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Abstract

A brief review of current knowledge concerning aerodynamic drag in turbulent
flow over orography is presented. It is suggested that this drag is best
represented in terms of the roughness length z and recommendations for

estimating z are given.

Introduction

The transfer of momentum between the atmosphere and the solid earth
occurs on a wide range of scales. These extend from the microscopic to the
planetary scale and involve a range of physical processes. On small scales
and over smooth surfaces the coupling may be due to simple "tangential"
viscous forces. More usually, on scales ranging from mm to about 10km, the
coupling is due to "aerodynamic" drag. This drag occurs mainly as "normal"
pressure forces, it would not occur in inviscid flow but 'arises from the
viscous dissipation occurring in the flows past surface roughneés features.
The limited concern of this note is the representation of the momentum
coupling due to the roughness elements on scales up to perhaps 10km. Such
drag forms an essential part of the driving forces in the planetary
boundaryv layer and the influence upon the larger scale flow depends on a

correct description of the whole boundary layer structure

139




On larger scales there are additional processes leading to momentum
coupling. .Orography with scales between perhaps 3km and 100km may generate
gravity wave drag due to intérnal gravity waves. ‘This mechanism leads to
viscous dissipation other than that occurring in the Boundary layer. Tt is
believed to be an important process but is rather separate from the subject
considered here. On greater planétary scales there are further mechanisms
such as the radiation of Rossby waves but the actual viscous dissipation
usually proceeds through the smaller scale processes involving either the
boundary layer, convection or grévity waves.

Since the purpose of this note relates to the inclusion of ofographic
drag in large scale numerical weather prediction models it is useful to
make a few points concerning this precise requirement. We can suppose that
the iarge scale model will explicitly deal with scales greater than perhaps
a few mesh spacings. The large scale orographic forciﬁg should thus be'
derived by filtering the real orography of all smaller scéles and the model
representations of the boundary layer should include any appropriate
influence of scales smaller than the mesh. On scales comparable with the
mesh a statistical approach will not be valid and owing to the limitation
of the finite difference répresentation there will be errors: The
influence of the smaller scales will be complex. Part of the influence
will be a mean uplift (corresponding to the zero plane displacement D noted
below) arising through the failure of small scale flow to simply flow - the
shape of - the orography. Another part will'be the "aerodynamic" drag and
thé new boundary'layer structure. Further complications might be the
gravity wave generation or the rather separate way in which orography has
an influence on rainfall. Rainfall is particularly complex as it can be

affected a lot by the peak extent of any local orographic uplift.
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In what follows we begin by considering the basic ideas and a few
experimental facts. We then consider the orographic parameterization
éroblem and various theoretical ideas. The practical rules suggested are
compared Qith previous rules andlthe few availablekdirect observations.

Finally a summary and recommendations are presented.

Basic ideas and experimental data

A key feature of steady tu;bulent boundary layers over uniform terrain
is the existence of ’a fegion in which the mean fiow speed iﬁcreases in
proportioﬂ td the logarithm of distance from the surface. The existence of
this logarithmic région ié pivotal in our representation of tufbulént
boundary layérs. The>logarithmic region arises in the asymptotic limit of
heights much less than the total boundary layer depth yet much greater than
the scales involved in direct viscous or pressure forces with the surface.
Within the logarithmic region the only relevant geometric scale is distance
from tﬁe surface. For flow over a smooth wall the mean flow at a distance

z from the wall is given by
u = Ux (U'y)-kﬁ\] _
K[ TS '

where Uy ==\Y°t}//g is the square root of the surface stress 3fo divided
by density, K is Von-Karmon's constant (0-4 is the most accepted value),
Y is the kinematic molecular viscosity and A a constant with a value about

2-3. If the surface is rough then it has been found (eg.Clauser 1956) that
K v v

where /\ is a function of h ux/ﬁ) and h is a height scale of the

roughness features. When the Reynolds number h Ux/ﬁ) is greater than
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about 50 the flow is found independent of this Reynolds number -and
A = LLT? (( b_gg) + B -3
v .

