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1. INTRODUCTION

There is general agreement today that gravity waves propagating upwards
from the troposbhere play a dominant role in shaping the circulation of the
mesosphere, primarily through momentum transport. Curiously their
importance in the troposphere and stratosphere is more controversial and it
is fairly clear that their impact on the zonal circulation is secondary to
that of synoptic scale systems. Whilst most features of the weather chart
are successfully simulated by current numerical models there is growing
evidence that orographic effects are being mishandled. Particularly in
long term integrations (> ten days) there is a strong tendency towards
zonality in the largé-scale flow leading to unreasonable sea-level pressure
patterns. (Mitchell ana Bolton, 1982; Sadourny, 1982). The success of
these 'climate' simulations is far more sensitive to sub-grid scale
parameterization than short-range weather forecasts made with the same

models.
Terms in the equations of motion which ars locally small at any. instant

need not imply a negligible effect in the long term. It will be argued in

this paper that it is the efficiency with which the earths orography
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extracts momentum from the overlying flow which is inadequately represented
in numerical models and that this accounts for much of the observed

systematic tendency towards zonality.

At first sight, the device of the sigma (o)-coordinate transformation
(Phillips, 1957) appears to dispense with possible problems at the lower
boundary by subsuming the influence of varying terrain height into the
adiabatic framework ofbthe forecast model. However, as far as current
numerical models (with horizontal resolution of about 150 km) afe coﬁcérned
much of dynamics of flow over mountain ranges is unresolvable and therefore
should be regarded as irreversible physies. Even if these smaller scéles
were resolvable the ﬁotion that air adheres‘to the surface terrain (ie. ¢ =
0 at 0 = 1) is too restrictive precluding as it does the frequently
observed separation effect. (Scorer, 1978). Until recently there havé
been few attempts to parametrize the effect of the unfesolved scales of
orographic height variation. Presumably it has been considered in the past
that surface friction parametrization (via boundary layer similérity
theory) and explicitly resolved pressure torque on major mountain ranges
would satisfactorily account for the exchange of momentum between
atmosphere and surface. Quantitative evidence thét this is not the case
will be provided later. Meanwhile we draw attention to the inefficieﬁcy of
momentum transfer implied by conventional Monin-Obukhov similarity theory
in stable conditions such as prevail over the continents in winter. By
comparison the ability of orographically forced gravity waves to exert a
substantial force on even the most gentle undulations in the landscape
(through differences in pressufe between the windward and lee slopes) is

heightened. Under such circumstances, subjective experience suggests that
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cold air over Europe in winter tends to be too readily swept aside by
Atlantic depressions in forecast models whereas in reality some resistance
is often shown. 45 day integrations of the Meteorological Office t11-layer
GCM under wintertime conditions frequently show the Atlantic stormtrack
extending into Eastern Europe and sometimes as far as Siberia. Similar
deficiencies exist over the United States where one might have expected the-

Rocky mountains to provide an effective barrier.

There is some question as to whether the explicit representation of
mountain torque can be adequately handled in models. Time series of the
global angular momentum, M- (Hide, 1984) as derived from. ECMWF initialized
analyses show large changes taking place on a time scale of less than two
weeks and independently supported by measurements-of the length of the day.
In an analysis of one such 'kick' in M which occurred in February 1980, I
rnave estimated that the observed increase in M of -0.3 x 1026Kg.m25"1
during the space of ten days would require the speed of the entire Trade
wind belt to increase by 50% during that period, if surface friction were
to account for the angular momentum change. Such fluctuations in surface
frictional stress are not observed, particularly in the global-mean sense,
and it is clear that very large mountain torques occurred instead. Correct
representation of these larger scale torques requires that synoptic systems

are treated properly in the vicinity of the major mountain ranges.

