this problem is, however, clearly



inadequate; appticability of any experimental results should of course pe
considered limited to specific schemes used by the model. One may also note
that the smoothing practice i3 not consistent with ample forcing being at the
same time applied at the smallest scales through various physical
parameterization schemes. in tnis connection an effort of Mesinger (1985; see
also Mesinger et al., 1987) is perhaps worth mentioning: for reasons other than
those ]ust given it was felt desirable to have terrain elevations the same for
groups of four neighboring grid points. The four-point elevation values have
however been derived using 2 "silhouette” averaging procedure, and thus have
perhaps not much affected the barrier effect of the originai single-point values.
In this way, as a byproduct, orographic forcing has been removed in the "4 to 2
grid intervals” range, while at the same time hopefully minimizing undesirable
effects of smoothing. With ever increasing availability of computing power,

perhaps one should-expect more efforts of this type in the future.

Specific problems related to the representation of mountains and/or possible
need for some kind of a smoothing step arise in spectral modeis, in connection
with orographic "ripples” over oceans, and spreading of the orography. The
latter is associated with raising of coastal regions in the vicinity of high
mountains, which is undesirable in view of increased local discrepancies
between model terrain heights and elevations of surface observations (Simmons
and Jarraud, 1984). Production of enhanced orographies for spectral models
typicaly includes techniques aimed at reducing these problems and/or their
effects; Gaussian filtering, repeated setting of negative heights to zero
followed by spectral fitting, or adding of the envelope incrernent over land
points only (Simmons and Jarraud, 1984; Jarraud et al., 1986a, 1986b; Chouinard
et al, 1986).

Finally, difficulties arise in defining orography for fine mesh modeis which are



Lo pe run using initial/boundary conditions derived from coarser mesh models.
Obviously, pragmatic approaches have to be used to avoid/minimize the
mismatch hetween the two orographies. Some will be briefly mentioned in

Section 3 of our lecture.

2. ENVELOPE V5. SILHOUETTE MOUNTAINS

With the beneficial impact of an enhanced orography perhaps established,
and/or expected on the basis of theoretical and idealized modeling studies (e.g.,
Pierrehumbert, 1984; Pierrehumbert and. Wyman, 1985) the questions of why
one should make one or another choice of the enhancement technique and if
and/or how much this choice matters come to the forefront. A comparison of
mountains resulting from various techniques is therefore of interest. We shall
consider from that point of view the difference between envelope and

silhouette mountains.

Some insight can be gained from elementary considerations, to which we are
led by a remark of Manabe (personal communication) reporting about his
envelope Tibet apparently having awkward fence-like additions along its edges.
This, of course, could be a result of the large standard deviation at the edges of
a plateau-like mountain. In a milder form, the effect has been noted also by -
Chouinard et al. (1986, p. 98) who in comparing their (2 sigma) envelope against
"standard" mountains point out that the envelope enhancenhent around plateaus

generally "follows the edges where the gradient is steepest”.

The “minimum” elementary mountain which can be used to demonstra‘te the
problem is a one-dimensional two-grid-interval mountain, as shown'm the
upper panel of Fig. 1. The case illustrated by the figure is that of the edge of
the "actual mountain” being located at 2 grid point, that is, in the middie of a

grid-mesh. In that situation, ¥ 2 sigma envelope mountain has the shape as

10



shown in the middie panel of the Tigure; ooviousiv an undesirable result, in
view of the fence-like extensions not being justified by any sub-grid scale
detail of the actual mountain. In addition, both the envelope and the (most
straighiforward) sithouette mountain, shown in the lower panei, suffer from 2
broadening probierm. In coastal regions, and in grid point models, this can of
course he easily avoided by defining model points to be sea points with zero
elevation in case more than a half of the grid-square is occupied by sea (e.q,,
Mesinger et al., 1987). In spectral models, as mentioned already, adding the

enhancement increment over land points only was found helpful (Simmons and

Jarraud, 1984).