For such so called fully rough flows the combination of 1 and 2 is usually

written as

Where z;, absorbs the constants A and B. - In a practical flow z, is
deduced éither by measurement of the felocity»profilé or by measurement of
stress and flow at a particular height in the logarithmic region. In cases
with dense arrays of surface features the height of the origin for z is
uncertain and the relation
W= U= ﬁ#g (—Z—i—lz> -5
K Ze

must be considered. Here D is called the displacement height and is again
determined by a fit to the velocity profile. The engineering data
concerning flow over rough surfaces are extensivg and range froﬁ the early
work. of Nikuradse (1933) to more recent studies (eg. Perry ét Al. 1969)
There are many aspects of these results which have a bearing Aon the
meteorological problem of flow over orography. For flow pasf arrays of
individual bluff bodies (called "k" type where k is used to denote the
object height) the values of z, vary in proportion to the height scale of
the bodies. Flows past regular arrays of ribs or groves (called "d" type
where d denotes.‘the pipe or channel width) are more complex and z, then
depends on the boundary layer depthf . The motions over the ribs involve a
coherént flow, . on the scale of the boundary layer, into and out of the
spaces between the ribs. Sucﬁ motions are notvrepresented in theoretical
models of flow over.ribs and‘ére unlikely in natural orography unless the
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orography is very even in structure. This class of motion will not be
considered further here.

The observations of flow past fairly demse arrays of bluff "k" type
roughness elements find that the value of z, relative to the size of the
object depends upon the exact shape of the roughness: elements; Extreme
ratios of Z,,/h where h is the mean object height are about 0:2 to 0-04
and O-1 isvthe value often quoted. Experiments (eg. Clauser 1956) with the
fraction of surface covered by bluff roughness elements varying between
about 5% and 50% show little variation in z, . This near independence of
Z o upon the density of roughness elements arises when each body lies in
the wakes o0f other bodies. For densities greater than 50% the value of
Z o reduces ‘and the displacement height D becomes comparable with the
object height. The small amounts of data on more sparse roughness elements
have not led to any engineering rules. in keeping with the engineering
approach for such cases the present review will consider the actual forces
on the individual elements. '~ This approach differs from the procedure
adapted by Kutzbach (1961) and often used in a meteofological context.

There are many sources of information on the drag past isolated bodies
in a free stream (eg. Batchelor 1967 for a text discussion). The drag on
bluff bodies depend upon the Reynolds hﬁmber of the flow. Only when the
flow dis fully turbulent at a Rejnolds number - 107 is the  drag
coefficient ihdependent of Reynolds number. In meteorology this usually
applies to object scales greater than a few metres. On smaller scales a
Reynolds number dependence'is expected. For Reynolds numbers between about
103 and 105 the. drag coéfficients are about‘twice those occurring at high
(710.7) Reynolds number values.‘ Here the fiow immediately around the body
is laminar but the wake is turbulent. At low Q(lng) Reynolds numbers
there is a distinct Reynolds number dependence. In meteorology we have

relatively good émpirical data on the small scale roughness elements which
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may exhibit a Reynolds number dependence. Indeed many of fhese roughness
elements are flexible plants and this flexibility gives further dependence
of the roughness length on wind speed.

At the highest Reynolds numbers ( >]If7) the values of drag
coefficient (ie. force = %?? Ug‘ A CD where U the free stream speed and
A the frontal area) vary with object shape. For bluff 6bjects Cp varies
between about 0-8 for rectangular objects to 0+2 for a sphere. More
slender bodies show much smaller values of C . When bodies are not in the
free stream but mounted on the surface the force on the body remains well
known but there is uncertainty in the change of the frictional drag over
the surrounding surface. There is evidence that the increased turbulent
mixing which occurs in the wake may give an dncrease in theA frictional
‘drag. This seéms especially likely for skew bodies which may generate

powerful trailing vortices.

Determination of drag in flow over orography

The aerodynamic drag between the atmosphere and the underlying surface
involves scales extending from of order mm to 10km. The influence of the
smaller scale features such as vegetation can be formally represented in
terms of a value of z , and many texts summarise our empirical knowledge of
the values of z , for a variety of terrain types. Current models of the
planetarj boundary wusually use a value of z , to describe the surface
characteristics and there is a considerable practical advantage in trying
to extend this description to larger scales. On these larger scales
comparable with the depth of the boundary layer there is no formal
justificatioh for the existence of a logarithmic region and a
representation in terms of Ze, . There is however, some evidence that it
may be a reasonable approach.