In spite of recent interest in the role of gravity waves in thie general
2irculation, much of the theory of flow over hills was laid down in the
1ate Forties and Fifties by Queney and Scorer (e.g. Queney, 1947; Scorer,

1949, 1956). Since then, Sawyer {1959), Bretherton (1969) and Lilly (1972)

169



amongst others have all recommended that some representation of sub-grid
scale orographic wave drag needs is required in forecast/climate models.
We will now proceed to examine some of the. theoretical arguments which

support this belief.
2. THEORY

A brief account will be giﬁen of the salient results from the theory of
steady orographically forced gravity waves. Detailed descriptions of the
linear theory can be found in standard texts (Holton (1975)) and Gill
(1982)) and in the excellent reviews by Alaka (1960) and Smith (1979). For
the sake of simplicity, the effects of the earths rotation will be ignored.
(see Thorpe, 1985 for a discussion of the propagation characteristics of

inertial-gravity waves).

Linearizing the Boussinesq equations of motion about a basic state
atmosphere of constant buoyancy frequency, N and height dependent wind
profile, U(z) it can be shown that a steady sinusoidal disturbance in

vertical velocity, w(x,z) of horizontal wavelength (2“/k) is governed by:
52w N2 5 1920 1 . du 1
3z2 " (UZ K U dz2 ~ UHo dz THo2) ¥ =0 (2.1)

where w(x,z) = w(z) explikx + 2/544] and H, is the exponential scale height
of the undisturbed density field. Generally speaking, the terms involving
Ho in eqn. (2.1) are unimportant and the contents of the square bracket are

usually written as:

12 - k2
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where 12 is the Scorer parameter equal to N
ul

i
i
Q.
U,

When 12 is independeﬁt of height and 12 > k2 solutions to (2.1) correspond
to plane sinusoidal wave motion with vertical wavelength 2"T/\, where
v = (12 - k2)1/2

If k2 > 12, w decays with height and disturbance energy is not free to
radiate away from its source. Taking typical values for N(10~2s~1) and U
(10 ms™1), it is found that 12 - 1076 m~2 so that if the horizontal
wavelength (27/,) is greater than about 15 km, 12 » k€ and v ~ 1.
Solutions of eqn. (2.1) cqrresponding to pure upward radiation of
disturbance energy are then given by:

w(x,z) = Real [ A exp[i(kx+1z) +Z/2HO].] (2.2)
where A is an arbitrary complex amplitude coefficient. Using this equation

together with the continuity equation:

ou ow W
I + 2 o - 0 (2.3)

it is easy to show that the vertical momentum flux T=pouw (where pg is the
basic undisturbed density and the overbar denotes a horizontal average) is

given by:
1 1 :
T = - 5. pSIAIZ (2.4)

with pg denoting the surface density.
The amplitude constant is determined from the (linearized) lower

boundary condition:

w = U(z=0) gﬁ at z = 0
3%
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if the flow is required to follow the terrain height h(x) at the surface.
From eqn. (2.2) this implies that:

A = U(2=0), ik hp

where hi(x) = hy cos kx so that:

—_—

2
T=-51pg Uk hm2 at z =0

N

Moreover when the curvature of the vertical profile of U can be neglected

in the definition of 12, the vertical momentum flux becomes:

T = -1 pgkN U.ip? at z = 0 (2.5)
5 , ,

Applying the same procédure to felate thie stress at any level to the

vertical displacement of streamlines 6h it is straightforward to show that :

T == 1 .KpoUN §h2 (2.6)
2 : :

Strictly, the linearized analysis leading to (2.6) is only accurate when U
ahd N are constant and when the horizontal wavelength is sufficiently long
for the waves to be hydrostatic (ie 12 » k2). It éan howeve} be shown that
the differential equation (2.1) together with the continuity equation imply
that dT/dz = 0 for any profile of U and N except at a critical line where U
= 0, (see Eliassen and Palm, 1961). In view of this constraint, (2.6)
will later be used to infer the height variation of 8he when dT/dZ = 0,

even if U and N are functions of height.
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Substituting some 'typical' values into eqn. (2.5).

eg. pg = 1.3 Kgm™3, k = 2n/(20 km), N = 107281, U = 10 ms~' and Ly = 200m,
we find that the surface stress T = 0.8 N m~2 which is very large by
comparison with normally quoted values of surface friction (~ 0.1 Nﬁ'z).

