WNANVHOWIWN 1VDINHD4L

3

86

SMS: Supervisor Monitor
Scheduler

F. Hollmann

Operations Department

January 1984

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1 ACKNOWLEDGEMENTS

Thanks go to Claude Guillerand who worked with me on the project and who gave me
an insight into Meteorology. ‘

Frank Hollmann.
August 1983.

* version I of the sub program was designed and implemented by C. Guillerand
and T. Stanford and ran operationally from August 1979 until April 1981.
A rewritten version II was produced by C. Guillerand and F. Hollmann, and
has run operationally since April 1981, with extensions by F. Hollmann in
December 1981.

2 Preface

This report is intended to give a description of ECMWF”s forecasting system, the
concepts employed at the centre for running operational weather forecasts and a
description of §ppervisor—§pnitorjgpheduler (SMS) which can be considered the
heart of the whole forecasting suite. It should be noted already at this point
that, although originally planned for ECMWF’s forecasting suite, SMS is general
purpose.

For the more technical reader a summary of operator capabilities and SMS

interaction commands follows. The paper will also give information on the
technical implementation of SMS and certain installation notes.

3 Suite Concept For Operational Forecasts At ECMWF

The basic flow of meteorological information at ECMWF is similar to the flow of
information in any meteorological centre in the world. ECMWF’s Meteorological
Operational System (EMOS) can be sub—divided into a number of logical sub-
processes like data acquisition, pre-processing, analysis, forecast, post-
processing and dissemination. Furthermore real-time operational aspects are
taken into account as well as graphical display of forecast results and a
systematic archiving. Many of these processes are asynchronous while others are
order-dependent and have to be synchronised. This basic scheme lead to the
definition of a suite.

3.1 Definitions: Suite, Family, Task, Event

The term suite is used for a logical structure describing any kind of processes
(synchronous and asynchronous). A suite is characterised by its suite type which
is a single letter.

Any such suite will consist of an ordered set of families as the next smaller
logical entities. A family is a logical structure describing the inter-relation
of processes belonging together.

In general a family will consist of a non-empty set of tasks with various
attributes (task attributes) and a possibly empty set of other families (with
event attributes) which all belong logically together. In this context
“processes belonging together” now means that if task, of familyF is executing
then taskciL .. task, of familyF will be candidates for execution sooner or
later and 1if family_, contains other families with event attributes these
families will be candidates for executions sooner or later as well. Every family
within a suite is defined by its 5-character family name, the first character
being the suite type followed by another letter and three digits. Within a suite
family names must be unique.

A task now 1is considered a batch job to be executed on some computer in the
local computer network. A task can be defined with certain attributes (as
explained later) to give enough flexibility; a task is identified by its 5-
character task name, the first two characters being equal to the suite type,
followed by another letter and a 2-digit sequence number. Within a family task
names (and task sequence numbers) have to be unique but tasks in different
families may have the same name.

The event in the concept is being used as a means of synchronising the
executions of families and tasks. Events can be set by tasks after they have
reached certain steps and are used to “trigger—off” new tasks in the same family

and to execute other families. It is important to note that the event is an
entity of a single family only, eg. an event set by a task of one family cannot
be used to trigger-off a task in a different family; but it is only possible to
trigger—off other families. This being necessary as the successful rum of two
different families might require to run a third family, where the intonation is
on “successful”, which otherwise would be impossible. An event is characterised
by a 5-character numerical quantity. The first two digits have to match the last
two digits of one task within that family where the event is to be used while
the last three digits are arbitrary event sequence numbers. Within a family
events have to be unique.

3.2 Family Definitions

3.2.1 “START”, “END”, “P~

Various times can be specified for a family like start—times and end-times which
will allow the execution of families at pre-defined times and/or only during
pre~defined intervals or only prior to a specified end-time. It is also possible
to specify periodic restart times in order to allow for applications which have
to run repeatedly. All three specifications are usable in any combination.

3.2.2 “TRIGGER”

The TRIGGER keyword is used in a family definition if that family is to be
triggered by event(s) issued by tasks from other families. The non-empty list
following the keyword must consist of pairs containing the family name of the
issuing task and the event itself (note that this definition uniquely identifies
one single task). This concept allows to link executions of different families
in a fairly complex way.

3.2.3 Equivalenced Families (<=>)

In cases of families equivalent to other families it is possible to simply
define: familya ¢=> family, and omitting the family body (see below) for
family . Of course, family, has to be defined (somewhere) within the suite.
Timers and triggers as defined above can be different for these families if any.

3.2.4 “TASK” And “FAMILY~

The TASK and FAMILY keywords are used to define the task and families, if any,
with their attributes as explained earlier.

3.3 Definitions For The Family Body

3.3.1."EVENT”

The “EVENT”~ keyword can be used for tasks and families in the family definition
- followed by a non-empty list of events = to define their inter-relation. Any
such event is expected to be set by some other task within the family (note:
events are unique within one single family). A task or a family is to be
triggered-off once all events have been set.

It follows from this approach that at least one task has to exist with no event
attribute.

3.3.2 “TIME~

In order to be able to start a task within a family at a particular time the
“TIME” keyword followed by a start time can be specified for any task. This
mechanism allows for even more flexibility as compared just with the time
attributes of the family definition alone.

3.3.3 “DAY”, “DATE”

As certain tasks are expected to run only on pre-defined days each week or at
pre-defined dates within each month provision is made for that by use of the

“DAY” parameter and “DATE” parameter respectively which have to be followed by a
list of at least one day or one date.

“DAY” and “DATE” cannot be used together.

3.3.4 “PRINT”

By default outputs of successful tasks initiated by the supervisor will not be
printed. To be able to receive the line printer listing of a task the “PRINT”
keyword can be specified.

Note that all outputs will be catalogued by SMS on the default permanent file
base for subsequent post—processing and that for all failing tasks and for all
tasks with a “PRINT” parameter outputs are also routed to the central 1line
printer. .

3.3.5 “NORESTART”

Experience has shown that the majority of all failing tasks will run to
completion on the second attempt. Thus, in case of a first failure of a.task,
SMS initiates a re-run automatically. On the other hand there are applicationms
which must not be re-run. To prohibit automatic resubmission of tasks the
“NORESTART” parameter must be specified. (The interested reader is referred to
the SMS Summary: Restart processing).

3.3.6 Machine Type Definition

SMS has been designed to work in a multi-mainframe environment consisting of a
maximum of two CYBERs and a maximum of two CRAYs. In order to run a suite
efficiently in such an environment a machine type attribute must be defined for
each task to indicate on which mainframe in the unetwork it is supposed to run.
It is also possible to define certain tasks as candidates for load levelling if
machines are available with that feature enabled.

The following keyword type parameters can be defined:
CYBER To run on any CYBER.
CYl To run on a CYBER with a logical ID corresponding to CYl.

CY2 To run on a CYBER with a logical ID corresponding to CY2.

CRAY To run on any CRAY (if more than one).
CR1l To run on a CRAY with a logical ID corresponding to CRI.
CR2 To run on a CRAY with a logical ID corresponding to CR2.

(CYBER, CYl, CY2, CRAY, CRl, CR2 have to have corresponding logical mainframes
IDs. This 1is explained in more detail in the S5SMS Command Summary: INGEN -
Initialisation File Handler).

3.4 Examples Of Family Descriptions

A small context-free language has been developed to define a suite. The
attributes and keywords defined in the previous paragraphs are actually terminal
symbols (keywords) in that language. The syntax is free-format, so it is up to
the user to write his suite definitions in a “readable” form. Commas and blanks
are valid separators. Any family must be defined starting with a family name and

-

terminating with a 7.7,

0E924,
TASK = OOEO1,
TASK = OOMO6, CYBER, EVENT = 01001,
TASK = OOKOO, CRAY, EVENT = 06001, DAY = (MON, FRI),

TASK = OOL35, CY2, TIME = 17:15, DATE = 15, NORESTART,
FAMILY = OK224, EVENT = 01001.

OK224, END = 23:59,
FAMILY = 00123, EVENT = 99001,
TASK = 00K99.

0K955, TRIGGER = (OE924,01001), (0K224,99002),
TASK = 00055, PRINT.

00123, START = 04:30, P = 00:30,
TASK = 00B51, CYl.

OK956 <=> 0K955, TRIGGER = (OE924,35001).

4 Functional Description Of The SMS—Subsystem

The following paragraph will give a functional description of the SMS subsystem
including the interface from user tasks and the operator interface. h

4.1 General Considerations

The SMS subsystem has been designed for the daily, weekly or other routine work
carried out on ECMWF’s computers. One main aspect was to avoid classical
operator intervention. This basically means to have a supervisory system
responsible for the automatic submission of jobs and with control over the
running of these jobs. Of course, operator intervention must be possible in
cases where the routine operation gets delayed by outside events and to not take

J
the operator”s responsibilities away completely. Actually, the central operator
must be able to change the pre-~defined schedule of SMS.