Meteorological observations in complex terrain (eg. Thompson 1978)

144




have shown: a surprisingly extensive region of "logarithmic" velocity
profile.: With more quantiﬁative significance are engineering observations
(Perry et Al. 1969 and Buckles et Al. 1984) for objects with scale
comparable with the boundary layer depth. These observations show a
logarifhmic velocity profile and, more important, the characteristics of
the profile, z, and uy match.thé independently measured values of drag.
Recent numerical simulations of flow over ridges (Newley 1985) alsO‘shbws a

similar result.

Forming area averages

Before embarking on a discussion of how to estimate z,in real terrain
it is useful to note the problems in averaging the surface specification
over the whole of a mesh spacing in the model. The only quantity which can
be correctly averaged is the surface stress. This is not generally the
result of the whole boundary layer beiﬁg in 'equilibriuml with the local
value of z,. A horizontal length scale of perhaps 50 to 100kms is needed
to establish a reasonable '"equilibrium"' stress in relation to the
geostrophic wind, ie. to establish a true geostropic drag coefficient.
After a change in z, the flow is only in equiliﬁrium with the surface up
to a height of order Qe ~ Lk u»/WJ where L. is the upstream extent of the
surface type (exact model studies suggest Qe ~ L /100 to L /200 depending’
on cqnditions, Rao et Al. 1974).  The consequence of this adjustment is a
tendency for the effective mean value of z, to be closer tc a higher value -
of 2z, than it would be in a flow always in equilibrium. A rough rule of
thumb would be to assume no horizontal variation of the velocity at a
height e~ L /100 and average the stress with 'a drag coefficient based on
_this height, ie. |
l | = S + ’g'y
/;ee) ” /lgg) zoﬂaﬁf,} 6
Z"ﬁ(—z—a L’ﬂ(z, Za
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where z, is the required value, and z,6 and =z

, a are roughness lengths

occupying fractional areas, f, and 'S'A , Le is calculated from the.
characteric scale of variations in z , and z 5 - In reality there is no
height at which the flow is both in equilibrium with the surface and also
independent of horizontal position. The height scale Ze 1is only the
characteristic scale at which the transition from equilibrium to
independence on horizontal position occurs. It follows that although the
.spirit of ;this reasoning should be correct the value of Qe used in

equation 6 is raﬁher loosely defined and should be checked by a more

vigorous approach.

Such a more refined approach is a numerical simulation of the flow
over changing roughness 1engths. Such simulations do not seem too
~ sensitive to the turbulence closure and can be viewed with some confidencé.
Tables T and II show a comparison of the results of equation (6) with
values obtained in a numerical simulation using a high order closure model
(Nash 1980). The simulation is of flow in a peribdic domain of 1éngth

L‘P containing a fraction § with roughness length one hundred times that
in the rest of the domain. A value of z, has been calculated from the
mean surface étress in the numerical integration and can be considered’ the
correct answer. The value of z, deduced by assuming that‘the boundary

layer was locally in equilibrium with the surface is also given. The

equilibrium result is significantly in error on scales.up to of order
IOkms. Iﬁ contrast equation (6) with Ce mzl—P/ZOO appears to give the
correct bias towards- the large values of zoA. ~This bias is even more
important on short scales and Table III shows results from eduation (6) for

a range of values of Lp and § .
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Table 1.

Comparison of effective values of z , arising from combining areas of

different z,. The domain length Lp is lO3 m and the two values of
z, 1*5 and 0-015m. In equation 6 £, has taken the value 5m.
zo/m
Fraction of domain Numerical result Equation Equilibrium
with z, large. Nash (1980) 6
0-3 0-50 0-48 0-15
05 0-82 0-81 0-35
0-7 1-20 1-12 069
Table II.