For an isolated bell-shaped mountain ridge of the form:

h="h

al
(a5+xz)
it can be shown that when the mountain half-width a is such that al » 1
(the hydrostatic limit) the total drag per unit length is equal to

T pgNUhp2. The mean surface stress averaged over a distance 4a across the

4
mountain (representative of the total horizontal scale of the ridge) is:

T, psNUhmz' and should be compared with egn. (2.5). Using the same
16a

values as before except with a = 5 km, the expression above gives a mean
surface stress of ~ 0.2 Nm"z, which seems more reasonable than the value
for the sinsuoidal mountain. What is immediately clear from these simple
calculations is that even a modest sized hill can locally exert a drag on

an airstream comparable with if not greater than surface friction.

Inclusion of Coriolis forces into the lineaf analysis for the bell-shaped
Lill causes a reduction of the wave drag by an amount dependent on the
non—-dimensional parameter af/U where f is the Coriolis parameter (Smith,
1979a). When af/U = 1 corresponding to a mountain half~width of ~ 100 km.
the net drag force is reduced to about a third of its non-rotating value.
On the other hand, numerical simulation (eg Peltier and Clark, 1979) shows
that linear theory usually underestimates the surface wave drag and in

their study of downslope windstorms, resonant amplification led to a
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tripling of the drag over its linear value. Given that the mean

land-averaged sub—grid scale orographic variance appropriate to the current
operational forecast model at the Meteorological Office is of the order of
(200m)2 it evident that a parametrization based on linear theory ié likely

to make a big impact on the spin~down time of synoptic eddies.

So far it has been assumed that the main source of unresolved mountain
torque is associated with inertialmgravity wave radiation.
Quasi-geostrophic and semi-geostrophic theories which assume the mountain
surface to be isentropic predict a symmetrical steady pressure response
about a symmetrical mountain and therefore no drag in the direction of the
ambient wind. The latter theory breaks down when the aspect ratio of the
mountain approaches N/f whatever the basic speed of the airstream since an
isentropic boundary cannot be sustained. However, solutions to the
semi~geostrophic equations are still obtaintable by the pure Lagrangian
method described in Cullen et al (1986). These show that for steep
mountains (slope > N/f) such as the Alps, semirgeostrophic theory predicts
upstream 'damming' of cold air which is subsequently released as a 'weir'
across to the lee side. A geostrophically supported cold air wedge (Fig.
1) on the windward side of such an Alpine ridge would cause a net force to

be exerted though not necessarily accompanied by a radiating gravity wave.
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Fig. 1. Schematic profile of cold air dammed against a two-dimensional
mountain ridge. Cold air with potential temperature 81 lies beneath a
motionless isentropic atmosphere such that 85 > 61. The sloping interface
is balanced by a velocity difference Vq - Vg between the two air masses so

that V4 is into the picture.

Another less frequently discussed aspect of pressure drag on orography is
that arising from the geostrophically balanced component of the pressufe
field associated with the undisturbed wind field. As noted by Smith
(1979a), in a uniform pressure gradient Vp, Archimedes Law demands a net
'1ift force' F on the mountain given by:

- Vp. (volume of the mountain)

11
I

or F = (pofkAVg) (volume " " " )
where Eg is the geostrophic wind vector and k is the unit vector pointing

vertically upwards. Although in a unidirectional airstream this force does
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no work (since it is at right angles to the wind) it must affect the local
momentum balance. Since it is typically so much larger than the component
of drag in the direction of the flow it is of some importance to understand
hiow this cross—stream momeﬁtum is extracted from the flé& and to see if
numerical models handle the process correctly. (Smith, 1979b). The use of
an enhanced orography (Wallace et al, 1983) in humerical models will lead
to a spurious increase in the 1ift force though the effect of this is

unclear.

3. OBSERVATIONS OF SURFACE PRESSURE DRAG AND VERTICAL MOMENTUM FLUX

Observational evidence that mesoscale orographic features constitute an
important agency for momentum extraction has accumulated over many years.
A comprehensive review is provided in Palmer et al (1986): here we state

some of the principal conclusions.