4.2 How To Get Started

4.2.1 Define Suites - Task Tables

The first step, of course, is to define a schedule, eg. a suite. SMS is capable
of handling up to 9 suites, the names of which can be chosen by the imstallation
(see below for installation notes). The formal definition of a suite as
explained in the previous chapter then defines the structure of the schedule
with all its interactions and dependencies. This formal definition will be
referred to from now on as a task table. Furthermore, every task defined in the
task table has to have a corresponding job deck (with the same job name) to be
invoked by SMS. These job decks have to contain valid JCL for the machines the
jobs are supposed to run on. Also provision has to be made for the end-of-
job/abort—job conditions (cf. SMS Command Summary: ENDT/ABTT).

It is obvious that if certain jobs are to set events (as defined in the task
table) that the actual jobs have to send these events to SMS.

The TTGEN utility is provided within the subsystem which will a) syntax—check
and semantic-check a task table definition, D) verify task: job-deck
correspondences and c) generate the task table file for SMS if so requested. For
b) and c¢) all job decks must be supplied as single records on a file for TTGEN.

As SMS efficiency largely depends on the structure and the correctness of these
task table files, the TTGEN utility is rather a comprehensive piece of software.

4.2.2 The Initialisation File

A so-called initialisation file has to be generated as well as one of the
preliminary actious. A utility program “INGEN” (cf. SMS Command Summary) has
been provided to generate, change or 1list the contents of an existing
initialisation file. This file is to contain the proper logical mainframe IDs
corresponding to the task table machine type definitions (CYBER, CYl etc.), the
terminal ID of the SMS operator Console and an optionmal list of up to four
terminal IDs for so-called permissible jobs; eg. that also any job, not
initiated by SMS, which has got a remote batch routing ID equivalent to one of
these IDs will be allowed to make an SMS request.

4.2.3 SMS: Initialisation - Work Environment - Active Suites

SMS is a CYBER CPU program to be initiated by the operator at a free
controlpoint (the parameter description can be found in the SMS Command .
Summary). SMS will first establish the work environment (also described in the
SMS Command Summary) and will then go into processing mode, eg. process any
queued function requests, perform internal maintenance tasks and respond to any
new function request.

The central operator is given a DECWRITER terminal which functions as his
operator”s console, eg. the terminal serves as SMS” message logging device and
can also be used for SMS commands as can be the central console. Messages from
SMS are indented such that they can be easily distinguished from commands.

In order to “start a suite” the operator must enter a “DATE” command (cf. SMS
Command Summary) to set a new date for this particular suite. This date is being
copied to each task iInitiated by SMS later, so these tasks can get hold of it
which subsequently allows to completely re-run certain suites for particular
dates.

Internal processing of this command implies various checks. In particular the
task table file mentioned earlier has to exist and will be processed. At the
same time a so-called task table back-up file 1s being created which has a
similar structure as the task table file but 1is being used for further
processing to save pertinent information of the suite during execution.

Once a task table back-up file exists a suite is considered active.

During initialisation now when SMS is establishing the work environment an
attempt is made to attach all back-up files of all defined suites to determine a
1ist of all active suites. For all those suites the corresponding task table
files have to exist as well and, of course, both files have to pass a
consistency check.

The operator may use the “SUITDAT” command to obtain a list of the active suite,
with their corresponding dates and start times. Also the second line of SMS” B-
display message contains the identification of all active suites.

A suite is removed from the list of active suites using the “STOP,suite type~

command (cf. SMS Command Summary).

4.3 The Status Of Families And Tasks

Each family within a suite has always got a certain status (Family Status)
- associated with it as well as each task within a family. These status flags are
important because, as complexity grows, more and more possibilities arise for
erroneous processing and errors invoked by operating personnel. Furthermore,
only these statuses give an exact picture of the suite, given a snap shot at a
particular time.

4.3.1 Family Status Flags

When a suite becomes active using the “DATE” command all family status bits are
OFF.

4.3.1.1 E-Bit (Executable Bit)

Talking in processing terms nothing will happen to a family unless that family
is executable, eg. unless the E-Bit is set. The E-Bit is set using the “EXEC”
command or the "EXST” command.

When the operator is to start a suite he will usually enter one of the above
commands for a particular family or a range of families in the ordered set of
families defined in the task table. From this point onwards these families are
candidates for processing, but note: they are only candidates; nothing more
happens.

It is therefore possible to define different sets of families within a single
suite which the operator can make eligible for execution at different times.

4.3.1.2 S-Bit (Start Bit)

The S-Bit of a family will be set once this family gets started, eg. the “START”
command has been used for an executable family or “EXST” has been issued for a
family not yet executable (note: “EXST” is functionally equivalent to “EXEC”
followed by “START”) or in the case of certain events having occured a family
was dependent upon.

To start a family will first result in a check of any timers defined for that
family (eg. “START”, “END” or “P7). If there is a start time ahead of the
current time an entry for this family will be made in the so-called Delay Table
(which is unique to each suite on the back-up work file) and processing
terminates. If there is an end time which has already been passed the family C-
Bit (see below) will be set to indicate family completion (Note that in this
case the A-bit (see below) is not set). In all other cases the family will be
made activ (see next chapter).

4.3.1.3 A-Bit (Active Bit)

The A-Bit for a family will be set once SMS decides to make a family active.
This happens in the case as explained in the previous paragraph and it also
happens when SMS decides to activate a family which had been started beforehand
and which had an entry in the Delay Table.

When a family is activated the family body description is read from the task

table file and copied to the back-up file. Then an attempt is made to initiate
all tasks with no events (but see below for “Task Status Flags”).

4.3.1.4 C-Bit (Complete Bit)

The family C-Bit gets set, once all tasks within that family are complete (see
below for task C-Bit) and if there are no events to be set from tasks within
that family. The latter is important as there is no direct application-to—SMS
interface which implies that an “end-of-job” notification might get processed
before a “set event” notification. This becomes clear since in the case of a
“family-complete” condition not only the family C-Bit is set but also the space
occupied by the family body description on the back-up file is freed (therefore
a family can only be set complete if all events have been set as well, as
otherwise no family description would be present anymore).

4.3.1.5 F-Bit (Force Bit)

The F-Bit is another important status bit which will be set for a family if the
operator uses the “EXEC” command with the “F” parameter. This mechanism can be
employed (and should only be employed!) if a family or a range of families has
to be re-run.

4.3.2 Task Status Flags

Each task within a family has certain statuses associated with it. Once a family
becomes executable, eg. the family E-Bit is set, all of the task status flags
are OFF.

4.3.2.1 5-Bit (Start Bit)

The S-Bit of a task will be set once a task is to be initiated. This is the case
for an active family (family A-Bit set) and no events have to be set for a task.

If a task is to be initiated it will first be checked if that task has been
defined with a “DAY” parameter or a “DATE” parameter. Should these parameters
indicate that the task should not run the task will be set complete (C-Bit - see
below). Please mnote that the task status will only show A-Bit and C-Bit!
Furthermore, all tasks within this particular family waiting for events from
this task are set complete as well, since the events will never be sent. These
tasks then will only show the C-Bit. Processing then continues to set all
families complete which are dependent on an event from the task mentioned above.
These families in turn will only have the E-Bit and the C-Bit associated with
them. The following example will highlight this fact:

0A001,
TASK = 00AOl DATE = 12
TASK = 00A02 EVENT = 01001

FAMILY = 0A002 EVENT = (01001, 02001).

0A002,

TASK = 00AO3.

0A003, TRIGGER = (0A0O1,01001)
TASK = 00AO4.

Then type at the operator comnsole: “EXST,0A001,0A003.”

(Note: this command is equivalent to: “EXEC,0A001,0A003.”
“START,0A001.7)

The above command will set the E-Bits for families O0A00l1..0A003 and will start
0A001 (S-Bit set and subsequently the A-Bit). Only on each 12th of a month task
00A01l will run which in turn will invoke 00AO2 and the two other families as
well. On all other dates task O00AOl will not run and will be set complete
followed by the other tasks and families forced complete as well. Last not least
it is determined that also family OAOOl has to be set complete as all tasks in
that family are complete and no family is waiting for an event to be sent from a
task in this family.

I1f, following the above considerations, a task is a candidate for execution, it
is checked if there is a start time (“TIME” parameter) defined for this task
ahead of the current time. In this case an entry is made for this task in the
Delay Table and processing terminates (note that only the task S-Bit is set). If
the start time has been passed already or in the case of no start time the task
status will be changed to active (see next paragraph).