Comparison of effective values of 2z, arising fron ‘combining two
values of zo on different length scales. The fraction of the domain with
each value of z, is 05 and the values are 1:5 and 0:015m. In equation 6

e is ~ L—p /200.

z, /m
Length of domain Numerical result | Equation Equilibrium
Le Nash (1980) 6
10° 0-82 | 0-81 0-35
10 * 0-63 056 0-35
10 ° 0443 0-43 0-35
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Table IIT,
Values of log (z, /z,)/log(z, /z,) arising when equation 6 with
Qe =Lp/200 is wused to derive =z , from different areas of roughness

z, and z 5 (with z,= 100 z,)

Fraction with
z4 | o001 0-03 0-1 0-3
1engtth/m
10 0-47 0-60 | 0-75 0-87
10° 0-30 0-49 0-68 0-85
10 0-09 0-21 0-46 0-74
10" 0+04  0-10 0-28 0+59
10° 0-02 0-07 0-21 0-50
equilibrium 0-02 0-04 0-17 0-44

Dense arrays roughness elements with steep slopes

When the surface is covered with many bluff obstacles whose slopes
exceed 45° and which occupy at least 10% of the area, the best guide is
to assume that Z, is about O*1 h where h dis the mean height of the
roughness elements. This rule has been verified in city and dense urban
environments. The evidence from the engineering data is that it should
also apply for appropriate large scalé roughness elements. In practice
there seem to be few mountainous areas with sustained slopes of 45°. In
the few very extreme cases, such as regions of the Alps, it may be
appropriate to ﬁse z =0+1h. Here we shall argue that the methods of
estimating 2, which are given below should be considered first and 0-1 h

should be used as an upper bound to =z,

Dense arrays roughness elements with moderate slopes

This category of terrain is intended to include most hilly and
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mountainous areas. When the slopes of the terrain are less than about 45°
ﬁhe effecti&e valuesvof z, can be expected to be less than 0-1 h and there
is a need for a Wrefined estimate. Taylor;and Gent (1974) considered a
numerical model of turbulent flow over terrain and used a mixing length
turbulence closure. The study was limited to slopes (for slope we shall
cbnsidef values of arctangent) of terrain up to about 0-2. For a range’ of
hill 1lengths and values of basic roughness length thé increase in drag due
to a single gaussian shaped hill was found to be- ~ 40 - 60 u:' O n 'Wheré
113 is' the wundisturbed stress, h the hill height and 9 the peak hill
slope. ' Sykes (1980) considered an asymptotic analytic theory with a full
2nd  order turbulence closure and suggested that in consequence éf“thé
mixing length assumption Taylor and Gent's drags were a factor of‘séVén'toé
large. Recently, Newley (1985) has considered a full 2nd order turbulence
closure in a finite difference model. This overcomes the asymptotic
limitation of Sykes's theory and for realistic parametefs‘finas drag forces

only a factor of two less than those obtained by Taylor and Gent ie. for a

periodic sine wave the extra force F per wavelength is
o 2 » - S

where h is the peak-trough height and O the peak slope.  Although Newley's
results are very different from those of'Sykes, Newley's results show'the
coefficient in equation 7 slowly decreases with decreasing‘ z, and it 'is
possible” that in Sykes limit z g ~ O there might be agreement. Newley's
results find confirmation in comparisons with laboratory experiments’
(Zilker and Hanratty 1979, 'Buckles et Al. 1984). Newley's'model also
provides estimafes of drag at greater slopes. To tramslate the results

into values of z , we need to use Rossby number similarity theory, ie.
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"~ where A and B are cdnstant and UJ is the geostropic wind. A and B have
been taken as 1+4 and 2-1 and the implied values of Ceg = u\."‘/u; are
slightly greater than values often used (eg. Ayra 1975). Table IV shows
Ce as a funétion of z, and CJS as glven by equation (8). The present
values accord with Large—Eddy simulations and the results from high order
closure models. Such results probably correspond to more strictly neutral
conditions thén most observations. The above equation (7) for force
F translates intq an expression for a change in the drag coefficient, ie.
D Ce ~ 64 Qa

Ce

where Cg isAthe-drag coefficient for the undisturbed surface. With an

-9

assumed basic value of z o ~ 0-lm equation (8) leads to an approximate

relation for the new value of z, . 1e.