Direct measurements 6f the upward momentum flux, pOETWT have been made in
aircraft flights by Lilly and Kennedy (1973), Lilly (1978), Lilly et al
(1982), Brown (1983), Hoinka (1984, 1985). 1In all cases, the momentum flux
was found to be predominantly downward and exhibiﬁed a marked variation in
amplitude between studies. (see Table 1) as one might expect given

different mountain ranges and synoptic conditions.
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No. of Mountain pou'w' .

Study measurements Range (Nm~2)
Lilly and Kennedy (1973) T Rockies o -0.6
Lilly (1978) . ‘ oo | -1.2
Lilly et al (1982) , 20 . _ " ‘ f0.08
Brown (1983) - 5 : . British Isles =0.15
Hoinka (1984) - - . 1 Pyrenees o =0.7
Hoinka (1985) ‘ 1 o Alps . ~ =0.3

Table 1. Aircraft measurements of the vertical momentum flux.

The 'moderate amplitude wave' reported by Lilly andeennedy (1973) had a
horizontal wavelength of about 50 km and waslaccompanied by a region of
severe turbulence between 15 and 20 km. Furthermore, the ver;ical momentum
flux was roughly independent of height up to the base of the turbulent
layer whereupon the stress rapidly decreased to zero. The very large
momentum flux quoted in Lilly (1978) was found in a severe downslope
windstorm at the Colorado Front range of the Rockies. At the height of
this storm, Lilly estimated from surface pressure measurements that the net
drag exerted was between 1/y and 1/ of the total surface friction force
(assuming 0.1 Nm~2) integrated around the earth at 40°N! Even over much
less rugged terrain in the British Isles, Brown (1983) found substantial
downward momentum fluxes whose occurrence apparently fitted in with the
predictions of linear theory given the vertical profile of wind and static

stability. Hoinka (1984, 1985) also finds very large vertical momentum
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fluxes over the Alps and Pyrenees which, in agreement with Lilly and
‘Kennedy (1973), appear to be absorbed in layers characterised by

turbulence.

Few direct measurements of surface pressure drag on mesoscale orography
exist. However, Smith (1978) describes a field experiment in which a set
of microbarographs were placed across the Biue Ridge mduntain of the
Central‘Appalachians (width ~ 2 km, height ~ 300 m) in order to evaluate
the net drag force; Typical’values‘of stress averaged over the area of the
ridge were 1 Nm‘;2 -considerably greater than the vertical momentum flux
commonly measured from aircraft. Hoinka (1985) also found a discrepancy
between the measured vertical momentum flux 903737 and a surface pressure
drag estimate ranging from 1.6 to an enormous 6.7 Nm~2. This is probably
accounted for by the additional term pof;TET/eZ in the general expression
for the vertical momentum flux in a rotating system. (Eliassen and Palm
(1961) ;v' is the diéturbance wind component in the y-direction and 6' is
the potential temperature perturbation). Below the height of the mountain

peaks, the cold air damming effect will lead to large values of v' and 9

with negative correlation (Fig. 1).
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Fig. 2. The residual term in a zonal~mean momentum budget for December,

January and February '82 - '83. Units: ms~1/day.
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Whilst these individual studies do seem to confirm the local importance of
gravity wave drag as a sink of momentum, we need some assurance that this
is still true in an average sense over land areas. If these orographically
forced gravity waves were to break (dissipate) in the troposphere or lower
stratosphere, it might be possible<to meésure their net effect through a
zonal-mean momentum budget. Nurmi (1983) has carried out such a
calculation for February 1979 using data from the first special observing
period of FQGE. The fesidual‘term was found to be quite substantial and
implied a deceleration of the westerlies of about 2 ms~1/ day near 200 mb.
A similar calculation was carried out by the author (see Palmer et al,
1986) using uninitialized ECMWF analyses for the period Dec 1 1982 to Feb
28 1983. Fig 2 shows the resulting létitude/height cross-section of the
residual term in the momentum equation (zonal component). A clear pattern
emerges with a mid-latitude region of decéleration peaking near the
tropopause and towards the surface (the. budget was not extended to 1000 mb
since much of the data then used would have been extrapolated).
~Unfortunately, it is impossible to put error bars on these calculated
values and at wofst they may be a figment of the ECMWF analysis system.
Nevertheless, other studies using rawinsonde data directly have found
indications of an upper level drag férce (Hoiopaisen and Lau (1980) and
energy sink (Kung, 1967) similar to that implied by the budget studies

described here.

