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1. INTRODUCTION

The challenge in parameterizing the atmospheric boundary layer (ABL) in
large-scale models (LSM) is to find simple formulations that yet
realistically describe the main characteristics of broad classes of
ABL's. These formulations should have their basis in, and reflect the
results of, detailed observational and modelling studies on the ABL. The
ABL-parameterization as such is no instrument for ABL research but
rather a result of it that comprises the conceptual insights in a clear
and simple way. This preférence for a simple ABL-parameterization is not
only for computer—economical reasons but even more because of the
complex interaction involved between various physical parameterizations
in a LSM and the necessity to have a clear insight in the couplings and
feedback loops. From the ABL-parameterization one should require a
realistic description of: 1) the surface fluxes of momentum, heat and
moisture, ii) the vertical transports and the height of the ABL, iii)
the behavior of typical ABL-clouds such as stratocumulus, and their
interaction with the ABL-structure, iv) the coupling between the ABL-
parameterization and other physical parameterizations such as cumulus

convection and radiation.
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In the concept of an ABL-parameterization one should realize that it is
used in a LSM with a horizontal grid size much larger than the size of
the largest eddies in the ABL and usually even much larger than the size
of possible mesoscale features. All ABL-parameterizations are therefore
formulated as one—-dimensional ensemble—averaged models for which it is
assumed that the conditions are statistically horizontally homogeneous
on the grid-size of the LSM. Thus some averaging over a number of
statistically identical energetic structures should be allowed and

caution is necessary in cases where this is not warranted.

One of the pronounced features of the ABL is its highly variable depth,
both in time and space. In stable conditons the depth of the ABL is
typically 6f the order of 100-300 m, while in unstable conditions it can
easily reach 1-2 km. One of the requirements for an ABL-parameterization
is that it provides an accurate determination of the ABL-depth. There
are a number of reasons for this. At the top of the ABL the transition
between the turbulent air within the ABL and the non—turbulent free
atmosphere occurs. This transition is often (at least in the unstable
case) marked by sharp jump-like features in the thermodynamic and wind
fields. The height of the ABL and the entraimment at the top, together
with the surface fluxes, determine nominally the evolution of mean
variables within the ABL. The top of the ABL usually coincides with the
top of a stratocumulus cloud-deck in the upper part of the ABL. Also,
cumulus clouds often have their base at the ABL-top, which therefore
plays a role in the coupling of the ABL with the convection

parameterization.

Considering the relevance of the ABL-height, effort is spent on

formulating ABL-parameterizations that treat this height as an explicit
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variable. These bulk boundary-layer formulations start with vertically
integrated governing equations over the ABL-depth. The latter is then an
unknown explicit variable (we will not comsider the oversimplification
of taking the ABL-depth at some fixed height). In contrast, boundary-
layer schemes with a number of levels in the ABL do not treat the ABL-
depth explicitly, but it is determined implicitly through inspection of
the vertical profiles of the turbulent fluxes. Usually, however, the
vertical grid distances are increasing away from the surface, and the

location of rather sharp features therefore has large truncation errors.

The use of bulk boundary-layer schemes only as equations for vertically
integrated ABlL-~variables does not mean very much. Their success is
dependent on whether the vertical profiles within the ABL have some
general shape that depends only on a very limited number of quantities.
For example, when there is enough turbulence generated in some measure,
vertical mixing makes the profiles in the ABL rather flat. Thus a good
approximation is that the profiles of quantities that are conserved
under the mixing process are independent of heightbin the bulk of the
ABL, This height-independence givee‘the opportunity to diaghose rather
thin cloud layers in the upper part of the ABL which have a strong
feedback on radiation and ABL-turbulence. The treatment of these thin
cloud layers is quite difficult in multi-level boundary-layer schemes.
It is one of the background ideas behind bulk boundary-layer schemes
that there are broad enough classes of ABL's that can be characterized
with vertical profiles that depend in a simple way on some overall
parameters, such as e.g. stability, and that there is enough information
available or to come from detailed ABL-studies to justify or refine