Actual terrain

V2 sigma
envelope

Silhouette

Fig. 1. Anexample of the "v'2 sigma envelope” and the "sithouetie” mountain.
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The considered “edge enhancement” of a vertical edge of a mountain, of course,
depends on the location of the edge within the grid-mesh, and disappears when
the edge is located exactly at the boundary of the grid-mesh. Furthermeore, it is
dependent on the multiplicative constant of the envelope. Thus, one might
wonder if it is possible to optimize the multiplicative constant so that for a
step-like mountain the envelope does not surpase the elevation of the step for
any location of the edge within the grid-mesh. A simple analysis shows that
this is, however, not possible, as no matter how small the multiplicative
constant is, the envelope edge will surpass the elevation of the step when the

edge is located sufficiently close to the boundary of the grid-mesh.

Of more interest of course are differences and possible problems in the
representation of existing mountains. Calculations we have recently made of
the (+2 sigma) envvelope and the silhouette mountains, on the same global grid,
may serve to illustrate the situation. The mentioned 10'x 10" U.3. Navy data
were used. Calculations have been performed in the course of preparations of
an enhanced terrain field for the NMC R40 medium-range operational model
(Gerrity, 1985). They have been done on the Gaussian Tongitude-latitude grid of

the model, with 128 points and 102 points in the east-west and the

north-south directions, respectively. Calculations of the two fields inciuded
the rule, mentioned already, of defining grid points to be sea points with zero

elevation if more than half of the area of the grid-square was covered by sea.

In order to check on the possible appearance of features reminiscent of the
preceding expample, as well as to compare the enhancements resulting from
the two technigues, we have had a look at profiles obtained across major
mountain ranges. The maximum difference we have noticed between the two
terrains occurred at an east-west profile across Andes. This profile, at the

latitude of 13.2°S, is shown in the upper panel of Fig. 2. The profile shown, at
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Fig. 2. Profiles of the v 2 sigma envelope and the sithouette terrain across the the Andes, at 13.2°S
(upper panel) and at 30.0°S ( lower panel), calculated on a Gaussian 128 x 102 point grid. The
numbers an the abscissa are grid iine indices, increasing eastward from Greenwich; the
numbers on the ordinate show elevation in meters.
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the same time, is the east-west profile of both of the terrains with the
greatest elevation value of the continental point situated next to sea level. At
that first continental point the envelope terrain is 1287 m higher than the
silhouette terrain, a feature clearly reminiscent of the edge enhancement

problem. At other points of this profile, the two terrains are seen not to be
that much different.

The situation is similar at the profile of the next-to-greatest sea level to first
continental point elevation difference across Andes, at 30.0°S. At that profile,
shown in the lower panel of Fig. 2, the envelope terrain is at the first
continental point 1111 m higher than the silhouette terrain. Since the second
continental point is this time substantially lower than the first, this
difference is now at the same time the difference between the maximum

heights of the two profiles.

Finally, in Fig. 3 we show north-south profiles across Himalayas. The profiles
shown are those at the point of maximum elevation, which occurred at the same
grid point in the two terrains. Some edge enhancement is again seen, but not to
the extent it was present in the profiles of the preceding figure. The

difference in the elevation of the two peaks shown amounts to 434 m.

Also at other major mountain ranges peaks of the ¥2 sigma envelope terrain
were found to be generally higher than those of the silhouette terrain.
Maximum elevations of some of the major mountain ranges are shown in

Table 1. Of the ranges entered, the Rocky Mountains are the only range having a

silhouette peak higher than the ¥2 sigma envelope peak.

For a two-dimensional view of the two terrains we first show inFig. 4 our v 2

sigma envelope and the sithouette Andes. The accuracy of the values shown is
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Fig. 3. Profiles of the v 2 sigma envelope and the silhoustte terrain across the Himalayas, at 84.4°E
longitude, calculated on a Gaussian 128 x 102 point grid. The numbers on abscissa are grid line
indices, increasing northward from the South Pole; the numbers on the ordinate show elevation
in meters.