2,,3(20‘) - 635 Ly 1+ ACG) BT

where z ., is the undisturbed value and 6-25 is -approximately equal to-
/K . A slope of 0-1 gives a chénge in z, of 15 times the.undisturbed
value. It is'thus clear that slopes less than ~ 0-1 can be neglected. A
slope of 0:2 gives a value of z, of 4-1 times the undistprbed value. For
slopes greater than about 0-2, Newley's (1985) results no longer follow
'thié relation. | The value of the undisturbed stress no longer forms a
suitable scale forlthe force on the terrain and it is aﬁpropriate to
consider the change in z o (the undisturbed value is usually negligible fof
these slopes) in felation‘to height scale of the terrain. Values of Zo /h
corresponding to— flows  with different slopes are shown in Figure 1. The
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Table IV.

Values of geostrophic drag C, and angle &K of surface stress
relative to geovstrophié‘ wir-lld direction. Tbhke vaiﬁeé showﬁ are obtained
using Rossby number similarity theory for én at'mosphere with neutral static
stability. The values shown are for a coriolis parameter § = 10— and
U3 = 10 ms' . C¢ is a function of Us:/-S 2o which to a first: approximation

is proportional to Ug /% 2, . A factor of 10 change in Ua/—_,ﬂ is thus

: -
nearly equivalent to a factor of 10 change in z, .

3 (v}
Zpo/m Ce 10 X
107* 0-64 7-6
-3
10 0-86 88
-2 : ‘ ,
10 1-20 105
10 1-77 128
10 286 - | 163
1
10 5413 22-1
102 10-73 3249
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Figure 1. Values of z, /h and D /hderived from numerical

simulations of flow over sinusoidinal orography. The numerical simulations
(Newley 1985) use a 2nd order closure model. The values of
© - wh /L_ where h is the peak—trough height and [ the wavelength.

The values of A/S = h/ L .
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increase in z , /h.with slope appears to tend towards the h/10° rule at a
slope of about 1:0 (45°).. The results presented are obtained with a length
scale [ = 10 m and a basic value of zo~ 0-+lm. The results should not
be too sensitive to the changes in L and z o but further work, especially
with a three-dimensional model, would provide a better basis for an
empirical rule to determine Zé, . | As shown "in -the next section the
behaviour of z, /h for slopes steeper than 0+2 is in accord With simple
ideas considering the object as an isolated body immersed in an equilibrium
velocity profile.v For‘tﬁé mdmeﬁt it fﬁﬁs seemé adequate £o ﬁée the ru1é1
proposed below. | |

Also shown in Figure 1 are values of the displacement height() derived
from Newley's results. Again aﬁ extension to three-dimensions would be
needed to provide a practical guide. It is important to note  that D - has
been defined relative to the mean orographic height. The values of D at
small slopes are subject to some inaccuracy but seem to bé about 0+2 h. At
larger. slopes D is increased. It is interesting in thé 1atte£ cases that
D appears to be about 0-2 h' where hl is the height of the peaks above

the regions of flow separation which occur in the valleys.

Isolated roughness elements

For a single isolated orographic feature such as. an :island ;it_;is
possible to estimate the drag force from the usual aerodynamic rules. For
a bluff feature with slopes greater than about 45° the force may be
expected to be of order é{ Q CD Cla ﬁ 4Where Cy is the body drag coefficient

~ 0-2 ﬁo 0-8, (L is.the typical flow speed and A a frontal area éf the
body. Such a force can only be represented in terms of a value.of z , on
the assumption of an area in which to include 1it. The physical way -in
which the force on. the feature will be incorporated into the boundary layer

structure will involve the momentum deficit in the wake of the body. In an
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effqrt to provide some practical guidance to determining z , in real cases

we can only proceed if we consider a statistical distribution of isolated -
bodies. = We may then argue that each body will be exposed to a velocity'
derived from the final velocity profile, ie. the velocity will be taken

‘as ) .
u(b)= 4 =()

where h is the body height and z , and u, the final values of =z, and u, .