this.,
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Another essential role in bulk-boundary-layer schemes is played by
entrainment. Since the ABL-height is an explicit variable, there has to
be an equation governing its eyolution. The height of the ABL can of
course change due to large-scale advection and due to large-scale
convergence or divergence of mass in the ABL. There is also a dependence
on the amount of deep cumulus convection that draws on the mass of the
ABL and must lead'to compensating shallowing of the ABL. This
establishes a coupling between both the ABL and cumulus convection
parameterization, which will not be discussed in this paper. In our
context the most important way the ABL-depth may change is due to
entrainment‘of mass at its top, through which the turbulent ABL is
"intruding" into the non-turbulent and usually stably stratified air
above, and thus its depth increases (relative to the mean vertical
flow). A problem in bulk boundary-layer schemes that we will discuss is
the formulation of this "entrainment equation" which in some way has to
relate the energetics of the turbulence to the stability of the air into
which the turbulence is entraining. The ABL is not always deepening, but
can also shallow after a transition from unstable to stable conditions

at the surface, or from daytime to nighttime.

In this paper we will summarize results of ABL-research on bulk
formulations that are potentially useful fof LSM, We will not go into
the technical details of the incorporation into a particular LSM. Suarez
et al. (1983) and Randall et al. (1985) discuss the incorporation
extensively with special emphasis on the representation of thin cloud
layers in a general circulation model. Their approach of using the top
of the ABL explicitly as a coordinate surface in a GCM is quite
attractive and a logical way of incorporating bulk ABL-schemes. When

such an approach is used in a forecasting model additional technical
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problems regarding analysis and initialization have to be solved.

2. BULK EQUATIONS

N

The governing equations for bulk boundary-layer schemes are obtained
from the primitive differential forms of the conservation equations by
vertical integration over the ABL-depth h. Thus for a quantity ¢ the

relevant variable is the bulk variable

h
¢M (X,y’t) =% f ¢(X,Y,Z,t)dz- (1)
(o]

The derivation of the bulk equations is quite straightforward. The real
problem is the parameterization of the turbulence and entrainment which
of course depends on the physical processes relevant in a particular
type of ABL. We will discuss here a dry ABL (no condensational effects)
and, for convenience, neglect horizontal advection. The relevant bulk

equations in Boussinesq form are then:

hsri = (8, - g)@Er-w) + 8w _+F -F (2)
+ +

h —z? = (Uh+ - UM)(% - wh) + Tx@+ f(VM - VgM.), : (3)

b % -y - V) Cap ~ W) VL - £y - Ugn): )

b "E%M - (qh+ B qM)(% T W) Aty . ()

Here O is potential temperature, q specific humidity, U,V the horizontal
wind, w, the large-scale vertical velocity at the top of the ABL, F the
total radiative flux, f the Coriolis parameter, and Ug’vg the

geostrophic wind. The subscript'M denotes the bulk ABL-value, h, a value
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just above the ABL-top, s a surface value.

Note that these equations do not yet depend on the shape of the vertical
profiles. So far they are the result of a mathematical operation.

v

In order to step these equations for the bulk variables 6 _, 2 U M

M?

h, forward in time, a number of quantities have to be provided.

a. "External" conditions: the large-scale vertical velocity Wh; the
values above h (all quantities with index h+), the boundary
conditions for the earth's surface (surface temperature, humidity,

roughness), geostrophic wind.

b. A method to calculate diagnostically the turbulent surface fluxes

G'W;, q'wé, u'wé, V'Wé and also the radiative fluxes from the bulk
variables and external conditions.
c. An entrainment equation for the rate of change of h, in this context

for

w, = oh/3t - Wy . (6)
The conditions under a are grid-scale quantities. They are quite
important for the practical implementation of the ABL-parameterization
and will determine to a large extent its feasibility. In this context we
will assume these quantities to be known. However, one should realize
that accurate estimates of these external conditions are as important as

the internal turbulence dynamics of the ABL.