Table 1. Maximum elevation of some of the major mountain ranges of the v'2 sigma envelope and the
silhouette terrain, calculated on a Gaussian 128 x102 point grid.

v 2 sigma envelope Silhouette
Himalayas 6620 m 6186 m
Andes 5268 m 4847 m
Antarctic 4142 m 4057.m
Rocky Mountains 3409 m 3445 m
Greenland 3209 m e m
Alps 2747 m 2600 m

to some extent degraded by the space interpolation to a 2.5x2.5 deg

longitudexlatitude grid done within the contouring routine. The associated
smoothing effect should of course be expected to affect the smallest scales

of the two terrains the most.
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Fig. 4. v2 sigma envelope (left hand panel) and the silhouette { right hand panel) Andes, calculated on
a Gaussian 128 x102 point grid. Contour interval is SO0 m, and numbers printed show
elevation in meters.
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The differences between the two terrains being on a relatively small space
scale, one may not be surprised to find the maps rather similar. Nevertheless,
a greater steepness of the envelope Andes, shown in the left hand panel, can be
noticed. For example, seven 500 m interval contours packed closely together
can be seen crossing 30°5 latitude on the envelope map, and only five of them
in about the same position on the silhouette map. The maximum elevations of
the two Andes have not been reduced much by the interpolation within the
contouring routine compared to the original values seen in Table 1; Jess than
100 m in both cases. Accordingly, the fairly large difference between the
perhaps effective barrier height of the two Andes, presumably resulting from
an unrealistic enhancement of the envelope version, has remained visible in the
maps. This tendency for an exaggerated height of the (¥2 sigma) envelope
Andes may have played a role in the mixed results obtained for the Southern
Hemisphere in testing the sensitivity to envelope orography (e.g., Simmons,
1985; Jarraud et al., 1986b). |

The edge enhancement of the envelope Himalayas, on the other hand, has been
very much removed by the interpolation routine. Silhouette Himalayas,
predictably, did not change much. As a result, the two Himalayas, Fig. 5, are

remarkably similar to each other.

An additional matter of interest is the effect of smoothing that may be |
performed on terrain fields such as those considered here, since, as mentioned
already, frequently a smoothing operation is indeed performed as a final step in
preparation of model terrain. Specifically, a smoothing operation in the form
of spectal fitting of the Gaussian grid data is being done as the last step in
preparations of terrain fields for spectral models (e.g., Jarraud et al., 1986a,
1986b; Chouinard et al., 1986) and has also been done to obtain the R40 terrain

using each of the two fields considered here. The fitting results in reduction
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of the maximum elevations of mountain ranges, and also in the appearance of the
already mentioned ocean ripples (e.g.,, Jarraud and Baede, 1985, p. 23). As
reflected on maps of the type shown in Figs. 4 and 5, the R40 fitting has
resulted in the reduction of the maximum elevations of our silhouette Andes and
Rockies by 122 and by 177 m, respectively; and in ripples with the maximum
depth west of Andes, of 351 m.

3. MOUNTAINS OF SOME OPERATIONAL MODELS

For an overview of present preferences, we shall in this section list methods

that have been used to produce terrain fields of a number of operational models.
In our 1ist we shall include centers participating in the WMO/CAS Data Study

and Intercomparison Project (e.g., Lange and Tokkola, 1986).

At the French Meteorological Service, two models are run operationally,
“Emeraude”, a spectral hemispheric T79 model, and "Peridot”, a nested limited
area model. Mean orography is used for Emeraude, and a ¥'2 sigma envelope for
Peridot. The reasons for not using an enhanced orography for Emeraude are (i)
that forecasts are done only up to 96 h, and (ii) a desire to minimize the number
of Peridot grid points underneath the Emeraude ground surface, for better

nesting of the Peridot model (J.-F. Geleyn, personal communication).