4.3.2.2 A-Bit (Active Bit)

The A-Bit for a task will be set if this task has to be activated, eg. if the
task has to be submitted for execution. This is the case as consequence of the
explanations in the previous paragraph and also in the case when SMS decides to
activate a task which has been started beforehand and which had an entry in the

10

Delay Table. (There is a further exception case for forced executions of
arbitrary tasks, cf. F-Bit below).

When a task is to be activated the job file is read from the task table file
(where it has been stored by TTGEN) and an input record is copied to the end of
the file containing family name, task name and the date of the suite. This job
is submitted to the operating system for execution and the jobname assigned by
. the operating system is saved in the family body description for this task on
the back-up file.

4.3.2.3 C-Bit (Complete Bit)

The task C-Bit will be set, once the end-of-job notification is received by SMS.
Processing of this condition also includes a check of the family-complete
condition. Furthermore an entry is made in the so-called output queue table
(which is common to all suites) for future use in one of the maintenance
functions to attach the output file of the job and catalog it on the default
permanent file base and also produce a line printer output in case of the
“PRINT” parameter being defined for this task.

4.3.2.4 T-Bit (Abort Bit)

The T-Bit for a task will be set, once SMS receives the first task—abort
notification for this task. As explained earlier one further attempt is made to
run this task again unless the “NORESTART” parameter has been used. Upon a
second failure of the job the operator is informed via his DECWRITER console
that some action is required. In both cases an entry in the output queue table
will be made and the outputs of these jobs will be printed irrespective of the
“PRINT” parameter setting.

4.3.2.5 P-Bit (Force Bit)

If the operator decides to run a task independent from the normal schedule of
the suite he may do so by means of the “RUNTSK” command (cf. SMS Command
Summary). In this situation the task F-Bit will be set which flags this
situation. :

4.3.3 The “STATUS” Function

The “STATUS” command is provided which will give status information of the
complete suite, a special family, a special task within a certain family, all
incomplete families within a suite and will give information of the contents of
the Delay Table. An output is produced from the back-up file for an active suite
and formatted in the same way as the task table definition with the appropriate
status bits indicated as well. Furthermore a list of all triggered families is
provided for a family when this family appears in any “TRIGGER™ list.

A detailed description can be found in the SMS Command Summary.

4.4 The Processing Of Suites

11

4.4,1 General Remarks

From the explanations in the previous sections it becomes clear that suites can
be defined which will run automatically under SMS control once the operator has
entered the “DATE” command and “EXEC” or “EXST” commands.

It must be understood that a computing environment like the one at ECMWF with
two CYBERs sharing mass storage units and one CRAY connected via channel
couplers to each of the CYBERs must be considered fairly loosely connected; in
particular there are mno general facilities for application—~to—application
communication within the complex. Within the standard operating system NOS/BE
such an interface is provided, known as System Control POINT. This feature is
being used for inter—job communication in the SMS system for all those jobs
running on the same CYBER as SMS. Jobs running on the other CYBER will determine
that there is no SMS running and will write their requests to a shared permanent
file which will subsequently be processed by SMS. For CRAY Jjobs the
implementation is as such that a small job is routed via the CRAY station
interface into the CYBER input queue which will execute with system job priority
and make an SMS request like all other CYBER jobs (cf. “PGMFCT”: SMS Command
Summary). It is important to note that these types of communication are one-way
only, eg. jobs do not have to wait for an acknowledgement, a response or a
return code. The situtation is a bit different for the SMS operator interface
which uses bi-directional communication. That is why SMS should always run on
the mainframe which also provides the INTERCOM service. It was, on the other
"hand, explained earlier that all operator commands can also be issued from the
main console; what will be lost in this case, also assuming that the INTERCOM
‘service is not available on the SMS mainframe, is the log provided by SMS on the
DECWRITER console. For this situation the “LOGFILE,PRINT” command is available
which will produce, when called periodically, a continous central line printer
log equivalent to the terminal log.

4.4,2 “RESTART” Processing

As explained above SMS has only little control over jobs executing in the
computer complex. It is especially impossible to get a notification of all
actions a job is performing, eg. if the operating systems decide to purge a job
from the system or if the central operator decides to kill a job.

A mechanism has been implemented referred to as “RESTART” processing which can
be invoked by the operator either when he calls SMS to a control point or at any
later time using the “REST” command (cf. SMS Command Summary). During “RESTART”
processing SMS will sample all queues in the computer network and make sure that
all of the jobs initiated by SMS do exist in one of the queues. Since this
operation is very time consuming it is not executed as part of the periodically
called maintenance functions but has been made an operator command. If SMS is
unable to find a particular job the operator is notified and has to decide
whether this task is to be re—initiated. The interested reader is referred to
the SMS Command Summary where “RESTART” processing is described more fully.

4.4.3 SMS Operator Control

The whole idea of the SMS system is to be able to define a schedule for jobs to
run without operator intervention. Nevertheless the central operator has been
given full control over SMS and the running of any suite via his command
terminal. Thus he is basically able to change any suite schedule. A detailed
description of all operator interaction commands can be found in the SMS Command
Summary.

12

4.4,4 SMS Interaction Commands

4.4.4.1 “Issue Event To SMS”

As the main entity in the system is the event, every task submitted by SMS to
the operating system for execution has to be able to send an event to SMS. This
is either possible on the control card level or in a subroutine call. The jobs
simply call-up SETEV and provide the event number.

4.4.4.2 “Write Message To Message Logging Terminal”

A facility has been provided for jobs (initiated by SMS) to send messages to the
SM5 Operator Comsole. This is particularly useful for large suites to get a
notification when certain steps have been reached. Again, a subroutine interface
and a control card call have been provided for this purpose.

4,4.4.3 “End~Task Notifications”

All jobs initiated by SMS have to issue a notification of successful completion
or of unsuccessful completion as well. Two control cards have been provided
("ENDT”, “ABTT”) have been provided to serve this purpose. They must be placed
at the end of each job.

5 Operator Capabilities And SMS Interaction Commands

This chapter defines a minimum set of operator capabilities with the SMS system.
These are to allow the central site operator and the command terminal operator
(who can be the same) to status and control SMS and the running suite(s). The
chapter also definmes all other interaction commands plus some special programs
for initialisation and analyses.

The following chapter is organized as follows:

- Console capabilities.

- SMS operator commands.

- Other SMS commands.

- Special programs.

Commands mainly to be used for SMS control are marked as such (“*%%*7),

Where applicable information is also given about error wmessages or other
messages requiring special attention by the user, although it should be noted

that that list is not complete since other messages not listed here are self-
explanatory.

5.1 Console Capabilities

13

5.1.1 SMS - Supervisor (*¥%)

5.1.1.1 Control Card Description

| n.X sMS {parameter list}. | (F**)

Initiate the supervisor at a clear control point.

The following optional non—-positional parameters are allowed:

RESTART {=xyz} or

REST {=xyz}

R {=xyz}

CT=tid

MT=tid

ALLMES

POSLF

or

Execute “RESTART” function for those suites indicated by “xyz~
(each character has to be a valid suite type). In the keyword-
only case the function is executed for all (installation) defined
suites.

The following suites have been defined:

M: Maintenance suite.
O: Operational suite.
E: Experimental suite.
C: Accounting suite.
A: Experimental suite.
B: Experimental suite.
R: Research suite.

T: SMS test suite.

Note: Only one of the above parameters “RESTART”, “REST” or "R~

should be used.

Default: no "RESTART” to be performed.

Command terminal ID. “tid” must be a 2-character combination.
Default: command terminal ID from the initialisation file.
Message terminal ID. “tid” must be a 2-character combination.
Default: same as CT.

Keyword—only parameter to send all messages to the message-
logging terminal.

Default: do not send all messages.
Keyword-only parameter to “position” the supervisor”s logfile at

the current EOI. This will affect the commands “LOGANAL” and
“LOGFILE”.

14

Default: Logfile position will not be changed.
IDL=time Idle down time in seconds.

Default: 5 seconds.
RCL=time Idle recall time in milli-seconds.

Default: 0.5 seconds.

0OPQ=time Time to examine output—queue table periodically in seconds.

Default: 5 minutes.
FRQ=time Time to re—examine request—file in seconds.

Default: 2 minutes.

HK=time Time for various housekeeping tasks to be performed periodically

in seconds.

Default: 5 minutes.

5.1.1.2 B-DISPLAY Description

The first line of the supervisor”s B-DISPLAY describes SMS” current action while

the second line holds statistics information:

../et/mt mecevess sescsavas
wof/CE/ME=A ceevrons cacceccns
o /CE/DOWN ceveeans sosnsenss

. - - ~ suite index still loaded

| | | active suites

I | remote batch IDs for permissible jobs

| | message terminal ID (mt) with ALLMES indicator or

|] “DOWN” if SMS was unable to send messages.

| command terminal ID (ct).
remote batch ID for jobs running under control of SMS -
this is the ID found in the R and H-DISPLAYs on the CYBER
and the STATS-DISPLAY on the CRAY (installation parameter).

|
|
I
|
|
|
l
|

5.1.1.3 Important Messages During Imitialisation

SMS initialisation is a multi-stage process and messages are
accordingly.