L better approach to analysing the momentum budget from real data is to
integrate vertically so that the Coriolis torque vanishes (due to mass
continuity). The net vertically-integrated horizontal momentum flux

convergence is then balanced, in the time-mean, by the surface stress. ’
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Swinbank (1985) has made a detailed calculation of the zonally-averaged
mountain torque and surface friction during January and June 1979 using
FGGE data and compared them with the total surface stréss evaluated
indirectly from the net horizontal momentum flux convergence. . Friction
torque is calculated using the boundary layer scheme in the Meteorological
Office GCM. The sum of the friction and mountain torque in January 1979
was found to be smaller than the inferred total surface stress (due to
horizontal momentum flux convergence)’by.a factor of two. In contrast,
little discrepancy was found in June 1979 consistent with the notion that
systematic westerly bias of numerical models is a winter phenomenon.”
Swinbank concluded that surface frictiorn®was possibly underestimated though =~
it was more likely that unresolved mountain torque accounted for the:

difference.

The problem of measuring pressure drag using routine synoptic data is not
hard to appreciate. Smith (1982) summarizes observations of pressure drag
for several mesoscale mountain ranges such as the Alps, the New Zealand
Alps, Iceland and the Colorado Front Range. These show that pressure
differences of the order of 10 mb across mountain ranges of width 100-200
km are by no means uncommon.: The implied sink of momentum is equivalent to
a nominal surface friction stress of 0.1 Nm~2 acting over a region 100
times the horizontal area occupied by the mountain range, though it is only
parely resolvable in current numerical models. Failure to parametrize
these mesoscale momentum sinks could well explain the tendency fowards
excessive westerly flow in numerical models/GCM's and fits in with
Swinbanks observation of & 'missing torque' in the Northern Hemispliere

winter,
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4. A PARAMETRIZATION SCHEME FOR SUB-GRID SCALE GRAVITY WAVE DRAC

There are two components to the gravity wave parametrization scheme to be

Vdescribed:

(i) a surface stress formula (1)

(ii) an algorithm to determine dz
dz

The surféee stress is calculated from eqn. (2.5) using the appropriate
sub—-grid scale orographic variance instead of 1/5hp2 and a 'tuned' value
for the constant k. By usingALhis expression fof Tg, it has been assumed
that the waves are hydrostatic and propagate vertically without reflection.
Trapping of energy beneath layers of small Scorer parameter 1 (ie. iee wave

effects) is- ignored.

As stated earlier the horizontally-averaged wave Stress T at any level is
constant with height in the absence of ﬁransience, dissipation or critical
layers. Dissipation in the form of clear air turbulence will be assumed to
Set in when the wave amplitude becomes large enough for instability to
occuf. In common with other thebries of gravity wave breaking and moﬁentum
debosition (Lindzen, 1981) it will be assumed that the amplitude of the
wave in these regions of instability adjusts (decreases) until marginal
stability is attained. Unlike.these theories, marginal instability is
defined as the point where a local measure of the Richardson number equals
1/u rathgr‘than the point where iinear theory predicts convective

instability. In practice, the difference is probably not important.
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Vértically propagating gravity waves ampiify as po"”2 as they reach
progressively less dense regions and ultimately achieve an amplitude for
which the local Richardson number falls below a value of.1/u. Theory
suggests however that this need not be a region where the undisturbed flow
has a small Richardson number - if anything the contrary is implied.
Indeed, Scorer (1969) suggests that it is the tilting of highly stable
layers which leads to the turbulence experienced by aircraft and glider

pilots.