At the Weather Service of the Federal Republic of Germany, a system is used
allowing for a different height of mountains at velocity points, to be used for
blocking of the flow, and at mass points, to be used for surface pressure and
other surface variables. Envelope orography (1 sigma) is used at velocity

points, and a mean orography at surface pressure points (Edeimann, 1985).

At the Japan Meteorological Agency, a spectral hemispheric T42 model is run

operationally, with standard orography, modified to smooth small scale
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features. However, it was found that (1 sigma) envelope orography "improves
the daily forecasts" and that "it remarkably reduces the systematic forecast
errors of zonal mean and planetary wave fields” (Iwasaki and Sumi, 1986). In
view of correspondence between patterns of errors and improvements achieved,
Iwasaki and Sumi conclude, furthermore, that "we may expect that the larger

enhancement of orography would result in further improvement”.

At the UK. Meteorological Office, a global and a limited area fine mesh model.
are run operationally. For the global model, a mean orography is used. Limited
area orography used at the beginning of the fine mesh assimilation cycle is
derived by a bilinear interbolation of the global model orography. Subsequently,
during the first 3 h of the assimilation cycle, the orography at selected grid
points is gradually adjusted (grown) to a fine mesh grid-square value (Davies,

personal communication).

At the U.S. National Meteorological Center, as already mentioned, in the spectral
medium-range forecasting model a version of silhouette terrain is used. The
terrain used operationally in the regional (grid point) "Nested Grid Model” (Hoke
et al., 1985) is derived from aVerage terrain fields, converted to spectral form

and reevaluated on the grids of the model.

Finally, at ECMWF, since the introduction of the T106 model on 1 May 1985, a
one standard deviation envelope orography is used (Lange and Tokkola, 1986;
papers by ECMWF authors in present volumes). Note that prior to that, a V2

standard deviation envelope was used for the T63 model.

4 RESPONSE OF VARIOUS GRIDS TO FORCING BY OROGRAPHY
Very recently (Dragosavac and Janji¢, 1986) a possibility has been brought up

that same topographic forcing on various horizontal grids may not result in the
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same response. Accordingly, the choice of a geometrical shape appropriate for
a given terrain may not be independent of the choice of the horizontal

staggering of the variables of the model.

Dragosavac and Janjic¢ have considered the linearized shallow water equations

Btu + UByu + VByu - fv + gByh = -g,hy

Here hy is height of the topography, and other symbols have their customary
meaning. They have allowed for topography of an arbitrary shape, assuming

ht = ﬁe[ﬁtei(kx‘tlg)]. (2)

Dragosavac and Janji¢ have sought wave solutions of (1) in the usual form

u u(t)
v| = Re| | %) |eitkx*1y)|
h n(t)

In addition to three solutions of the homogeneous system, they have obtained a

stationary, particular solution, forced by topography,

(ku+ 1V)kg - ifgl o
KU+ V)2 + 20 gHk2e12) T

U=

~ (kU+ V) 1g + ifgk ~
V= ht, . (3)
~(KU+ V)2 + 12 + gH(K2+12)

- gH(k2+12) ~

n = - h .
=(kU+1V)? + 12 + gH(k2+12)
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The first-two of these equations, (3); and (3),, can be rewritten in terms of the

vorticity and divergence amplitudes; one obtains

A - fg(k2+ 12) ~
Z = ht,
(U IVIZ + 12 + gH(KZ+12)
(4)
~ i (kU+ lV)g(k2+ 12)
D= Nt .

~(KU+ V)2 + 2 + gH(k2+12)

As has been done for a number of probiems (see, for example, the review paper
by Janji¢ and Mesinger, 1984), one can now repeat this excercise using the
simplest second ‘order schemes on each of the four (Arakawa) horizontal grids,
A, B/E, C and D. This has been done by Dragosavac and Janjic; they have then

compared the amplitudes of the resulting mountain-induced particular solution

to those of the solution in the continuous case, (3)z and (4).