The parameterization problem occurs in the calculation of the surface
fluxes and in the entrainment rate. Both depend on the turbulence

dynamics and will be discussed in the next sections.
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3. SURFACE FLUXES

The surface fluxes of momentum, heat, and moisture have to be
parameterized in terms of accessible model quantities, such as the bulk

variables and surface conditions, through the following bulk transfer

relations:
u? = ¢ |1\7M||2 : )
8wl = C n\’?Mu(es -9, (8)
g’ = ¢, ||\7M|| (a - q,) » (9)
where u2

* denotes the magnitude of the surface stress and CD, CH’ CQ are
bulk transfer coefficients. The angle between the surface stress and the
bulk wind vector has to be determined separately and is denoted by oy
In early ABL-parameterizations CD, CH’ CQ were assumed equal and
assigned fixed numerical values. In more realistic ABL-parameterizations
these transfer coefficients should be specified as functions of the
state of the ABL. When in (7)-(9) the index M would be replaced by an
index z, where z is a height within the surface layer, then the transfer
coefficients could be calculated according to the well-known Monin-
Obukhov similarity theory for the surface layer. In bulk models,
however, the surface layer is not resolved and (7)-(9) are bulk transfer
relations for the ABL as a whole. Research on these bulk transfer
relations has been carried out through matching of the surface layer and
outer layer similarity profiles (e.g. Arya, 1977), resulting in the

following general implicit forms, that are more usual than (7)-(9):

< Wy i/u, = {(1n(z_/h) + A" + B! (10)
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tan—l(aM) = BM sign(f)/(1n Zo/h + AM) (11)

N

Ky
- m— (eM - es) = - 1n(zo/h) - CM R (12)
s
KU,
- (qy = qg) = - 1n(z /h) - D, (13)
qw M 7S o] M

Here k is the von Karman constant (0.4), =z

and AM, BM, CM’ DM

o the surface roughness length
are universal functions of the similarity variables.
Observations and detailed modelling studies have indicated that AyDy

depend most strongly on the stability parameter h/L, where L is the

well-known Obukhov length scale
L = - T/ (gk B 14
= - uT/(gc 8'w]). (14)

The dependence of AM—DM on other possible similarity variables, e.g. related

to entrainment, baroclinity, ratio between the height h and the

scale height w,/f, is weaker.

The actual form of the universal functions Ay~Dy dependence on h/L
has to come from empirical results which, however, show a large scatter.

Arya (1984) summarizes some "best estimates" as follows:

In(-h/1)+2.3
' for -h/L > 2 (unstable)

= Ay (15)

= =
I

]
O O e
=

AM = 2.5 - 0.96 h/L
BM = 1,1 + 1.15 h/L for -h/L < -2 (stable)
CM = DM =7.0 - 3.0 h/L
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and an interpolation between these expressions for Ih/LI <2.

In these expressions, the relations for AM and By in unstable conditions
are relatively well tested (Gafratt et al., 1982), while the others,
especially in stable conditions, are not well established (Nieuwstadt,

1981; Driedonks et al., 1985).

For use in numericél models the implicit relations (15) are not very
convenient since determination of the surface fluxes requires an
iterative procedure. Therefore the relations are more easily
rewritten in the form (7)-(9), (including a relation for aM), and as a
stability parameter it is more convenient to use the layer-averaged bulk
Richardson number

6. -0
Riy =%;———T{; "25 . (16)

M

The bulk transfer coefficients are then expressed as functions of zo/h
and Riy, which are readily available in a bulk boundary-layer scheme.

These transfer functions CD(zo/h, RlM), CH(zO/h, RlM), C (zo/h, RlM),

Q
as well as aM(zo/h, RiM),can be evaluated from (15) and are represented

in nomograms by Arya (1977) that can be used to fit suitable

expressions.

4, THE ABL-HEIGHT

The evolution of the ABL-height h depends strongly on the turbulence
within the ABL. Much attention has been given to the formulation of
entrainment relations for an unstable, cloud-free ABL which have been
successfully tested against observations, e.g. Driedonks (1982), and

Driedonks and Tennekes (1984). For the height of the stable ABL also
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reasonably successful expressions have been formulated.

