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1. Introduction.

The general formalism of adjoint equations is presented in
the article by Talagrand (this volume), which will be referred to as T85 in
the following. The present article describes two series of data assimilation
numerical experiments performed with the adjoint equations. The two series
of experiments used models based respectively on the vorticity equation and
on the shallow water equations. The data used were radiosonde observations

of wind and geopotential.

' Following the approach described in section 3 of T85, the
adjoint equations are utilized in order to determine the gradient, with
respect to the initial conditions, of a scalar function measuring the
"distance" between a model solution and the available observations. The
gradient thus computed is then introduced in a descent algorithm in order

to determine the initial conditions which minimize the distance function.
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2, The vorticity equation and its adjoint,

2.1 The continuous case

The vorticity equaticn at the surface of a rotating

sphere reads ]

-1 .
vl J(g+E£,A ") (2.1)

where 7 and f are the vorticitiés of the relative motion and basic rotation
respectively, t is time and A—1 the inverse two-dimensional laplacian
operator. J is the jacobian operator : J(a,b) = VaxVb =Vx(aVb) where V
denotes the first-order differential operator along the surface of the
sphere.

For a given solution 7 of (2.1), the tangent linear
equation is

%%? = JGsc,a"lr) 4+ J(o+E,a"lsr) (2.2)

The determination of the adjoint of (2.2) requires the
prior definition of an inner product on the space of all possible vorticity
fields, i.e. the space of all regular functions on the sphere with mean
equal to 0. The total kinetic energy K corresponding to a given vorticity
field ¢z is equal to

K =1 f(wlz.va~lgyar (2.5)
L

1
2
where the dot denotes scalar product of ordinary vectors in physical space,

and I the surface of the sphere. Expression (2.3) defines a norm and it

leads to the natural inner product of two vorticity fields ¢ and
1
<¢ |z > = [(va"lg «va~lg Harx (2.4a)
1 2 ¥ 1 2
which by using Green's formula can be written as
<c |z > = -Jc (algydr = -f(aTlg) dr (2.4b)
12 5 1 2 5 12

It immediately results that the laplacian A and its

inverse A ! are self adjoint for this inner product, i.e. for any ¢ and g
1 2

<Az |z o> <¢ |ag > (2.5a)
1 2 1 2

A"l |z > <g |a7lg > (2.5b)
1 2 1 2
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The jacobian J verifies the property that for any three
scalar fields a,b,c
[3(a,b)e drx = [ aJ(b,c)ds (2.6)
z z

as is seen from the following equalities
[ 3(a,b)e dz = [ (Vx(aWwb)e)dr = [ a(VbxVe)dr = [ al(b,c)df (2.7)
I X £ X

Three scalar fields a, 6z, 8z' being given, use of
(2.4b) and (2.6) yields

<J(8g,a) |8z'> = - [ J(6g,0)A"tsgtds
z

- [ 8zJ(a,a" 18z )dx
5

- [ scaT { AT (a,8718z") Hdx

z
<8z |AT(a,A71sz")>
which shows that for given o, the adjoint of the linear operator _
8z » J(8¢,n) 1is the operator &z' - AJ(o,A”18C"). Using the fact that A™!
is self adjoint (2,5b) and the result that the adjoint of the product

I

of two operators is the product of their adjoints taken in reverse order,

we obtain for the adjoint equation of (2.2)

»*
agtc = AJ(aTYe*z,Alr)  + J(g+£,0Ti6%c)  (2.8)
2,2 The discrete case

The experiments whose results will be presented below were
performed with a pseudo-spectral model of the vorticity equation (2.1),
built on the spherical harmonics Y: » with triangular truncation T at
degree N. A scalar field ¥ is then defined by its components W: along the
spherical harmonics. The spherical harmonics expression for the laplacian

operator n(n+tl). m
- ka Wn where a is the radius of the sphere

m
@Yy

leads to the following discretized expression for the inner product (2.4)
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It is immediate that the operators A and A7! remain self-
adjoint with that expression for the inner product. As for the jacobian
operator, the spatial derivatives which appear in its expression are
computed in the model spectral space, and are therefore exact. Following
the standard procedure for pseudo-spectral models (Jarraud, 1984), the
quadratic terms are computed in physical spacé on a grid with enough
resolution to ensure that the harmonics resolved in spectral space are free
of aliasing errors. It is shown in Annex 1 that under these conditions
the model adjoint equation is still given by (2.8) provided the continuous

jacobian is replaced by its aliasing error free discretized form.