Results which Dragosavac and Janji¢ have obtained for the ratios of the (total)
height amplitude of the two solutions, (h+ ﬁt)A/(ﬁ + ﬁt), (h + ﬁt)B/(ﬁ + ﬁt), -
for various grids, are shown in Fig. 6. For the diagrams displayed Dragosavac
and Janji¢ have used the values f =10"4s7! d=200km,U=10ms™!,V=0and
H=10%m. Here d is the shortest distance between points in which the same
variable is carried on each of the grids. Note that results are in each case
shown for the largest scales only, those covering wave lengths of 8 grid
distances and more. The most striking feature of the figure is perhaps the
general magnitude of the error. Since there are convinci'ng reasons against use
of the non-staggered (A) grid, and the semi-staggered D grid (e.g.,, Janji¢ and
Mesinger, 1984), of most interest are the results for grids B and C. For these
grids within the considered wavenumber range height amplitude errors of up to

and more than 20 % can be seen.
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Fig. 6. Ratios of the total { shallow water depth plus terrain) height amplitude of the finite-difference
and the continuous solution, for various horizontal grids. See text for further detail.

Ratios of the vorticity amplitudes, for grids C and D, are shown in the upper
panel of Fig. 7 Differences between the ratios for these two grids are 100
small to plof. For grids A and B, the ratios in the considered wavenumber range

are very ciose to unity, and are not shown.

Finally, raticos of the divergence amplitudes are shown in the lower panel of the
figure. Differences between the divergence ratios for the four grids are too
amati 1o piot.
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Fig. 7. Ratios of the vorticity ampliiudes of the finite-difference and the continuous solution, for grids
Cand D, upper panel. Ratios of the divergence amplitudes of the finite-difference and the
continuous solution, for any of the four grids, lower panel. See text for further detail.

The results summarized, obviously, can be considered simply as information on
effects of a chosen horizontal grid on stationary solutions induced by given

mountains.
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An additional possibility, one that has typically been the main objective of
analyses of this type in the case of other problems, is to use these results in
forming judgment on the relative advantages of various grids for atmospheric
modeling. From this point of view, and considering for reasons already
mentioned the B and C grids only, the study of Dragosavac and Janji¢ would
appear to favor the B grid. As pointed out, the divergence amplitude error is
about the same on all of the grids. The height amplitude error on B and on the C
grid are of similar magnitude, with the wavenumber region of accurate
solutions (say, of errors less than 2 or less than 4 %) on B grid being somewhat
greater. Finally, a rather large vorticity amplitude error appears on the C grid,
while at the same time a very accurate solution for vorticity is obtained on the
B grid.

A point of some interest may be that of the B grid amplitudes being each
affected in a different way - one being magnified, one affected very little, and
one being reduced. On the C grid, on the other hand, all of the amplitudes are
seen to be reduced, to a degree which is not too different among the tnree

amplitudes.

3. CONCLUDING COMMENTS

While the perhaps resolution dependent need (Dell'Osso, 1984)for some kind of
mountain enhancement compared to grid-square elevation means would appear
to have been clearly established, and is also to be expected on the basis of
physical reasoning, exactly what kind of enhancement is appropriate and to
what extent the choice matters are unsettled questions. In this connection, our
discussion and comparison of the ¥ 2 standard deviation envelope vs. silhouette
mountains has emphasized a number of points. One is the undesirable edge
enhancement effect of the envelope technique for steep mountain sides. As

another, a generally highly similar intensity of enhancement resulting from the
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Y2 sigma envelope and the silhouette technique could be stressed.

However, regarding grid point models, according to the study of Dragosavac and
Janjic the effect of given model mountains should not be independent of the
choice of horizontal grid. To the extent the linear framework of their model is
applicable to atmospheric flows of interest, this may be suggestive of an
approach in constructing model mountains which would take into account
properties of the grid as well as of the difference schemes of the model. For
example, for a given choice of the horizontal grid and schemes of the model,
one could try to modify amplitudes of wavenumber components of actual
mountains so as to achieve in some sense an optimum response of the

finite-difference solution to forcing by model orography.
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