4.1. The unstable ABL

For an unstable ABL for which the stability parameter —h/L Z 5,it is
generally accepted from observations that the vertical profiles, e.g. of
8(z), are almost flat and that the entrainment zone that forms fhe
transition of the ABL to the stable air aloft is a very tﬁin layer. This
has led to the well-known representation of the ABL as a mixed layer,
sketched in Figure 1. In the ABL that we consider, not only convection
from the surface is producing turbulent kinetic energy (TKE). We will
also have to take into account the TKE genefated by wind shear. However,
in this context we exclude production of TKE by some other distinct
internal source as in the case when radiational processes are important,

é.g. when a cloud deck is present in the ABL.

In such a well-stirred ABL there are in general three distinct
mechanisms that produce turbulence and possibly entrainment:

a) convection from the surface, associated with the velocity scale wy,
defined by wa = %—S— h 5w,

b) friction af the surface, associated with the friction velocity uy,
and

c) shear-generation of turbulence by wind shear at the top, associated

&>
with the velocity jump AV over the entrainment zone.

Opposed to these entrainment-producing mechanisms in the ABL are the
counteracting influences at the top. There, relatively warmer air has to
be brought down into the ABL at the expense of turbulent kinetic energy.

So the main counteracting influence on w, is the jump in potential

temperature AQ.
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Figure 1. Schematic profiles of O and 6w in a mixed layer model.
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A variety of models has been developed to relate the entrainment rate Wa
to the afore-mentioned production mechanisms and the opposing influences
at the top. For some cases consensus has been reached, but up till now
no general entrainment relation has been formulated that describes the
details of all possible combinations of the three production mechanisms
and that is fully tested against observations. The most recent effort is
by Deardorff (19835. The main reasons for the disagreement are the
difficulties encountered in the parameterization of the amount of TKE
produced in the ABL that is actually available for entrainment. Since
the dissipation in the ABL is large, this available energy is only a
small fraction of the total production rendering parameterizations
sensitive to small inaccuracies. Another problem is the lack of
observations from either the laboratory or the real atmosphere that are
comprehensive enough to test these parameterizations, especially in the

case of shear—generated turbulence.

In this paper we will take a rather practical point of view and bias our
approach toward relatively simple models for the ABL that have been
tested to give satisfactory results for the evolution of h(t) and @M(t)

in comparison with atmospheric observations.

The entrainment equation is usually derivéd from consideration of the
budget of TKE since entrainment goes at the expense of TKE and it is the
buoyancy flux-éﬁh(or 6;%;) that appears in this budget. However, closure
can only be achieved after parameterization of all the terms (except of
course the buoyancy flux) in the TKE-budget. It is here that entrainment

models start to diverge.
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Following Tennekes and Driedonks (1981) we consider the TKE-budget at z =

This reads

dey _ _ oy 90y | o av 85y _ (8 oo, plw' _
Ge) = 7wy G VMG g Oy - G (T =)
Th P Bh Fh Dh

where e and e' are the mean and fluctuating turbulent kinetic energy
and e the dissipation rate. Other symbols are according to the usual
notation. The symbolic notation refers to the temporal rate of change
(Th) of e, the shear production (Ph), the buoyancy term (Bh), the flux

convergence (Fh) and the dissipation (Dh).

In parameterizing the TKE-budget we have to provide scaling laws for

each of the terms. Here we simply assume that all length scales are

proportional to h, all turbulent velocities scale on L (where L is a

representative velocity scale for the bulk of the ABL)and that

(BUaz)h, (BV/az)h scale on AU/h, AV/hé In this way the term ih
W

becomes in parameterized form: T, = Ct-—%-we, and the dissipation as

well as the flux convergence both scale on wi/h. Thus we take both

terms together. Furthermore we use the relations —u'wﬁ =W, AU,
—V'Wﬁ =W AV, where AU = Uh+ - UM, AV = Vh+ - VM (see eq. 2-5). With

this parameterization the TKE-budget reads

, (18)

D‘lasw

2
w
_m - 2 2,1 J Sy
Ct h Ve = CM{(AU) + (AV) 7} h Ve + 7 8 W + CF

where Ct’ C C., are constants. After some rearranging we can write:

M F
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Cp

w
e .
- = ’ (19)
Y c, - cM{(AU)2 + (AV)Z}/Wi + Ri

with Ri a Richardson number defined as

h AO

ps
H
i

 loo

5 . (20)
W
m
For the velocity scale wy, Tennekes and Driedonks (1981) take an inter-
polation between the convective velocity scale wy and the friction
velocity u;, in the form
3 3 . 3
W= W+ (A'/CF)u* . (21)
In eq. (18)-(21), Cir Cys Cpo and A' are all empitical constants, still

quite a lot for such a simple model.