5.1.1.4 Stage I Messages -~ Low-Level Environment

The following error messages are produced during the first stage
initialisation followed by an abort of the control point:

— ERROR IN NUMERICAL PARAMETER.

ordered

of the

15

~RESTART- PARAMETER IN ERROR.

ERROR IN -TID—- PARAMETER.

NOT PROPER OVERLAY LOAD.

SMS bug: an analyst should be consulted immediately.
CEJ ﬁISABLED.

The “CEJ/MEJ” switch on the deadstart panel has to be flicked to “ENABLE”
and a deadstart has to be performed.

PERMISSION CONFLICT FOR LOGFILE.

Another user has SMS”™ logfile attached. This usually happens in a multi-
mainframe environment if an attempt is made to bring up the supervisor on
both mainframes.

REQUEST ERROR nnnn FOR LOGFILE.

Consult an analyst.

CATALOG ERROR nn.

Consult an analyst.

ATTACH ERROR nn FOR 1fn

Consult an analyst.

. INSUFFICIENT PERMISSIONS ON LOGFILE.

We do not have READ, MODIFY and EXTEND permissions for our logfile, eg.
some other user has the file attached.

SETP LOGFILE ERROR.
Can only happen with use of "POSLF” parameter.
NO DATA ON INITIALISATION FILE

The initialisation file is empty. Run “INGEN” to generate the file.

5.1.1.5 Stage II Messages — High Level Environment

The following errors are detected during stage II of the initialisation process.
The errors within the first group are fatal as the integrity of the work file(s)
is somehow destroyed. The messages should be acknowledged with an "n.GO” type-in

to

resume supervisor execution (without the suite in error). An analyst should

be consulted immediately.

_+—SULTE-*STA * FILE SIZE ERROR - FATAL
__«—SUITE-*STA * CHECKSUM ERROR - FATAL

__-=SUITE-*STAS*/*STAB* INCOMPATIBLE - FATAL

16

This is almost likely a case where someone has generated a mnew task table
source file STAS without purging the old back-up file STAB (cf. description
of TTGEN).

- _3—SUITE—*STA_f ATTACH ERROR - FATAL

The error code should be looked up in the SPRM and an analyst should be
called if necessary.

The following error messages are related to the file-request interface.

—— 1fn ATTACH ERROR
N.CFO NEW OR ABT

An “n.CFO” type-in is required to either generate a "NEW~ file “1fn” or to
abort (“ABT”) the control point.

Note: After a type-in of “NEW™ requests stored on a possibly existing
request—-file “1fn” are lost. So be sure !!

-~ 1fn SIZE ERROR __
N.CFO NEW OR ABT

An “n.CF0~ type—in 1is required to either generate a “NEW”~ file “1fn” or to
abort (“ABT”) the control point.

Note: After a type—~in of “NEW”™ requests stored on a possibly existing
request—-file “1fn” are lost. So be sure !!

Two more errors are reported to the dayfile. In either case an analyst should be
consulted.

—- ®kkk% REQUEST ERROR FOR 1fn ***k%
*kk%% VERY SERIOUS — CALL ANALYST ¥k

—— %%%¥% CATALOG ERROR FOR 1fn ¥*&¥k%
k%k% VERY SERIOUS - CALL ANALYST *¥*%¥%

5.1.1.6 Stage III Messages — Mainframe Logical ID Check

In a multi-mainframe environment a special logical ID (LID) has to exist for the
mainframe running SMS. A flashing B-DISPLAY message

—— TYPIN -ADDID, — REQUIRED.
reminds the central operator. The message will disappear after the provision of
the LID.

(Note that this LID is automatically provided by the peripheral program 1lUI, the
ECMWF ID handler).

5.1.1.7 Stage IV Messages — Restart Mode

If the "RESTART” control card parameter was used restart mode will be invoked as
last action in the initialisation process. (The same function is also performed
in response to the “REST” command).

17

If any jobs supposed to be active are not in the computer system the operator is
informed by a flashing B-DISPLAY message:

- family/jobname MISSING —~ TO BE RESTARTED
N.CFO YES OR NO

or

—— family/jobname MISSING —- TO BE RESTARTED
N.CFO YES OR NO —— NORESTART BIT SET

to which he has to respond accordingly. Any job supposed to be active which is
already in the CYBER output queue will cause a message to be sent to the
terminal:

- family/task: jobname ALREADY IN OUTPUT QUEUE
family/task: NO NOTIFICATION OF TERMINATION YET

and the following flashing message to the supervisor”s B-DISPLAY:

— family/jobname ALREADY IN OUTPUT QUEUE
WAITING FOR N.ACK

This message has to be acknowledged with an “n.ACK” type—in to ensure operator
notification as the terminal message might not get sent if the message terminal
is down. '

This situation should be carefully investigated. Under normal circumstances it
should only occur if jobs have been terminated by deadstart recovery procedures
(outputs of deadstart recoveries to be checked for that) in which case the jobs
should be restarted using “RUNTSK” and the outputs should be either evicted or
diverted to cemntral (the above sequence being important).

There is also a possibility that CRAY jobs and to a lesser extent CYBER jobs may
become affected due the fact that communication from the CRAY 1is not a
synchronous process and/or certain requests might still reside on the request
file which has not yet been processed. In these cases the “REST” command should
be used a couple of minutes later which will show in most cases that the problem
has been resolved. Any files still being reported should be treated as follows:

—- Divert output files to central printer and examine the dayfile.

- If the jobs ran to completion, do not restart them; otherwise a RUNTSK is
necessary.

If an output has been diverted to the central printer any subsequent restart
will report this job as missing in the system (as explained above) as long as it
has not been restarted.

18

5.1.2 “n.X 0PS,command.” Interface (¥*%%*)

A1l supervisor interaction commands (cf. mnext chapter) can be issued from the
CYBER console:

| |
| n.X OPS,command. | (**%)

This interface to the supervisor is to be used once INTERCOM is not available.

At the present moment there is no direct message logging facility in case
INTERCOM is mnot available. “n.X OPS,LOGFILE,PRINT.” can be wused in this
situation to print the logfile on the central line printer (cf. description of
“LOGFILE”).

5,2 SMS Operator Commands

Supervisor interaction commands are normally issued from the command terminal.
Please note that the INTERCOM routing ID of that terminal (which can be found
out by typing ASSETS) has to be the same as the one shown in the supervisor”s B-
DISPLAY (cf. “B-DISPLAY Description”) for the command terminal. Commands issued
from other terminals are ignored by SMS.

5.2.1 ALIMES - Set/Clear ALLMES Indicator (**#*)

@]
=z

ALLMES, (Fk*)

Q
rrj
o]

The “ALLMES” command is intended to set or clear the ALLMES indicator (cf. “B-
DISPLAY description” of SMS), eg. to instruct the supervisor to send all
messages to the message logging terminal (“ON”) or to send just those of general
interest ("OFF7).

19

5.2.2 DATE - Initialise New Suite (**%*)

| DATE,suite type,day,date {,time} | (*&*)
|

The “DATE” command is the only command to initialise a new suite.

suite type One letter describing the suite to be initialised.

For installation defined suites see description of “SMS~.

day Day of the week for “date” (MON, TUE, WED, THU, FRI, SAT, SUN)
date Date for suite in the format: yy/mm/dd.
time Optional start time for the suite in the format: hh:mm.

A “DATE” command for a suite with active/incomplete families and/or inactive
families which are stored in the Delay Table DT will produce a message:

+eses INCOMPLETE FAMILIES —— GO/DROP
(-GO- FOR NEW DATE/-DROP- TO IGNORE)

“DROP” should be typed if the request is to be ignored. "GO~ will cause the
supervisor to “go ahead” to initialise a new suite.

In case of the above message “STATUS,suite type,INCOM” can be used (after
“DROP”) to see which families are affected.

5.2.3 EXEC — Set E-bit(s) (***)

| ,family n {,F}
EXEC,family 1 |
I ,,F

(***)

Set the EXECUTABLE-bit (E-bit) for “family 1° or the ordered interval [family
l,family n]. A third optional parameter “F” can be specified if families shall
be re-executed for some reason. This will be only necessary in exceptional cases
and should be treated very carefully.

20

Note that the E-bit has to be set for a family before anything can “happen” to
it, eg. before the supervisor will work with it.

5.2.4 EXST - Set E-bit(s) And Start First Family (¥*¥%¥)

| ,family n {,F}
EXST, family 1 |
s F

(***)

—— — i O o]

Set the EXECUTABLE-bit (E-bit) for “family 1 or the ordered interval [family
1,family n] and start “family 1. A third optional parameter “F~ can be
specified if families shall be re-executed for some reasom. This will be only
necessary in exceptional cases and should be treated very carefully.