The time discretization of the model uses the leapfrog
differentiating scheme, initialized with an Euler step. The corresponding
adjoint turms out to be also a leapfrog integration of the adjoint equation
as can be seen by taking the transpose of the matrix notation for the

leapfrog scheme.

3. Numerical results with the vorticity equation.

The numerical model is truncated at degree N = 21. A
vorticity field is then completely described by 483 independant real
parameters (taking into account the fact that the m = n = 0 component
is necessarily zero and the m = O components are real), among which 252
parameters are components along symmetric harmonics (n - m even) and 231
are components along the antisymmetric harmonics (n-m odd). However, all
experiments were performed with antisymmetric vorticity fields, so that

the effective number of parameters of our problem is 231.

The integraticn of the adjoint equation (2.8) required
about twice as much computing time as the integration of the direct
equation (2.1). This doubling is basically due to the fact that differen-

tiation has produced two jacobians in (2.8).
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3.1 Numerical validation of the adjoint model and.the

descent process.

The initial condition ¢ = aY? + bY: , which defines
a Haurwitz wave with wave number m, has been used for producing a complete
space-time history cob(t) of the vorticity field over a 12 hour time
interval (tO’tl)' The distance~-function to be minimized has been
defined by

F©) = 1 <ro - o, o) - (©) >

where the summation extends over all time steps. The corresponding
forcing term (see eq. (3.1D, T85) which has to be added to the homogeneous

adjoint equation (2.8) is readily seen to be equal to
- 2(g(t) -
(c(t) - ¢ . () ).

The "observation" Cob(t) having been produced by the model itself, the
minimizing z(t) is of course Cob(t) itself, and the corresponding value
of & is 0. Starting the minimization from an atmosphere at rest, and using
the conjugate gradient algorithm for the descent process, the value of i}
decreased by about two orders of magnitude at each descent step, and the

-1

vorticity field ¢ ) was reconstructed to within an accuracy of 10—9 s

ob{to
after five descent steps. The corresponding difference on the height field

is of the order of a few centimetres.

3.2 Experiments with radiosonde data.

The basic correctness of the algorithm having
been established as just described, a second series of experiments was
performed on real observations. These were radiosondes dbservations of
height and wind at the level 500 mb over the northern hemisphere and for
the 24 hour period starting at 26 April 1984 0.00Z. The geographical
dietribution of the observations is shown on figure 1. A total of Nh = 1653
individual observations of height; Nv=1913 individual observations of each
of the twb components of the wind was used. These observations were of
course mostly concentrated at the synoptic hours. The 500mb height for
26 april 1984 0.00Z as produced by the operational analysis of

Météorologie Nationale, Paris is shown on figure 2.
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Figure l. Distribution of radiosondes observations

26 April 1984
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Figure 2. 500mb geopotential field of

Operational analysis, Paris.
26 April 1984 0.007
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Figure 3. Same as figure 2 for

Variational analysis

26 April 1984 0.00zZ
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Figure 4. Differences between operational analysis

and variational analysis. 26 April 1984 0.00Z
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The functional to be minimized has been defined by (3.1)
3 = a3¢+.3v where the contributidn&?xrof the wind observations (ui,vi) has

been taken as

y A R A (3.2)

where ﬁi and Gi are the values determined, as described in Annex 2, by

solving the corresponding Poisson equation from the vorticity field z.

The contributionﬂ?@ of the Nh height observations ¢i has been taken as

Nh 1 Nh 2

(IR T TR

(3.23)
i

where the values éi of height at observation locations are obtained from g

through a complete balance equation as described in Annex 2. The average

Nh

T ( . - ¢. ) has been introduced in order to make the cost function

i=1 J ]

independant of the mean height which has to be arbitrarily choosen in the

solution of the balance equation.