The -force on the body is then

F?fS’CD u:(%> A -12

In order to derive a relation with no singular behaviour we assume a stress

>
Use) due to the undisturbed value of z, , ie.

u(%)::‘b’vl &7(”\/;> 13

K =

It>follows thgt
Sult = ShEGAW(Y) + Scyut(l)

: Q K
where S is the surface area considered, Cy = k /Zo-gz( //az'm) and the

_summation includes all bodies in the area. From these equations we obtain
< ) ‘
w(2)- S5 -
L B +
23 s°® v
This result is simplistic but from an order of magnitude point of view
should be realistic. The drag coefficient.C,D will depend on the type of
object. The objects in the numerical study are hardly isolated but it is
useful to see the relation of (14) to the numerical results given in Figure

1. In Figure 2. curves derived from equation (14) with C = 0 are shown
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Figure 2. Values of z, /h as a function of A/S where A is the

silhouette area of the obstacles occupying a surface area S . The curve
. 2
shows the relation given by equation (14) ie. loga(/@fé - K and

curves for different C p are shown. The relation used by Lettau (1969) is

also given.
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for wvarious ‘'values of C p - The curve for bev 0-3 seems to fit Newley's
results for separated flows at slope angles greater than 0:3. For smaller

slopes Newley's results sﬁggest that Cp should decrease.

Comparisons with previous parameterization rules

A brief review of the estimation of z , for flow over obstacles was
given by. Lettau (1969). He considered a variety of data including the
experiments of Kutzbach (1961) with "bushel baskets" distributed over the
surface of a frozen lake. He proposed the relationship
zg =0-5h A/S where h is the effe;tive obstacle height, A  the
silhouette area of obstacles and S the surface area. He compared this
relation with a variety of data but did not consider A/S greater than O-1
and made no allowance for the "backgfound" values of z, due to the "smooth"
surface. Lettau noted thatvq, = h/’a with a, a constant was not adequate
for 'the résults he considered. This is in keeping with the low values of
A/S he considered and it is instructive to compare his formulae with that

give by (14) with C v = 0. The two relations are compared in Figure 2.
In view of Lettau's empirical support it is reassuring that,AAexcept for
small values of A/S’ equation (14) also gives z, roughly proportional to
h A/S . For values of Cp appropriate to very bluff bodies (~ 0-7) there
is also quantitative agreement. At small values of A /S Lettau's formulae
must fail. For it to bercorrect the drag coefficient on the obstacles
would have to be very much greater than unity.

An alternative form of the Lettau relation is creditied to Kutzbach
(1961) by Smith (1975), ie. z oi = 0-2 ha'/d where d is the average
distance betweeﬁ peaks separated by valleys. This relation assumes a fixed
"shape" of hill and cannot be shown on Figure 2 without an assumption
regarding the obstacle éhape. Compared with the Lettau relation, for
isolated obstacles it gives a larger value of z, whilst for closely packed

obstacles it gives a smaller value.
156




Observations

. Observations able to provide guidance in determining values of =z, in
flow over‘hills are very few. Fielder and Panofsky (1972) report values of
z o based 6n aircraft observations of vertical velocity variance. The
values vary from O-4m for plains to l:4m for mountains. Unfortunately the
paper gives no information on the exact size of the mountains. Since the
data were reported to be obtained by an aircraft at a height of 75m it
seemsvsafe to assume that the mountains were rather‘low.

Observations of wind profiles in complex terrain (Nappo 1977, Thompson
1978) show extensive'logarithic_velocity profiles and give large values of.
zZ o — 3°5m Nappé 1977 and 35m Thompson 1978. Again there are scant
details of the orography but using Lettau's formulae Thompson estimates
z, = 8m. This estimate was only based on a very local 5km area and the
underestimate may be due to the presence of greater orography noted to be
about 5kmsvaway.

Recent uﬁpublished'work by the Met. Office in a South Wales valley (an
extension of work reported by Mason and King 1984) provided direct
méasurement of shear stress at 500m above 200m high ridges, which were
 about 2km .apart. The data suggest a value of z, of about 3m. The high
order closure model of Newley (1985) has been applied to this scale of
ofography and also gives z, = 3m. This orography corresponds to a slope
of about 0-31 and it can be seen on Figure 1 and 2 that both the numerical
results for a sine wave and equation (14) with Cp = 0-3 give the corréct,
answer. Although Lettau's (1969) relation gives a larger value of z, the
relation provided by Smith (1975) agrees with this result. .The agreement
with Smith's relation, as noted above, is coincidental and due to precise
value of h/L found at this location.