Note that the “EXST” command is an abbreviated and thus recommended form for:

EXEC, family 1,...
START, family 1

The effect of a family being started is that first of all the START-bit (5-bit)
will be set for that family. Secondly the family will be activated unless there
is a start time and/or an end time for the family involved which might result in
the family being entered into the so—called Delay Table (DT) to be activated
later on or it might result in just the family E-bit being set in case of an end
time which has already been reached. Activating a family actually results in the
ACTIVE-bit (A-bit) being set and in all tasks (jobs) without events in that
family being initiated. ‘

5.2.5 INITMES ~ Initialise Message Terminal (**%*)

| - |
| INITMES {,tid} | (%)
I !

The “INITMES” command is intended to initialise the message terminal. It is to
be used in case the supervisor”s B-DISPLAY message shows “DOWN” in the message
terminal ID field. This is the case if INTERCOM was down or the terminal was
logged-out and the supervisor attempted to send a message to that terminal. Note

that the command is only necessary if “DOWN~ is shown in the B-DISPLAY. “tid” is
for analyst use only to initialise a message terminal different from the command
terminal. »

21

5.2.6 LOGFILE - Logfile Handler (%*%*)

| PRINT {,ALL} {,ALLMES}
LOGFILE, |
| ARCHIVE

(***)

This program is used to handle the supervisor”s logfile.

“LOGFILE,PRINT” will print those messages from the logfile on the central line
printer which usually appear on the wmessage logging terminal. Note that only
messages since the last “LOGFILE,PRINT” are affected. Thus the outputs of
subsequent calls form the complete operator”s log.

If the parameter “ALLMES” is added all logfile messages will be included in the
output. This feature will normally used by analysts only.

The parameter “ALL” in the end will print messages from beginning of information
of the logfile (and not since last position).

The output listings are marked as LOGFILE.
“LOGFILE,ARCHIVE.” will re-catalog the logfile as the next highest cycle of

“LOGFILEARCHIVE” and generate a new logfile. This feature shall be used in
weekly operator procedures to avoid an indefinite growing of the file.

5.2.7 PROPQT - Process Qutput—Queue-Table (**¥)

| I
| ProPQT | (**%)
I I

Process Qutput—Queue-Table. This command should be used if the output of aborted
jobs is required immediately (which usually would be printed later - cf. “0PQ -
parameter for SMS).

This command is only meaningful in a situation after the “task—abort” message
has been received at the message logging terminal.

22

5.2.8 REST — Restart Suite(s) (¥*¥%)

| |
| REST {,xyz} | (¥%%)
|

Invoke restart processing for the indicated suites “xyz” (each character has to
be a valid suite type). If no parameters are used the function is executed for
all (installation) defined suites (for details see description of “Phase IV --
Restart Overlay” for the supervisor).

5.2.9 RUNTSK - Run Task (**%)

L |
| RUNTSK,family,task | (R**)
| |

The “RUNTSK” command can be used to run a task (job) independent from the family
concept. Both parameters family name and task name are mandatory.

Care is required since re-running tasks can have disastrous results.

5.2.10 SETIM - Set/Clear Time(s) For Family Or Task (**%)

SETIM,FAMILY=family {,TASK=task} {,START=hh:mm}

} (*¥%)
= {,END=hh:mm} {,P=hh:mm}

SETIM can be used to set/clear start, end or periodic restart times for families
or set/clear start times for particular tasks.

Any time has to be in the format “hh:mm”. A value of 707 will clear any
associated time.

Note that using the ~SETIM” command with “START=0" is the only way to force the
start of a family or a task which has an associated start time and is stored in
the delay table DT.

23

5.2.11 SETUP - Set—up Command/Message Terminal (*¥*%)

| SsETUP l (Fx%)

This procedure has been tailored to set—up the command /message terminal for
ECMWF s requirements. It should always be called after a “LOGIN”.

5.2.12 SMSLOG - Procedure To Handle Back—-up Logfiles (¥*¥%)

| |
| sMsLoc | (F*%)

I

This procedure should be included into the set of weekly operator”s procedures.
The idea being that the archived logfiles (cf. description of “LOGFILE”) are all
purged after a full permanent file dump followed by another “LOGFILE,ARCHIVE -
call to archive the current logfile which will then be available for the
following week for inspection.

5.2.13 START - Start Family Or Task (***)

| ,task {,F}
START, family |
I ,’F

(***)

Start a family or a task. A third optional parameter “F” can be specified if
some families or tasks shall be “re-started” for some reason. This will only be
necessary in exceptional cases.

The effect of a family being started is that first of all the START-bit (S-bit)
will be set for that family. Secondly the family will be activated unless there
is a start time and/or an end time for the family involved which might result in
the family being entered into the Delay Table DT to be activated later on or it
might just result in the family E~bit being set in case of an end time which has
already been reached. Activating a family actually results in the ACTIVE-bit (A-
bit) being set and in all tasks (jobs) without events in that family being
initiated.

24

Starting a task results in the START-bit (S-bit) for the task being set . If
there is no start time involved the task will be initiated and the task ACTIVE-
bit (A-bit) will be set. In case of an associated start time a Delay Table entry
will be made for that task.

Note that the commands “START,family,task,F” and “RUNTSK,family,task”™ are
equivalent. For cautions see description of the “RUNTSK” command. :

5.2.14 STATUS - Status Enquiry Facility (#**%)

suite type

suite type,TERM
suite type,INCOM
suite type,DT
family {,task}

STATUS, (*%%)

The “STATUS” command can be used to obtain status information about active
suites.

The first two formats will print the complete status of a suite on the central
line printer or at the command terminal. The banner page for a line printer
output listing is “STATUSX” where “x” denotes the suite type. Please note that a
terminal print out can be very time consuming!

The third format will give the compiete status of all incomplete families and
all inactive families stored in the Delay Table DT at the command terminal.

The fourth format will print the contents of the Delay Table DT for the
indicated suite.

The last format can be used to obtain a status printout of a particular family
or one task within that family. Please note the convention within the SMS-system
that the first letter of a family name and the first two letters of a task name
are always equivalent to the suite type. Thus the suite can uniquely be
determined from for example the family name.

Note that everything is written to the file OUTPUT if “STATUS” is called from a

non—-INTERCOM job (eg. “n.X OPS” interface etc.) as otherwise no output could be
obtained.

25

' 5.2.15 STOP - General Stop Command (**%*)

| smMs
STOP,| MES
| suite type

(***)

The “STOP,SMS” command should be used to stop the supervisor. For completeness
it should be noted that the supervisor”s control point can also be dropped or
killed at the comsole to achieve the same.

In the form “STOP,MES” the supervisor can be instructed to logically “terminate”
the message terminal, eg. messages are no longer sent to the terminal ("INITMES”
is the reverse command).

In the final format “STOP,suite type” a suite can be terminated. Note that this
is the only way of removing a suite from the list of active ones.

An attempt to stop a suite with active/incomplete families and/or inactive
families which are stored in the Delay Table DT will produce a message:

«ee.. INCOMPLETE FAMILIES —-—- GO/DROP
(-GO- TO STOP SUITE/—DROP- TO IGNORE)

“DROP” should be typed if the request is to be ignored. “GO” will cause the
supervisor to “go ahead” to stop the suite.
In case of the above message ~STATUS,suite type,INCOM” can be used (after

“DROP”) to see which families are affected.

5.2.16 SUITDAT - Date And START Time Of Active Suites (¥**%)

| |
| SurTpAT | (F**)
I

Print date and start time for every active suite.

5.3 Other SMS Interaction Commands

The following programs (apart from. “SMSFCT”) can be used in the JCL of
tasks/jobs initiated by the supervisor itself. The availability for CYBER or
CRAY jobs is indicated for each of them.

26

5.3.1 ABTT - Task~Abort Notification

[
ABTT |
|

“ABTT- 1is used to send a ~task—abort” notification to the supervisor. The
control card is preferably placed after an “EXIT,S” statement in the control
card stream (cf. also “ENDT”) of a job.

“ABTT” is available for CYBER and CRAY JCL.

5.3.2 ENDT — Task—-End Notification

“ENDT”~ is used to send a “task—end” notification to the supervisor. The control
card is preferably placed before an “EXIT,S” statement in the control card
stream (cf. also “ABTT”) of a job.

“ENDT” is available for CYBER and CRAY JCL.
A typical job should be (NOS/BE JCL):

JOB,v.. .
ACCOUNT,

ENDT.
EXIT,S.
ABTT.

Please note that the above construction will only give the desired effect if the
job is mnot killed by either the operator or the user itself in reprieve
processing.