A rather elegant result from the theory of steady, two-dimensional
stratified flow due originally to Long (1953) can be used to formulate a
'wave Richardson number' which'will form the basis of our parametrisation
of gravity wave breakdown. Scorer (1969) also uses this approach in his
penetrative account of billow mechanics. The vorticity and continuity

equations in the x—z plane for steady, two-dimensional flow are:

Dn - 3 _
0t *t nDivV+gz= =0 (4-1)
and 22 4+ 5 Div V = 0 (4.2)
Dt -
where n = 3w - 3u , V =ui+wk, D =ud + w3
ax 9z Dt ax RY:

and ¢ = log (potential temperature). (other symbols have their usual

-_meaning). Eliminating Div V between 4.1 and 4.2 gives:

pD_ (V) +gds =0 | (4.3)
Dt oX
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and since in a steady state eqn. (4.1) is equivalent to Div (pV) = 0 a mass

streamfunction may be introduced so that:

U = - 9y and pW = g&
oz ox

For adiabatic flow ¢ must be a function of § alone and so letting ¢(x,z) =

e(y), eqn; (4.3) becomes:

pPD. (W5 + gdo 3w =0
Dt dy ox
or P . D (W5 + gw,de = 0 (4.4)
Dt dy

But if h(x,y') is the height of a particular streamline Y' then w = Dh and:
Dt

Dt dy

since d¢ is constant on a streamline.
dy

If the subscript zero denotes undisturbed upstream values then it is easily

shown that:

n(x,z) = p (ng + g(h-nhy) By (4.6)
Po Uo )

where By = d¢,
dz

The physical content of this equation is certainly worth absorbing since it
does not assume anything about the form of the disturbance (eg sinusoidal)
or basic flow. It gives us a formula for the horizontal component of the
vorticity vector in terms of the vertical displacement of a streamline from
its undisturbed height together with knoWn 'basic state! parameters.

Inspection of the second term in bracke®s on the RHS of egn. (4.6) reveals
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that vorticity is created by an amount proportional to the static stability
and inversely proportional to the upstream wind speed. Physically; this |
expresses the fact that a given streamline displacemént leads to greater
buoyancy forces for larger static‘stabilitylaﬁd that tﬁese‘are experienced
by an air parcel for a time inversely proportional to the horizontal wind
speed. ‘Vorticity is generated through the horizontal variation‘of the
buoyancy force which for hydrostatic waves (of small aspect ratio) is
manifested as vertical wind shear. [The factor Py/,5 is important only if
the streamline displacement is comparable with the density scale height and

can, for the purposes of our scheme, be neglected.

A wave Richardson number gi can now be defined by:

Ry = g8 - e

(4.7)

where 8h = h - ho. ALthough the denominator involves only the vertical
displacement and basic state variables, the numerator requires a local
measure of the static stability. To account for the change in static
stability caused by vertical displacements of amplitude ldhlyit is
convenient to assume that they occur err a depth scale ]UOI/No (the
fundamental vertical length scale of this system of equations) so that the

minimum realizable value of N (Ngyijn) would be given by:
N2 ~  Ng? (1 - Nolghl )

min
Uo

Using this expression for the numerator in egn. (4.7) leads to an equation

for the lowest expected value of the Richardson number within some
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disturbance of amplitude lshl ie.

Ri = Ng2 (1 - Ny lsnl)
| Uo
L |ﬂo| + Ny@ lshl ]2
Uo

This may be written in non-dimensional form by setting Ng Iéhl = Ish*l 50 that:
, ‘ Ug

Ry = By (1 = lonal ) (4.8)
(1 + By 172 Tonxl )2

where Ri equals the basic state Richardson number. This wave Richardson
number embodies Lindzen's convective overturning criterion (numerator
small) and Scorer's billow instability mechanism (denominator large) so

that for sufficiently large léh*l, Ei becomes less than 1/4.