More observations are urgently needed to provide vefification on wider
ranges of scales. At present we are forced to place much trust in theory

and laboratory studies.
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Summary and reccommendations

This note has'sought_to provide gﬁidance on the representation of
"aerodynamic" drag between the atmosphere -and orography on scales between;
metres and ten kilometres. | |

It is suégested that such drag can bbeb described in terms of a
roughness 1length =z , associated with a logarithmic velocity profile. By
representing the drag through z o allowance can be made for the usual
factors including 'buoyancy which influence the planetary boundary layer.
The direct 1nfluence of buoyancy processes upon z, has been neglected.
This is usually a good assumption for scales ap to about lOOm but is not
usually true for scales up to 10km unless the basic wind speed is high. In
particular stable stratification will suppress turbulence and give rise to
internal gravity Qave generation. In such cases the influence on zZqo is
not known and as mentioned in the 1ntroduct10n gravity wave generation can_
perhaps be regarded as a separate but important problem.

Having decided to use Zo to represent the drag  due to the smaller
scale orography there are a few points which should be borne in mind in a
practical application.

The first point concerns the vertical scaleyin the boundary layer. In
order to give z, its proper 'meaning this needs to be dealt with
consistently, especially when z, is large. If we assume the surface

z = s(x, y) represents the large scale orography of the numerical model

then s(x, y) can conveniently be assumed‘to be the»height at which u = 0.
ie. S(x, y) must include both ‘the .large scale orography and any'

displacement height arising from flow over the "subgrid" scale features.
The - mean height‘bf the subgrid field should be defined as zero. With this

definition of z equation 4 becomes o
U = Ux 4 ( 2+2°> : o
u ‘ _‘z_ z—a—g = | | -15

When z is comparable to z, the use of z + =z, rather than z can be
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important. The length scales used in any turbulence model must also be
consistent and in the near surface region the mixing length should be
given by

,@'\/‘[{ (2 + 2o) ~16

The second point concerns the fiﬁite difference representation of the
boundary layer and can also concern the boundary layerAin abéence of
orography. The large values of z ° present in flow over orography should
lead to an increased drag and concomitant increase in boundary layer depth.
Bouhdary layer models with a high vertical resolution describe thié effect
quite naturally but models with limited vertical resolution can fail to
respond. In such coarse resolution models the large mesh spacings inhibit
the representation of the increased velocity shear giving an increased
mixed layer depth. The problem usually arises from the consequence of
defining the Richardson number, or its equivalent, over a wide mesh
spacing. The value of such a Richardson number is ~ Ag>£>2 /AVQ' where

A ¢ is a "potential" density difference, DV a velocity difference and

D= the mesh spacing. For a positive D ¢ a large value of Az will
give large stable Richardson number. The real problem is simply a lack of
resolution. A crude improvement can be obtained by réplacing A= with a
fixed plausible leﬁgth scale such as 100m. If too small a value of this
scale is used, the Richardson number may be less than the criticai value
(perhaps 0-:25) everwhere, so this is not a modification to be used
casually. Some tests with this feature would be desirable. The basic
problem is serious; if the boundary layer growth is restricted by the mesh
then the effect of orography, both in terms of drag and vertical diffusion,
fails to be realised.

The final point is just a reminder that it is ill conceived to try to
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‘estimate =z, other than on the assumption of a statistical representation
of the orography. In other words the scales comparable with mesh scales
will not be dealt with correctly. The value of Z o at each mesh point
should, to be consistent with the numerical represenﬁation, be subject to
the same scale of filtering as that used to derive the large scale
orography. This smoothing should not be applied to the actual values of
z , but the procedure represented by equation (6) should be used to ensure
an attempt to average the surface stress.

In contrast to the many restrictiops and qualifications the actual
recommendation can be presented quite simply:-~ Divide the terrain up into
areas of broadly homogenous types of terrain and then estimate %z, 1in each
such area.

1. Allocate a value of z,,, based on the very small scale surface
characteristics such as grass, fields, forests or rocks.