27

5.3.3 ISSEV - Issue Event

| |
| ISSEV,event |
| |

“ISSEV- can be used in a control card stream to issue an event to the
supervisor. “event” has to be a 3-digit (!) event number. This routine has been
designed to be compatible with the procedure interface “SETEV (event)”.

“ISSEV” can only be called within CYBER JCL.

5.3.4 ISSWMES - Write Message To Terminal

I |
| ISSWMES,mes |
I |

“ISSWMES” allows to send a message to the message terminal. “mes” is the message
to be sent which should preferably be terminated by the escape character "~ .
The routine has been designed to be compatible with the procedure call “WMES

(message)”.

“ISSWMES” can only be called within CYBER JCL.

5.3.5 SMSFCT - External Calling Facility

|

| SMSFCT,FCT=...,JN=...,TID=...,SUITE=...
| FAMILY=...,TASK=... {,EVENT=...} {,F}
I

— —— e |

This program has been writtem to allow communication with the supervisor from
other mainframes, eg. all relevant information can be passed on the control
card.

Please note that calls to “SMSFCT~ are generated by programs (which have been
initiated by the supervisor) which, of course, can compute all required
parameters.

FCT

TID

SULITE

FAMILY

TASK

EVENT

28

Function to be performed by the supervisor:

ABTT: “Task—abort” notification.
ENDT: “Task—end” notification.

SETEV: Issue event (requires EVENT=...).

STATA: Start task.
STAFA: Start family.

WMES: Write message to message terminal (the message has to be the
first line on the next partition on the INPUT file).

Jobname of calling job (7 characters).

Remote batch ID of calling job.
l-character suite type.

Family name of calling job.
Task name of calling job.
Event to be issued (5 digits).

“F” parameter for STATA or STAFA.
“START” and “RUNTSK”.

5.4 Special Programs

5.4.1 ATTARLF — Attach Archived Logfile

| ATTARLF

For details see description of

This call should be used to attach the highest cycle of the archived logfile(s)
within back—up procedures (cf. description of “LOGFILE").

5.4.2 INGEN — Initialisation File Handler

INGEN,TIDCT=...,TID=...,CYBER=...,CRAY=...
CY1=. e ’CY2=. - e ’CR1=. o e ,CR2=. - o

29

Set-up, display, change supervisor”s initialisation file. “INGEN" has to be run
before supervisor operation can be started. The intention is to define default
terminal IDs and more important logical mainframe IDs used by the CRAY
station(s) and/or the GEMINIs or APOLLOs (ECMWF version of GEMINI) to transfer
input files. These maiunframe IDs are used by the supervisor as ST-parameters on
jobcards for its own generated jobs.

Under normal circumstances the file need not to be changed but operators might
have occasionally to do so.

TIDCT Command terminal ID.

TID Remote batch ID(s) for permitted users.
CYBER LID for EQEE'CYBER(S).

CRAY LID for both CRAY(s).

CYl LID for CYBERL.

CY2 LID for CYBER2.

CRrR1 LiD for CRAYI.

CR2 LID for CRAY2.

NOTES:

1. The “TIDCT” parameter is mandatory and has to be a 2-character combination
which, of course, should be the same as the INTERCOM ID for the command
terminal.

2. The “TID” parameter is optional. Up to 4 TIDs, separated by slashes (7/7),
can be specified. “TID=0" will clear the field of TIDs.

TIDs recorded on the initialisation file are displayed in the supervisor’s
B-DISPLAY.

3. Mainframe IDs:

CYBER and CRAY LIDs have to exist on the initialisation file.

An ID of “ANY”~ for CYBER, CYl or CY2 will result in a blank “ST” parameter
on the generated job card, thus saving FNT space.

“CYBER=ANY~ should always be used.

If CYl, CY2, CRl, CR2 are not specified they will be defaulted to CYBER and
CRAY respectively.

4, Calling “INGEN” without parameters will 1list the contents of the
initialisation file.

5. If changes have been made using INGEN the supervisor has to be dropped and
called again to read the updated information from the file.

30

5.4.3 LOGANAL — Logfile Analyser

| LOGANAL,SUITE=.,DATE=yy/mm/dd {,FULL} {,I=1fn} {,L=1fn} |
~ |

SUITE

DATE

FULL

Mandatory l-character suite type for suite to be analysed.

Mandatory date to be analysed.

Analyse full logfile, eg. from BOI. In the default case analysis
will be from the last “position” (cf. description of the “POSLF”
parameter for the “SMS” call and description of the “LOGFILE”

command).

Optional input filename to be analysed.
Keyword: LOGFILE.
Default: No local file.

Optional output filename.

Keyword: OUTPUT.

Default: No local file but central line
page: “LOGANAL")

printer output. (Banner

31

5.4.4 TTGEN - Task Table Generator

To establish the necessary work files a so—called task table gemerator has to be
used having the definition of a suite as input (the format is described in a
different chapter).

|
| TTGEN,suite type {,IF=...} {,LF=...} {,DF=...}
} {,pF=...} {,ID=...}

suite type

IF

DF

PF

in

Mandatory l-character suite type (note that suite types
installation defined, cf. description of “SMS7).

Input file -

Default: INPUT.
Keyword: INPUT.

OQutput file -

Default: OUTPUT.

Keyword: OUTPUT.

LF=0: no output to be produced.

Deck file -

Default: 0 - no deck file supplied.
Keyword: COMPILE. '

Catalog generated task table file -
Default: no catalog.

Keyword: catalog file with default setting.
PF=pfn: use “pfn~ and default ID.

Permanent file ID (only if “PF” specified) -

Keyword: default Id.
ID=id: use “id~.

are

32

NOTES:

A task table file is only generated in an error-free case.

A final work file has always to include the deck file (“DF” parameter). If
the job decks are present a flag is set in the file which is checked during

" “DATE” command processing.

Every task defined in the suite has obviously to have a corresponding job
in the deck file.

If the “PF” parameter is used (and not ID), eg. the generated file is going
to be catalogued as the default file also to be used by the supervisor, it
should be noted that the file is only catalogued if no corresponding back-
up file exists. This is due to the fact that both files are necessary for
supervisor operation but contain conflicting data. The suite should be
stopped using “STOP,suite type” (the only way to get rid of a back—up file)
followed by a call to "TTGEN~.

When cataloging new task table files be aware that always new cycles will
be generated. As NOS/BE only allows 5 cycles the old versions should be
purged from time to time:

PURGE STAS ,ID=SMS,PW=SMSPWSMS,LC=1.

(For correct pfn, id and pw check COMPTXT definitions).

6 The Technical Implementation Of The SMS Subsystem

6.1 Preliminaries

The Supervisor-Monitor-Scheduler (SMS) system has been designed and implemented
with the following requirements:

Implementation As Close As Possible To Standard 0/S Software

This fact has been considered very important to not jeopardize future
operating system upgrades which 'i’s essential for the plans of a centre like
ECMWF .

Modularity

SMS to be writtem in a modular fashion with wodern software design
technologies employed.

Maintainability

The SMS Subsystem, as one of the central pieces of software at ECMWF, had
to be implemented such that the maintenance and support function could be
carried out by different staff.

Parametrization

A highly parametrized subsystem was to be developed aiding future changes.

Efficiency

33

As SMS would be continuously running it should not impose extraordinary
overhead on to the operating system and other subsystems.

—= Flexible Operator Control

The computer operator shall be given proper tools to control the running of
SMS and all the suites.

- Security
In the SMS Subsystem should also be incorporated a level of security at a

similar level of security used in all other parts of the computer systems
at ECMWF.

6.2 Programming Languages

The SMS Subsystem utilises the following programming languages:

SYMPL SYMPL is a CDC Systems Programming Language which has got similarities
to PASCAL or PL/1; this statement should be understood in the way,
that, if programs are written in SYMPL how they have to be written in
PASCAL or PL/1 then similarities can be observed. The choice for SYMPL
was made since it is a CDC product and there are language features
like COMMON blocks and a flexible interface to the operating system
level missing in PASCAL for example.

A1l major (CYBER) parts of the SMS Subsystem are written in SYMPL.

COMPASS COMPASS is the standard CDC Assembly Language.

It is being used for a small subroutine collection not easy to write

in SYMPL and for presets of certain data structures. Furthermore, the
SMS main overlay is written in COMPASS for efficiency reasons.

CFT CFT is the standard CRAY FORTRAN compiler.
All CRAY interface routines are implemented in CFT.
CAL CAL is the standard CRAY assembly language.

All CRAY operating system interface routines are implemented in CAL.

6.3 Symbol Definitions And System Texts

A major effort was devoted to avoiding the problems of large-scale software
development utilising different programming languages, namely in the area of
symbols being used by different compilers or assemblers. Within the SMS
Subsystem all symbols are only defined once. A certain syntax had to be devised,
of course, and, some people might say tricks, have been employed to derive the
same symbol definition in each programming language.