A few properties of this parameterization must be noted. First,

if AU, AV » O, u, > 0, and if we << Wﬁ (usually the case), then this

parameteriéation reduces to the well-known constant heat flux ratio
‘e"‘q = - ¢ W Further, when AU, AV + 0, and Ri + 0, then the

entrainment rate remains finite with We/wm = CF/Ct.

In the parameterization (18) we refrained from introducing a separate
length scale Ah associated with the entrainment zone, and from
estimating the local dissipation and velocity gradients with this length
scale. An extensive elaboration on this issue was given by Deardorff

(1983). He makes Ah/h a function of three different Richardson numbers:

o
>
D@

Il

Ri
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=
B>
(o)

Ri_ =

Hjoq

> (22)
&

Ri = h A@ .

(A0 + (av)2

oo

His approach is equivalent to making the constants Ce>s CM’ and CF in
(18) functions of these same three Richardson numbers. Deardorff derives
these functions from a limited number of laboratory experiments and some
suitable assumptions. Although his results are applicable to the full
range of values of Ri*, RiT and Riv’ it is also clear that the very
limited amount of experimental data on which they are based still leaves
a lot of uncertainties. At the moment we doubt that it will lead to

better predictions in the atmospheric problem we are considering.

The entrainment equation (18) has un unattractive 'consequence that was
pointed out by Driedonks (1982) and Manins (1982). When we neglect for a
moment the Ctﬁterm (usually small) then it appears that the entrainment
rate w, will become negative when Riv < CM' This, of course, is
unrealistic. Manins (1982) capitalized on this issue by stating that
énﬁrainmént takes place_gglz_at the critical value Ri, = CM and that Wy
= (0 when Riv > CM. Thus entrainment proceeds in jumps; whenever Riv
becomes subcritical the ABL-height grows'suddenly such that Ri, becomes
critical again. We do not consider this approach very attractive since
it may lead to entrainment rates that differ from timestep to timestep
by an order of magnitude. Driedonks (1982) also noted this

singular behavior of eq. (18), but instead assumed tentatively that the
effect of A% on the entrainment could bg incorporated in the other shear
generation term associated with the surface.friction. He omittéd the Cy~

term completely from (18) and instead changed the value of A' in (21) to

another empirical constant A. Thus he used as entrainment relations:
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(23)

3 3 3
w, + (A/CF)u* s

Bs
1

and compared this expression with observations to estimate the constants
to have the values Ct = 1,5, CF = 0.2, A= 5. An example of how such a

model performs in comparison with observations is given in Figure 2.

4.2 The stable ABL

The structure of the stable ABL is less well-established than that of
its unstable counterpart. The turbulence in the stable ABL is not very
strong and has to be maintained by mechanical production through wind
shear, while buoyancy and dissipation act as sinks for turbulent kinetic
energy. In the stable ABL other processes like radiative cooling can
also be quite important. Especially in cases with low wind speed the
turbulent fluxes are small and the cooling by longwave radiative flux
divergence can be of the same order of magnitude as the cooling by the
turbulent flux divergence (Garratt and Brost, 1981; André and Mahrt,

1982).

Due to the combined effects of turbulence and longwave radiation in the
stable ABL, there is a difference between the height from the surface up

to which there is a significant amount of turbulence (h b) and the

tur
height up to which there is a significant amount of cooling of the

initial temperature profile (hinv)’ the latter being larger. For the
height of the turbulent layer several expressions have been developed

from numerical and analytical models. Most of these expressions deal

with the depth of the turbulent layer in a steady state, i.e. in
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Figure 2. Observed (x) and calculated (——) values of the ABL-height h

for four days (indicated by year and day number). Calculations with Eq.