The integration of the inhomogeneous adjoint equation required
at each observation time the explicit determination of the gradient of
95 and 7& with respect to the model variable, i.e. the spectral components
of the vorticity field ¢. The mappings ¢ > (ﬁi R Gi) and ¢ ~ $i are not
analytically simple and the direct explicit determination of their gradients
may not be easy. Accordingly, the adjoint of these mappings have been used,
following again the general principle described in section 2 of T85, in
order to determine these three gradients. The detailsof the corresponding
computations are described in Annex 3.

A number of experiments have been performed, in which the
spatial and temporal distribution of observations retained in the distance
function‘g has been varied, togetherwith a number of parameters, in
particular the coefficient o of (3.1).Figure 3 shows the height field
produced by a minimization performed with all available observations
and the value o = .03 m %s?. The minimization was started with an atmosphere
at rest ( £ = 0 ) and the descent process used a quasi-Newton algorithm.

Comparison of figure 2 and 3 shows that all major structures
of the flow are reconstructed by the minimization process. It is particu-
larly remarkable that the Aleutian depression is reconstructed. As can
be seen from figure 1 where the edge of the depression has been delineated,
no observations were available in the depression itself. Since that

depression was no present in the state from which the assimilation was



started, it is necessarily through the time continuity implied by the
evolution equation (2.1) and through the non-linear balance equation that
the assimilation process has been able to '"deduce" that a depression had to
exist in the Aleutian area.

Figure 4 shows the difference field between figure 3 and 2.
This difference field is not easy to interpret, especially because the
operational analysis used observations performed at the analysis time or
before it,while the variational analysis used observations performed at the
analysis time and after it. The large differences over China, the Caspian
Sea and the Atlantic Ocean are probably due to the differences between
the two sets of observation. The differences over the Pacific Ocean are
due to the lack of radiosonde reports there.

The root mean square difference corresponding to the final
minimum of'?’was 28.5 m and 7.9 ms—1 per individual observation of height

1 at the start of

and wind vector respectively (against 185 m and 17.6 ms™
the process). Theses values are two to three times as large as usual
estimates of analysis error in four-dimensional assimilation procedures
performed with operational forecasting models. Taking into account the
simplicity of the evolution equation (2.1), the low truncation retained,

and the fact that observations at only one level were used, they seem quite

acceptable.

Study of the variation of the fields in the course of the
minimization process shows that the first step of the process reconstructs
the latitudinal gradient of geopotential. In the following ten steps,Or so,
structures are progressively built up over data rich’areas and their
vicinity,with no associated modification of the fields elsewhere. From that
time, continuation of the minimization process modifies the fields only over
data poor areas with no further significant decrease of the distance function.
The modifications then introduced over data poor areas are only noise with
no meteorological significance, as can be seen from figure 5 which shows the
difference of the vorticity fields (which is much more noisy than geopoten-
tial fields because of the two differentiations) between the operational and
variational analyses after twenty steps of descent process. Figure 5 shows
noise over data poor areas (as intheAtlantic and Pacific Oceans and the Sahara)
mostly concentrated in scales which turn out to be the smallest scales

resolved by the model.
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Figure 5. Differences between the vorticity fields produced

by the operational and the variational analyses

( fig 2 and 3 respectively)
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Figure 6. Same as fig.5, with a smoothing term in the

functional of the variational analysis.
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Figure 7. Geopotential field produced by a variational
analysis without observations on the western

hemisphere.
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One possibility for avoiding the occurence of this noise could
be to interrupt the minimization process before the noise appears. Another
possibility is to add to the distance function a term measuring the amount
of small scale noise in the field ( see Wahba 1982). The minimization will
then tend to produce fields in which the amount of small scale noise is
reduced. Figure 6, similar to figure 5, is relative to an assimilation
produced with a distance function containing the following term at the
initial time

L -4 3 a2 1 | (3.4)

n,m n(n+l)
where A is equal to 5.10_4 s and aﬁ is equal to n. It is seen that the noise,
although still present, has been reduced. The corresponding geopotential
field (not shown) has not been modified over data covered areas by the
addition of the smoothing term. There is no particular reason to believe
that the specific expression (3.4) provides the best way for avoiding
unrealistic noise in the assimilation but, it is clear that the presence

of a smoothing term can control the amount of noise.