6.3.1 Common Symbol Definitions

Those symbols used by more than one programming language are all contained in
one of the three UPDATE common decks:

ASS~OPTS This common deck holds all general installation constants. It is
accessable by COMPASS, CAL and SYMPL.

34

COMSYM This common deck contains all common symbol definitions for COMPASS
and SYMPL.

CYBCRA1 CYBCRALl contains all micros utilised by the CYBER/CRAY—~communication
interface. It is being used by COMPASS and CAL.

6.3.2 System Texts: COMPTXT, SYMDEFS, CALTEXT

Three main system texts have been created for the SMS Subsystem:

COMPTXT This COMPASS text contains all symbol definitions (including the
definitions from the previous paragraph) and all special macros and
micros.

COMPTXT basically defines all the names, eg. file name, overlay names,
program names etc., being used by the SMS Subsystem. It also defines
the overlay structure for SMS and the suites the SMS Subsystem is
supposed to handle.

SYMDEFS SYMDEFS is the main SYMPL text which contains all symbols being used
in the SYMPL assemblies. Furthermore, it contains useful syntax
abbreviations to make written code more look like PASCAL. All data
type definitions (STATUS lists) used by more than one SYMPL routine,
all data extractor/compactor functions, the set operators and certain
sets, all 1I/0 subroutines, all routines for the “file-request
interface” and some other commonly used functions and subroutines have
been defined as well. Please note, that these definitions are all
SYMPL DEF statements, eg. they all expand to something more or less
complicated and simply serve as to make written code more readable and
reduce the error probability.

CALTEXT This text only contains macro definitions for CAL assemblies and the
common deck ASS—OPTS for the assembly options. (The text does not
contain other definitions because of the shortcomings of the CAL
system text implementatiomn).

Given the symbol definitions in SYMDEFS many of the common data structures, used
by the SYMPL subroutines, are defined as separate texts thus avoiding re-
definitions or UPDATE common deck inclusions. Please note that SYMPL does not
allow presets of variables in texts!

Special attention is drawn to texts SYMBITV (SYMPL definition of the bit
vector), SYMLFNT (SYMPL definition of the local file name table for files STASx
and STABx), SYMLFN2 (SYMPL definition of the local file name table for files
UCPFILE and SMSFILE used for the file request interface) and SYMOVCT (SYMPL
definition of the overlay control table used within SMS). All these texts
utilise a special syntax aud call UPDATE common decks which are also used within
COMPASS assemblies.

As only the CYBER 1/0 routines are of any interest - since SMS is running on a
CYBER - the CRAY CFT 1/0 interface will not be discussed.

35

6.4.1 Sequential Files

Sequential file operations are all performed using the I/0 macros from CPUTEXT,
eg. the interface to CIO=. Highlevel interface routines (similar to routines in
the FASTIO package) do exist for all required operations.

6.4.2 Random Files

For performance reasons most of the I/0 carried out by SMS is random access, eg.
random addresses are always on PRU (Physical Record Unit) boundaries.

The interface provided is a very neat little routine called PIO - Physical I/0,
with entry points PTPC (Put PRUs) and GTPC (Get PRUs) both with an extensive
SYMPL parameter list. Because of this parameter 1list, and because of the
possibility for misspellings, a large set of SYMPL special case interface
routines has been defined using DEFs in text SYMDEFS. These routines are
typically defined like READ$xx, WRITE$xx, REWRITE$xx etc. where xx describes
some sort of a buffer like FI (Family Index), DT (Delay Table) etc. as their
positions on the various files are known; parameters to be provided for these
calls are only a local file name and a recall indicator.

6.5 The SMS Logfile And The Message Logging Interface

SMS has been designed to log all actions it is performing. This so-called
logfile is a permanent file and is fully maintained (created, extended,
positioned) by SMS. Messages can be designating to go the logfile only or to the
logfile and the so—called message logging terminal for the SMS operator. The
latter interface has been implemented based on the standard INTERCOM-user to
INTERCOM—user communication interface (MES). The peripheral program MES has been
modified to allow any job to send messages to a logged-in INTERCOM terminal.
Note that MES uses the OUTSUB write routines and not 3TT. Using OUTSUB implies
that only a limited number of INTERCOM small buffers will be allocated for each
user table with the consequence that on subsequent calls all the MESs will go
into the delay stack eventually causing PP saturation once asynchronous
terminals are used and the terminal is waiting in sending mode (bar pressed
etc.). To avoid this the actual SMS subroutine TERMESS will generate a flashing
B-Display message for the operator (“** gending message **”) prior to the call
to MES which is cleared after completion (note that MES is called in auto-
recall).

6.6 Notes On The Implementation Of SMS

6.6.1 System Control Point

SMS has been implemented as a System Control Point (SCP) . The NOS/BE Svystem
Programmer”s Reference Manual (SPRM) should be consulted for a detailed
description of the SCP features.

The SCP is required for the SMS—Operator—-Communication. It is also used for
other requests from jobs/tasks running on the same mainframe as SMS. The SMS
main overlay should ha unierstood for SCP nrocessing as well as the routines
SFENDT and CALLSSC in conjunction with the parameter block /UCPBUF/.

36

6.6.2 File-Request Interface

As explained earlier the SCP interface can only be utilised on one mainframe.
For the job—to—-SMS communication for those jobs running on a different mainframe
the so-called file-request interface is provided. Two files SMSFILE and UCPFILE
are being used for this purpose. Both are permanently attached by SMS (when
running): SMSFILE with RW=1, UCPFILE with MR=1. Both files will be attached by
the requesting jobs with the permission requests reversed. The first PRUs of
each of the files contain equal length bitmaps whereby bit_ designates the nth
PRU on UCPFILE. These bits are used by the requesting jobs o determine the next
“free” PRU on UCPFILE where they will then write their request followed by a
toggle of the very bit in the bitmap on UCPFILE as well (note that only one user
job can have the two files attached at any one time). SMS also uses the bitmaps
to determine whether there are new requests on UCPFILE. If so, the first request
is read from the file followed by a change of the bit in the SMSFILE bitmap and
processing of the request continues as for any other SCP request.

6.6.3 The CYBER User Interface

In order to be flexible and to reduce memory requirements the CYBER User-Job—to-
SMS interface has been implemented using CAPSULES (cf. NOS/BE LOADER Reference
Manual). At the time of implementation no good description existed of how to
write and handle CAPSULES: deck “SMSFDL=" within the SMS UPDATE program library
should be consulted (and the CYBER installation job as well) to understand the
principle.)

Important to unote 1is that CAPSULE 1loading has been provided from non-
incapsulated program units and from already loaded CAPSULES as well (without
using any stack or other fancy machanism: use has simply been made of the table
generated by the ENTHDR macro cf. UPDATE common deck: FDLENTTAB).

All CYBER user functions will first load a CAPSULE which will attempt to send a
System Control Point request. If the SMS subsystem is not initiated another
CAPSULE will be loaded to service the file-request interface. Thus minimal
overheads are imposed on the user jobs.

6.6.4 Overlay System

SMS has been written using an overlay structure. All overlay names and the
overlay structure are defined in text COMPTXT. The same structure is also
preserved in the so-called overlay control table (note that this is the only
structure which is defined twice; but if changes are made in one definition and

not in the other the assembly will abort with compilation errors).

One of the objectives was to write a main overlay with minimum field length
requirements. The main overlay, on the other hand, should also be able to handle
most of the initial request processing like validation, request decoding etc.
and it should be able to periodically call-up all the necessary maintenance
functions.

As mentioned earlier the SMS main overlay is written in COMPASS. Because of that
it was possible to assemble everything, eg. the resident part of SMS during
execution and all other buffers required in common blocks (implying that the
zero block 1length is O!). This approach helped to overcome the problems
associated with the relocation of code and common blocks by the CYBER LOADER. It
also helped to define all other overlays in a “normal” way, eg. no fancy tricks
are employed like overlay skeletons etc.

37

The following diagram gives an illustration:

RA.ORG
| 54 EACP Table |
| /LFNTABL/ | Lfn Table for STASx and STABx
| /OVCTBL;—— | Overlay Control Table
| /BITVEC/ | Bit Vector
| /SSFPAR/ | SSF parameter block
| /iDL.coDn/ | SMS resident code
| /ENDIDL/ | <~- end of Idle System (< 1500, CM words)
| /F1/ [Family Index buffer
| /FE/ | Family Event Table buffer
| /FB/ | Family Buffer area
| /pt/ | Delay Table buffer

It is easy to see from the above that all buffer areas are accessable from
higher level overlays (via common blocks) and that SMS can also perform easy
memory management as the end of the idle system is well defined.