The final stage in the'parametrization scheme is to link |6h*| to the wave

stress 1 via equation (2.6) giving:

3 Ish*|2 (4.9)

-

1

1
ny—

~

=]

o
Zi) 1

(e}

Following Lindzen we employ a ‘saturation'’ hypothesis whereby if Ei is
found to be < 1/5, the displacement amplitude is reset to a saturation
value Idh*lsat such that R; = !/4. One can, in principle therefore
determine the vertical distribution of T within the region ﬁi < 1/u using
eqn. (4.9) and the saturation hypothesis. Outside of these regions the
stress must be indepéndent of height in accordance with the Eliassen~Palm

theorem.
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Consider now the algorithm for applying the scheme to any gridpoint column

of a numerical model. Firstly calculate the surface stress t1g using:
1s = pg K No Ug x (orographic variance)

To be consistent with theory, Uo and Ng should be mean values over a depth
scale comparable with the standard deviation of the orography. Since our
parametrization is based on a two-dimensional model the values of Uy will
refer to the component of the vector wind in the direction of the surface
stress. The calculated surface stress is carried over to the next level at
which eqns. (4.8, 4;9) are used to determine §£. Ir ﬁ} 2 1/4 npkstress is
absorbed and the process is repeated at the next level up, otherwise eqn
(4.8) is solved for Idh*lsat with ﬁ} = /4. Eqn. (4.9) then implies a new
value of 1 which is also carried over to the next level and the process
repeated. In this way a vertical stress profile may bg constructed and any

remaining stress may be absorbed into the uppermost model layer.

A literal interpretation of the scheme suggests that wavebreaking is very
sensitive to the value of Uy. This is easily seen for the Lindzen
convective overturning 1imi§ of the scheme for which saturétion of the wave
field requires |6h*| = 1. The saturation stress is then proportional to
Uo3 and inversely proportional to N, from eqn. (4.9). It is shown in
Palmer et al (1986) that.fof surface stresses of 0.1 Nm™2, waves will
typically break in the lower troposphere when Uy < 5 ms™! and in the lower

stratosphere when Uy < 15 ms~!. Middle ahd upper tropospheric winds tend
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to be too strong for wave breaking normally. Fig. 3 shows the vertical
distribution of stress calculated for an idealized profile of wind and

static stability and an orographic variance of (400m)2,

(Km)
40 -
30 -
20-
10
o 10 20 30 © o1 o2 03 os o5
U (ms) T(Nm?)

Fig. 3. Wind profile and associated stress as calculated using the
Richardson number based gravity wave breaking scheme. The static stability
was assumed to vary linearly between point values of 2 x 10~ 5m™' at z=0, 1
x 1075 m™1 at 10 km and 4 x 10°5 m~1 at 12 km and above. The orographic

height variance was taken to be (400m)2,

Absorption of wave énergy is found in the bdundary layer and in the lower.
stratosphere. When a critical level (U, = 0) is encountered |5h| tends to
zero and the scheme demands thét T » 0. In practice, Uo is never exactly
zero at any level in a numerical model and the condition 1t = O must be

enforced above the layer in which Uy changes sign.
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Details of the effect of this parametrization scheme on long term
integrations of a numerical model may be found in Palmer et al (1986). . A
cruder formulation, utlizing the same surface étress expression but
assuming a fixed profile of d1/44, has been used operationally at the
British Meteorological Office since December 1984, Its performance has
been documented by Kitchen and Dickinson (1986) and Dickinson (1985). The
main findings of our study of the impact made by the Richardson number

scheme on long term integrations are summarised here.

The most obvious improvement made in the circulation pattern resulting from
a 90 day integration in a 'perpetual January' mode was evident in the
zonal-mean cross-section of zonal wind and temperature. An overall
reduction of the speed of the westerlies is found north of 40°N by
typically ~ 2-3 ms~! but with much larger values above 200 mb where the
waves break. Between 40°N and 20°N there is net increase in westerly
component of momentum due to enhanced input from the subtropical trade
winds. The combined effect is to produce a southward displacement of the
subtropical jetstream to about 30°N, a reduction in the surface winds and a
substantially weaker polar night jetstream. All three effects are
beneficial. Thé principal improvementshat sea—levél are a slowing down of
the excessive westerly flow acrbss Eastern Europe, Russia and the United