2. Estimate A/S, 95 , and h where A is the silhouette area of the
obstacles, S the surface area involved, 95 the representative orographic
slope and h the typical peak-valley height. 95 should be taken as
h/ L where h is the peak-valley height and Ls is the horizontal scale
over which most of the height change occurs. ‘é{g will not be used
quantitatively but to determine which rule to follow. There are many
possible ways of estimating A/S depending om the type of orographic data
available. A simple method is to consider a number of 2-D sections with
different orientations being used to obtain a statistical estimate. On
each section the height differences h «h over whilst the height is
increasing are summed.

Then

B —
> Z L oaee 17
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where L'OA@ is the section length and the summation is over all sections.
The vaiue of }\uﬁ will be greater the finer the representation of the mapt
In practice most orograpﬁy has had sharp features attenuated) by er:osion
and evaluation of hu{ on, for example, a 1:50000 map provides an estimate
of the main scales of orography. The value of h can be taken as the
ﬁeani of the main height changes between distinct peaks and valleys. In
towns and urban environments values of A/S due to buildings -need a
different approach, such as the number of buildings and mean building size.

3. If 6%, is less than 0-2 we should use linear theory and not bluff

body dynamics. We use equation (9) and (10) but estimate Qas A/S\on

the assumption that the orography looks similar to a sine wave, le.
log (Zo/2q, ) = 6-25 log (1 + 63 A® /S™) -18

4. If 95 is greater than 0-2 we assume the bluff body relation
equation (14) with C, dependent on (9g . On the basis of available
information we suggest C, ~ 0-3 for @s up to 1:0 and C y~ 0-7 for
95 greater than 1-0. In most orography @5 is ¢ 1+0 and the higher values

of Cp is really intended for sharp bluff bodies such as buildings, ie. we

use
2
1oga(_ll/_‘?j = -—JS———————" -19
2o e§-5co + (v

where C, = Kn'/loga"( h/q //Zol) (and may be negligible mountainous
terrain) and h is the typical peak-valley height.

5. Finally we note that z, derived from (19) should not exceed O0-1

Application of the above rules gives results which are not widely
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different from the values suggested by previous wquers. (eg. Smith and
Carson 1977). However, the precise difference may be significant and the
procedures advocated here have a slightly firmer basis and more general
application.

As an example of the present rules, application has been made to three
specific sites corresponding to the South Downs, South Wales and the
Cairngorms.

For the South dbwns a ten kilometre square centred at 50° 55 N
0° 45 W was selected. Here values of h aré about 100m and 615 is
between O:1 and 0:2. The value of A/S derived from various sections is
~ 0-01. The basic value of z o is harder to estimate. About one quarter
of the area is woodland occurring on scales of about 1 to 2 km. Taking
zZ o, = 1lm for the woodiand and z , = 0-lm for the open areas equation (6)
indicates an overall value of z o - 0:27m. Taking @ =7 A/S = 0-03
equation (18) gives an increase in z o of 14 ie. a final value of
zZ o = 0+4m.

For South Wales a ten kilometre square centred at 51° 45 N,
3° 12 W was selected. This corresponds to the field site used by Mason
and King (1984) and discussed above. Here @s ~ 0:33 so the bluff body
dynaﬁics should be considered. h is about 250m and A/S ~ 0:04. Owing to
the ridge—valiey orientation A/S~ 0:08 for East - West flow but only the
average value will be considéred here. The basic surface value of z o has
been taken as O-1lm to correspond to open country with scattered. treeé -and
walls. Application -of equation (19) then gives a final value of
z o = 2+0m (3~5m for across-valley flow) . |

Fdr the Cairngorms a ten kilometre sQuare centéred at 57° 2 N and

3° 45 W was selected. Here @5 is 0:45, h is ~ 600m and A/S~. O-1.
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Th'el‘ Ba'-sivt‘: value of z , is probably around O+lm but not very important.
:_Aﬁplicétion~of'équation‘(19) gives z o, = 12m.

‘ Fu?tiher work and observations are needed to provide better guidance on
"4e"s.t-;i:mdt‘i>ng'the vd_isplacement height P . A very unrefined guess would be to
'.se:‘t.“Dv , ON a fairly-‘ local basis, to a fraction of peak to valley
topographlc height. Newley's (1985) results suggest that D might be 0-2
‘ htvfor»e.s vup to about 0+4 and then rise to about 05 h for (93 ~ 10, An

: V~area.évefage Qf the local values of D would then need to be formed.
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