One process through which adjustment of the fields to the _
observations is obtained, is advection by the flow. Since one model solution

is adjusted globally to the data available over a period of time, there is

not only downstream advection into the future, as in ordinary assimilation
procedures but also upstream advection into the past. This is clearly
visible on figure 7 which shows the height field produced at the initial

time by an assimilation in which only observations east of 0 longitude

(between 0 and 180 E)ywere used. The height field is reconstructed satisfa-
ctorily upstream of the observed area up to longitude 15 W. A similar
situation (mot shown) is observed at the final time. It is then the flow

east of 180 W which is reconstructed by downstream advection.
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4. The shallow water equations.

4.1 The continuous case.

The shallow water equations at the surface of a rotating

sphere read

- (@D - V(R

(4.1a)
3% _ _
ot V.oV

and they can be written in terms of only vorticity z, divergence n and

geopotential ¢

== J(o,a7l) - v @A)
gg = J(c+E,07In) 4+ v.( (e+E)VATiz ) - Ag - AK
3 ) _ (4.1b)
5t = J.a7he) - v.(evaTin)
with,K = %(VA_lg.VA_lc + VA" In.vaTln + 2307 1g,07 i) )

In these two sets of equations, the notations are the same as in section 2,
with K denoting in addition the kinetic energy of the wind vector V.

The quadratic expression for energy
E = f(%¢2 +¢°K) 4z (4.2a)
b}

is an invariant of the equations (3.1) linearized about a state of rest
with mean geopotential ¢°. Using the fact that the mean of a jacobian is O

over the sphere, the expression (4.2a) becomes
E= | %¢2 + %¢°(VA"1c-VA“l§ + VA~ineva=1n ) (4.2Db)
%

For any two triplets (Cl,n1,¢}) and (Cz,n2,¢2) we define the corresponding

scalar product b o
<t ,n L6 | zn 0 > = [ -1-2 4+ ¢°wamly «vaTlgw vaTlnevaly )
11 1 2 2 2 Y 2 1 2 1 2
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In addition to formula (2.6), we have for any three scalar fields a,b,c
[ ve(aWb)c df = -] avb:Vc dr (4.4)
L X

For a given solution (g,n,¢) of (4.1b), the tangent linear

set of equations reads

85 - gsr,aTlo) o+ J(HE,aTlen). - v.(6zvATM)
- V.((z+f)va"len)
an  _ -1 -1 -1
v = J(8z,A *n) + J(g+f,A “6n) +  V.(8zVA ‘1)
+  V.((z+E)vaTler)-  ASY
(4.5)
- A@WATIgvaT sz +  vATinvaTlsn )
- a@@TYsz,atlnye J(AT,a7ls) )
989 _ el -1 -1
T = J(8¢,A ‘Z) + J(4,A “S8T) - V.($VAT*ESn)
- V.(8¢VA ln)

And, by using formulas (2.5a), (2.5b), (2.6) and (4.4),

we find the adjoint of system (4.5)

-
_ 38z

- X - - ® _ *
e = J@ lsg,g+f) +  AJ(A lz,a7lsz) +  A(vATln.va—lsy)

V. ((z+£)vA"Ism)

+

- - *
F AJ(ATin,A71en)

-— — - -
- A(vA lz.vaTlsn) + v.(snvATlp)

L

J(56,6)
s° 0,9

J(h,07 1)

+
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» _ . ox (4.6
- %étn = 316N, c+f) + V. (snvaTn) + J(a7lg,8m) (40
*
- v-((;+f)VA"1§Z) + %OV-(¢VG¢)
a6¢¥ -1, a1l off
- 5 = ¢°5n + J(A 1;,6¢) + VA ‘n.Vé¢

4.2 The discretized case.

Numerical experiments have been performed with a pseudo-
spectral model of equations (4.1b) with triangular truncation at order
N = 21, this coresponds to 735 independent parameters. The collocation
grid had enough resolution to prevent aliasing errors and, according
to the result proved in Annex 1, it is sufficient for obtaining the adjoint
of the discretized model to introduce in (4.6) the same discretized_
operators as in (4.1b).