States.
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5. DISCUSSION

The existence of quasi-stationary orqgraphically forced gravity waves which
extend upwards into the stratosphere is beyond doubt. As far back as the
early 1950's, Ludlam had made careful visual observations of orographic
cirrﬁs and lenticular clouds which seemed to persist in certain positions
in the sky (Ludlam, 1952). He was able to deduce that upper tropospheric
air had been lifted a distance at least twice the height of the hills
disturbing the flow. By any geographical standard, English hills/downs are
-of modest stature (a few hundreds of metres) yet as we have seen in section
2 the total drag exerted on them by a fresh breeze (Beaufort scale 5) may
at least be cqmparable with surface frictionél drag. In more rugged
terrain'thé potential for extremely large momentum sinks exists. However
"it is quite possible that the large-scale circﬁlation responds to strong
local sinks of momentum by reducing the surface wind speed and thereby the
surface stress also. Over large areas of ﬁhe continént in winter, gravity
wave activity may only be important in transient cyclonic episodes and the
very high effective draé coefficient (due to pressure forces acting on
hills in conditions of high static stability) might ensure that surface
winds are normally light there. The southward displacement of the Siberian
High by westerly winds is a cémmon problem in climate models which may be

caused by too little momentum exchange with the surface.

A natural question to arise is, 'Why do the current generation of models
appear to be particularly prone to this error?' Early climate simulations
(eg. Mintz, 1965; Kasahara et al, 1973) gave time-mean sea-level pressure

patterns which are at least comparable with those of current high
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resolution models and frequently better. On the contrary, todays high
resolution models give much better short-term forecasts and are capable of

anticipating major developments several days in advance.

The speed of the middle latitude westerlies at low levels is essentially
determined by the height-integrated poleward momentum transport by
large-scale eddies and the efficiency of momentum exchange with the
surface. Green {(1981) has speculated that model baroclinic waves might be
too efficient at transporting momentum polewards so that a larger surface
wind would be required to dispense with the momenium. Palmer et al (1986)
show that this is not the case and that their modelled poleward momentum
transport rate compares well with observation. However, if one examines
published momentum transports in some of the early climate models (eg. -
Kasahara et al, 1973)) there is evidence of gross underestimation by a'
factor of two or three. This is likely to result from the sensitivity of
modelled momentum transport to horizontal resolution (eg Wellck et al,

1971).

These facts point directly to a failure in the modelled surface stress/wind
relationship in agreement with Swinbank (1985). Early model successes in
simulating the observed Northern hemisphere winter distribution of
zonal-mean winds seem to have resulted from the cancellation of two
modelling errors - the underestimation of poleward momentum transport due
to insufficient resolution and too small an effective drag coefficient in
the modelled surface stress/wind relationship. It has been supposed here
(and in Palmer et al 1986) that the extra surface stress required to

correct the momentum budget is associated with radiating gravity waves
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which may deposit momentum at some distance from their source. A°
substantial fraction of this may however be attributable to inadequately
modelled mountain barrier effects where cold air damming gives a sizeable

pressure difference across an orographic ridge.

Thé Canadian Climate Centre have independently developed a gravity'wave
drag parametrization scheme for use in their T21 spectral climate model..
(Boer et al, 1984). Although some differences in approach exist‘(they use
Lindzens convective overturning criterion for wavebreaking) théir scheme
behaves very similarly to the one described here. A substantial beneficial
impact is also found. Another relaped approach to alleviating systematic
errors was introduced by Wallace et al (1983) whereby the height of the
model orography is raised in proportion to the standard deviation of the
real orography about the grid box average. Tibaldi (1985) has shown that
its principal effect is to incréase the zonal-mean mountain torque and

reduce the overall strength of the extratropical westerlies.

In summary, there can be little doubt that the representation of orography
in numerical models leaves much to be desired. It has been argued that the
inclusion 6f a parametrization scheme for gravity wave drag can have a
substantial beneficial impact and that the need for such a scheme is
indicated by both observations and theory. Much work remains to be done on
such topics as upstream blocking, lee cyclogenesis and the influence of
steep orography before the true impact of mountains can be represented in

models.
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