23.
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equilibrium with its external conditions (Nieuwstadt, 1984). Those
expressions are diagnostic since they give the height in terms of

variables at the same time. A well-known diagnostic relation is

by = 004 (L /f)%, (24)
where L is given by (14). In general there is reasonable agreement
between (24) and observations, see e.g. Nieuwstadt (1984a), for cases
with h/L > 1. When h/L < 1, the ABL is close to neutral and a value of h
= 0.3 u,/f should be taken. A suitable interpolation formula between
(24) and this neutral value is

b /L = (0.3 u,/fL)/(1 + (0.3/0.45h _ _ /L). (25)

turb turb

These expressions are diagnostic relations for a steady-state stable
ABL. However, the mean flow dynamics in the stable ABL react slowly and
will generally not be in equilibrium with the external forcing.
Therefore, several prognostic equations for the ABL-height have been
developed, usually in the form of a relaxation equation in which the
actual height approaches its steady-state value with a long time scale
(Zeman, 1979; Nieuwstadt and Tennekes, 1981). The latter authors use the
following rate equation in the stable case

oh h - h
turb turb eq
at B T ’ (26)

where heq given by (24) or (25) and T a time scale given by
8GS
T=-(g - o) /5¢ - (27)

+
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The foregoing expressions can be used to determine by rpe The height of
the significantly cooled layer or inversiom layer (hinv) is always

larger. There is no well-established relation between hinv and hturb'
From different data sets, both André and Mahrt (1982) and Driedonks et

al. (1985) gave on the average a ratio hinv/h ~ 3, however the

turb
variation in this ratio is quite large (1-10), and it is likely to be a
function of a bulk Richardson number, and the relatvie magnitude of the
radiative and turbulent flux divergences. Thus in order to clarify the

relation between hinv and hturb further studies, including detailed

radiation calculations, are needed.

The shape of the vertical profiles, e.g. of 0, in the stable ABL is not
quite as simple as in the unstable case. In cases with low wind speed
the gradient of © decreases monotonically with height and there is no
such thing as a jump-like behavior of O near the ABL-top. The profile of
© exhibits strong curvature and up to hinv has a shape like the exponen-
tial profile as in Stull (1983). In cases with stronger wind speed the
profile of © is often linear in the turbulent part of the stable ABL

above the surface layer and has stronger curvature between h and

turb
by, (Wetzel, 1982; Van Ulden and Holtslag, 1985). André and Mahrt
(1982) introduced the overall scaled curvature of the profile ova
between the surface and h; . as Y=(G(hinv)—ZG(hinv/2)+®S)/(O(hinv)—es)
and related y to an overall bulk Richardson number over hs v (RiB).
Although the scatter is large, the results indicate that for large
values of the bulk Richardson number (> 1) there is virtually no
relation with y, which is constant at a value of about - 0.6, about the

same as for an exponential profile. Thus for clear nights with weak wind

the cooling below hin is dominated by radiation, which has no specific

v

relation to the bulk Richardson number. For smaller values of RiB the
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curvature y becomes less negative and may even become positive. Thus in
these cases the turbulence exerts a stronger influence on the bulk

temperature structure and the flow becomes more mixed.

From the above it is clear that bulk relations for the stable ABL are
not well established. This is certainly partially due to the
complicating effect of radiation. Another aspect, however, is the time
scale for the evolution of the stable ABL. It is usually attempted to
express the bulk relations for the calculation of the surface fluxes in
the stable case (section 3) as well as the stable ABL-height and the
shape of the vertical profiles of mean quantities in the form of
diagnostic relations, i.e. involving only quantities that are local in
time. This concept of self-similarity holds only for quantities that are
in equilibrium with their boundary conditions or other governing
parameters. Thus the time scale for adjustment has to be short compared
to the time scale of change of external conditions. The time scale of
the turbulence in the stable ABL is usually much smaller than the time
scale of the mean variables (Wyngaard, 1983; Nieuwstadt, 1984b), thus
the vertical profiles of turbulent quantities can be satisfactorily
expressed in self-similar form. However, for the mean variables the time
scale for adjustment is slow and the concept of local equilibrium or
self-similarity becomes questionable, which is quite inconvenient for
bulk formulations, since the shape of the vertical profiles may be an

explicit function of time.