The time integration was performed with a semi implicit

leapfrog scheme and the corresponding adjoint was used for equation (4.6).

4.3 Numerical results.

In a first step, numerical experiments similar to those which
have already been described in section 3.1 were performed on a Haurwitz
wave for checkingthe numerical convergence of the descent process.

In a second step, assimilation experiments were performed with
wind and geopotential radiosondes observations at 500mb distributed over
a 24 hour period starting at 00Z 18 March 1985. When using the raw equations
(4.1) and no smoothing term in the distance function, the assimilation
produced an unacceptably large amount of gravity waves as can be seen in
figure (8). This is not surprising since the model uses all its degrees of
freedom, including gravity waves, for minimizing the distance function.

In order to circumvent the difficulty, non-linear normal mode
initialization process was introduced at the beginning of the assimilation
period. The adjoint of initialization process was also developed which

allowed the minimization to be performed on the Rossby waves components only
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500mb geopotential field of variational

Figure 8.

18 March 1985 24.00Z

analysis performed with the shallow water equations.
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Figure 9. Same as figure (8) with the non-linear normal mode
initialisation process introduced at the beginning of the assimilation

process, 24 hours before.
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and ito avoid an unrealistic amount of gravity waves. It is important to
stress that implementing the minimization on the Rossby waves and performing
the non-linear normal mode initialization before the forecast, ensures that
the final minimizing solution is property balanced, but this, of course, is
achieved at the price of developing the adjoint of the initialisation
process. Figure (9) shows the result of an assimilation performed with

the Machenauer initialisation process; the amount of gravity waves has
been greatly reduced and is five order of magnitude less than in the
emeraude analysis. Another efficient way for reducing that noise is to

add in the functional a term which measure the amount of gravity waves;

we have tested the squared norm of the tendancies of the gravity waves

and it contols satisfactarily the amount of gravity waves.

Conclusion.

The results presented in the article show that adjoint
techniques can effectively be used for minimizing a scalar function
measuring the distance between a model solution and a given set of
observations. The fields obtained are meteorologically realistic.’

Two major theorical advantages of adjoint techniques when
applied to the problem of data assimilation are the following. First, they
produce a sequence of analyzed fields which are exactly consistent with
the dynamics of the model. Secondly, they are very versatile in the sense
that there is no a priori limitation on the form of the function to be
minimized (such as, for instance, being quadratic in the model's variable).

Much work remains of course to be done before the practical
capabilities of adjoint techniques can be precisely assessed. It is clear
however that their main disadvantages 1is their computational cost, at least
in the context of operational use. However, in view of the continuous
progress of computing power, we do not think that this disadvantage

should remain in the long term.
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Annex 1. The adjoint of a discretized operator free of aliasing

errors.
Let t be the non discretized space of functions generated
by the infinite set of spectral functions

Yn (n=20,1, ...)

nEO Wn Yn

. < v -
with scalar product < ¥.| x > nEOWan

where the bar denotes the
imaginary conjugation.

For given finite N, we denote by EN the space of functions
whose spectral development is truncated at order N. We define on EN the

scalar product _ -
<tln >N— ngognnn

Let L be a continuous linear operator defined on € and LN

a discretized analog of L on ¥ free of aliasing errors. This means that,

N

for any £ belonging to 4 LNg is equal to the result obtained by

N ’
performing successively the following operations

i) extend the development of £ by defining

E =0 forn >N
n

ii) apply the non discretized operator L on the result of i
iii)truncate the result of ii) at order N
We will denote by QN operator i) which is an operator

of f N into t and by PN operator iii which is an operator of £ into EN'

The condition that LN is free of aliasing error therefore reads

Ly = Pyl (Al.1)
or by taking adjoints
% N Ew
Ly = QRLPy (A1.2)

Now, for any £ belonging to f N and any ¥ belonging to E
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§ En‘l‘n = < g |PN‘1’ > which shows that

<QNg I v =néO(QNE)nan B n=0 N

PN and QN are adjoint of each other. (Al.2) then becomes

* *
Ly = Byl Q

which presents an obvious similarity with (Al.1) and shows that any
#

. . . X . . Y .
discretisation of L which is free of aliasing errors is equal to LN

This result can be extremely useful in practice for

finding the adjoint of a given discretized operator.
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Annex 2. Diagnostic of wind and height from vorticity field.

In order to compare the vorticity field with the radiosondes
observations, it is necessary, starting from the vorticity field, to

evaluate the two components of wind and the height at observation locationms.

Diagnostic of wind.

The values ﬁi and Gi of (3.2) are determined as follow from
the spectral components of the model Vorticity field ¢ . The two spatial

components of the wind field
V =%k x VA lg (A2.1)

are obtained at the points of the collocation Gaussian grid. These values
are then interpolated bilinearly with respect to latitude and longitude

in order to produce the components ﬁi and Gi at the observation location.

Diagnostic of height.

The local values @i of (3.3) are obtained from the model
vorticity ¢ by solving in spectral components the nonlinear balance
equation for the geopotential

6 = AT V.( (e+B)vaTiz ) ) - wvatlzovaTlo/o (A2.2)

The geopotential field is then computed on the collocation Gaussian grid

and interpolated bilinearly, as forﬁ.l and Gi,at the observation location.
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Annex 3. Adjoint of the diagnostic of wind and height.

The gradients of’Ju, 1 and ’Jr¢ with respect to the Gaussian
grid value of u, v and ¢ are analytically simple. So following the
general principle described in section 2 of T85, the problem is to determine
the adjoint of the operation which, starting from the spectral components
of the voticity field, leads to the values of the fields u, v and ¢ at the

points of the Gaussian grid.

Wind case.
The linear operator DV z - kxVA™lz defines the continuous

wind field from the vorticity field. The following equalities

[ kxwa~lzev'ds = - [ vATlgekxv'dr = -] ATip Ve(kxV')dDo (A5.D)
L X z
where ¢ is a vorticity field and V' a wind field, shows that the adjoint
of the operator DV is the operator D;'V' > V,(kxV') . We have chosen kinetic
2 .
energy (L” norm) on to derive a scalar product on the space of all the
possible wind field.
The operators u - ug and v > Vg where ug and vg are the
Gaussian grid fields are the product of the Legendre transform and the
Fourier transform. Parseval's eqality means that Fourier transform is
unitary, and the following equality
N m,m m Nk m
27 (Za P _(n, )8 _(u ) = ZTa_ IP (w)B ) (A3.2)
k=] T B D k""g 'k T Dp=1 k" gk
where Pﬁ are the Legendre's polynomials, Hy the Gaussian latitudes of
the collocation grid, aﬁ the spectral components of a given scalar function
‘and Bg a scalar field on the Gaussian grid, gives us the adjoint of

Legendre Transform.

Geopotential case.

Equation (A2.2) is not linear, so we consider the tangent

balance equation, which for a given field ¢ reads

£' > ¢ = ATL(Ve ((g+E)VATIZ ) +ve (VAT ) ) - vaTlgtevaTin (A3.3)
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On the space of all possible height fields, we consider the potential
energy which leads to be the L2 norm )
1 .
Hell =3[ ¢* a (A3.4)
X

and use of Green's formula leads to the adjoint of equation (A3.3)
o> ~V.((g+D)VATIe™) + A(WATL™.vaTIZ) - V. (6"*vaTlp) (A3.5)
The adjoint of the product of Legendre transform and Fourier transform is

2
taken now as for u and v because we have also L° norm on the space

of the continuous geopotential fields.
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