5. ENTRAINMENT EFFECTS ON THE MEAN PROFILES

In the section on the unstable ABL we used the assumption that all

first-order moments of ABL-variables, such as 0, q and a concentration
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of a passive scalar C are completely mixed up to z = h, so that their
values become independent of z. We assumed the turbulence in the ABL to
be strong enough to maintain these profiles and the conditions neither
at the top nor the bottom to inflﬁence the shape. This is usually a good
approximation for the 0 or @V— profile in a convective ABL. However, it
is often observed that other quantities, especially the specific
humidity q, exhibif a distinct gradient over.the ABL (André et al.,
1979). This might be explained from the schematic picture in Figure 3.
The air above the ABL is usually warmer but also dryer than the air
within the ABL. Therefore the flux of heat at z = h will be downward,
while the moisture flux is upward. Thus Eﬁé and 6§£ have opposite sign
(acting to increase the ABL-temperature from both sides)

while Eﬁ; and-aah have the same sign, entrainment acting to decrease the
ABL-humidity. Obviously this different flux behavior might have effects

on the structure of the mean profiles induced by entrainment.

We therefore relax the assumption of well-mixedness a bit and allow the
mean profiles to depend on z. We consider a scalar C with fluxes EE; and
fzﬁh at the ground at z = h respectively, and no internal sources or
sinks. We assume that the shape of the profile of C(z,t) behaves in a
self-similar way, i.e. that the time dependence occurs explicitly only
in the vertically-averaged value Cm(t). The existence of such a self-
similar profile requires that the turbulent time scale in the ABL,

Teurb h/w*, is small compared with external time scales imposed by the
boundary conditions, i.e. by the changing surface fluxlzaé(t) and the

flux at the top Eag(t), and it requires that the shape of the profile is

in equilibrium with the fluxes at the boundaries.

In a self-similar shape of the profile of C in the ABL the time does not
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Figure 3. Schematic profile of 6 and q and their respective turbulent
fluxes as observed in a convective ABL, where q is not constant with

height.
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occur explicitly. In non-dimensionalized form this shape will depend on
z/h and on the non-dimensional boundary conditions, i.e. on E&ﬁ/E%; .
We further assume that the ratio of the entrainment velocity to the
turbulent velocity scale in the boundary layer, i.e. We/W*, is very

small, so that the shape of C does not depend on it. After scaling C

itself with AC, that can be taken as Ch - CM, we can then write:
+
C(z,t) = CM(t) + AC.F(z/h, ‘a;h/as>, (28)

with F some universal function.
We are especially interested in the mean gradient over the ABL, which in

self-similar form can be written as

cw

s
(BC/BZ)M = W B

G('Ev?h/&'s), ‘ (29)

with G(x) some "universal" function of x ='EE£/265. Driedonks and

Tennekes (1984) argued that (29) should have as a tentative form

cw CW,

s )
(SC/BZ)M = a, v, b + a, woh (30)

where azlal should be of the order 5. Note that both a; and a, will be
negative. Thus we see that the entrainment—-induced flux has an effect on
the mean gradient in the ABL that is about 5 times larger than that of
the surface flux. Wyngaard and Brost (1984) found from large-eddy
simulations a ratio of the same order, but it was quife sensitive to the
precise definition of z = h in their model. André et al. (1979) found
about the same ratio from humidity observations, however, with a large
scatter, as did André and Mahrt (1983) with laboratory data. They also

found an enormous scatter and rather small correlations. The
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difficulties in testing a relation like (30) is partly caused by the
indirect and perhaps inaccurate way to estimate Eﬁ%, but it can also be
that effects that are as yet néglected are important. It may be possible
that the coefficients in (30) are not constants but are functionsvof a

set of suitable Richardson numbers.
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