6.6.5 Reprieve Processing

Some effort has been devoted to properly process an operator drop or operator
kill of the SMS control point. It is obvious that any user request must be
completed and that SMS has also to ensure that NOS/BE is not sending any new
requests after a drop/kill. Routine PEX (within the SMS idle system), which is
the error exit after reprieve, should be carefully read to understand the
principle.

An operator drop is functionally equivalent to the “STOP,SMS.” command with the
SMS dayfile to be printed on the central line printer while an operator kill
will discard any output.

All other error codes will cause a dump of SMS” current field length followed by

an abort function irrespective of any functions in progress or any outstanding
requests.

6.6.6 CRAY Q-Enqiry Facility

For the “RESTART” function the CRAY Q-Status has to be obtained. As the CRAY
link protocol and also the CRAY station support this function the routine CRAQST
is called which will always be loaded from SYSLIB (ECMWF feature). SMS will have
to be re—assembled once CRAQST changes; routine PREST, the "RESTART” processor,

will have to be changed once CRAQST output formats change.

38

6.6.7 Internal Documentation Of SMS

This paragraph describes the intermal documentation extracted from the
source text in a structured way. :

6.6.7.1 Initialisation Code

ISSUE VERSION MESSAGE

GENERATE B-DISPLAY MESSAGE FOR THE CENTRAL OPERATOR

CHECK JOB ORIGIN

ENSURE 5400 LOADER TABLE (EACP)

CHECK FOR CEJ HARDWARE

SAVE JOBNAME IN *JN*

SET CURRENT FIELD LENGTH

COMPLETE LDV PARAMETER BLOCK

WRITE ACCOUNT CODE INTO CONTROL POINT AREA (W.CPFACT)

TRY TO ATTACH "LOGFILE™ FROM THE SYSTEM DEFAULT FILE BASE.
IF THE FILE EXISTS (SUCCESSFUL ATTACH) WE WILL CHECK FOR
READ, MODIFY AND EXTEND PERMISSION ON IT AND SKIP TO EOI IF
SO0. IF IT DOES NOT EXIST WE REQUEST A NEW FILE AND CATALOG
IT. IF IT EXISTS BUT IS ATTACHED WE CAN ONLY INFORM THE
OPERATOR AND ABORT. (THIS IS USEFUL IN CASE OF TWO CYBER
MAINFRAMES TO ENSURE ONLY ONE COPY OF "PGM.SMS" IS

RUNNING IN THE LINKED ENVIRONMENT (SRMS)).

CHECK PERMISSIONS ON LOGFILE

ATTACH "INITLFN"

READ 1ST PRU FROM "INITLFN" - TUSE /FE/ AS BUFFER

RETURN "INITLFN"

COPY TID FOR COMMAND TERMINAL FROM *TIDS* INTO *MESS$PAR* AS
DEFAULT MESSAGE TERMINAL IDENTIFIER AND SET *S$MESS* TO
INDICATE AVAILABILITY OF THE TERMINAL (CF. *MESS¥*).
PROCESS ARGUMENT LIST SUPPLIED IN CALL.

“POSITION” LOGFILE TO CURRENT EOI IF “POSLF~ PARAMETER PRESENT
INITIALISE LOW CORE VARTABLES

SET REPRIEVE MASK

WRITE DATE — VERSION MESSAGE TO LOGFILE AND TERMINAL

AND THE CONTROL CARD COPY TO THE LOGFILE

COMPLETE B-DISPLAY MESSAGE BUFFER AND ISSUE MESSAGE

LOAD -INIT- OVERLAY

ISSUE MESSAGE FOR ERROR ENCOUNTERED DURING INITIALISATION
AND ABORT PROGRAM WITHOUT DUMPING FL.

KEYS - ASSEMBLE CONTROL CARD SKELETON HERE

PROCESS ARGUMENT LIST SUPPLIED IN CALL.

PLEASE NOTE THAT ARGUMENTS WILL BE PROCESSED USING *ARG=*
FROM *COMFARG* (NOT *COMCARG* !), I.E. PARAMETERS WILL BE
EXTRACTED FROM *RA.CCD+...*%. (*RA.ARG+...* HAS ALREADY BEEN
OVERWRITTEN BY PREVIOUS INITIALISATION CODE).

CHECK “RESTART=...~ PARAMETER(S)

LD$REST -

RETURN FROM *OQVS$INIT* ASSEMBLED IN /DT/ TO LOAD *QVS$REST*
RESTS TO BE DEFINED IN THIS PART. IT WILL BE PICKED UP
BY OVERLAY *QVSINIT* TO BE PASSED TO *OV$REST* BEFORE IT
GETS BASHED.

THE LOCATION COUNTER FOR THE FINAL “END” STATEMENT MUST

BE ZERO. EXECUTION WILL FAIL OTHERWISE.

SMS

39

6.6.7.2 Internal Documentation Of SMS” IDLE SYSTEM

IDLC - IDL

MAIN IDLE LOOP

KILL THIS PROGRAM IF *S$KILL* IS SET

TERMINATE THIS PROGRAM IF *S$DROP* IS SET

CHECK FOR NEW UCP REQUEST (ALSO ENTERED FROM *TERMIN*)
NO UCP REQUEST IN *RA.SSC*

IF BIT *S$MORFR* IS SET (I.E. MORE REQUESTS ARE ON THE REQUEST

FILE) WE WILL LOAD OVERLAY *OV$FILE* TO HANDLE THAT CASE.

NO UCP REQUEST IN *RA.SSC* OR ON FILE

OUTPUT QUEUE TABLE PROCESSING

PERFORM MISCELLANEOUS TASKS PERIODICALLY WHILE IDLE

PROCESS DELAY TABLE

HANDLE FILE-REQUESTS

INSERT HERE MORE TASKS TO BE PERFORMED

GO0 INTO PERIODIC RECALL AND IDLE DOWN AFTER *TI.IDL* EXPIRED
UCPREQ -

THIS PART TO BE ENTERED AFTER A NEW UCP REQUEST HAS
BEEN RECEIVED FROM EITHER NOS/BE (*RA.SSC* NEGATIVE)

OR IF FILE-REQUESTS HAVE TO BE HONOURED (IN THIS CASE
DIRECTLY ENTERED FROM THE OVERLAY)

FLAG IDLE DOWN TIMER TO BE SET; NO LONGER IDLE;

REQUEST NOT FROM COMMAND TERMINAL

CHECK STATUS FIELD IN *AP*

STATUS IN *AP* IS EITHER 1 OR 2, I.E. WE HAVE TO ISSUE
AN “SF.ENDT” FUNCTION FOR THIS UCP WITH “UCPA” SET TO -1
TO CLEAR ALL WAIT-RESPONSE COUNTS AND LONGTERM CONNECTS
ETC. (CF. *SFENDTC¥*).

PLEASE NOTE X6 = (AP) <> 0 FOR *FLAG* IN *SFENDTC*
CHECK UCP REQUEST TO BE FROM A CONSOLE INITIATED JOB
OR FROM THE COMMAND TERMINAL

WE FIRST CHECK IF THE JOB ORDINAL IN *AP+l* IS <= 17B IN
WHICH CASE ALL CHECKS ARE SKIPPED (NOTE: *S$UCPCOM* IS
ALSO SET TO ALLOW COMMANDS TO BE ENTERED FROM THE CONSOLE).

THE CALLER-S TID IN *UCPBUF* WILL OTHERWISE BE COMPARED
WITH THE LAST TWO CHARACTERS OF THE JOB NAME WHICH IS
GENERATED FROM THE TID FOR INTERCOM CP-S (OLD FORMAT:
IDIDIID, NEW FORMAT FROM LEV. 530 ONWARDS: I0IDOID).

IF THEY MATCH THE TID IS COMPARED WITH THE TID FOR
COMMAND TERMINAL AS RECORDED ON "INITLFN".

UCP IS NOT THE COMMAND TERMINAL ’

ENSURE SUITE IS ACTIVE - TAKE SUITE TYPE FROM *JN*
ERROR: UCP REQUEST FOR SUITE WHICH IS NOT YET ACTIVATED
CHECK THAT REQUEST IS FROM A PERMISSIBLE JOB, I.E.

THE TID IN THE UCP BUFFER HAS TO MATCH ONE OF THE

TID-S IN *TIDS* OR HAS TO BE "TID", I.E. INITIATED

BY "PGM.SMS" BEFORE.

ERROR: REQUEST FROM UNAUTHORIZED UCP

ENSURE THAT THE REQUESTED FUNCTION EXISTS

ERROR: NON-EXISTING OR NOT-USER-CALLABLE FUNCTION REQUESTED
ENSURE OVERLAY IS USER CALLABLE

SAVE POINTER TO *OVCTBL*, REQUEST ENOUGH FL, RESET

40

RA.SSC UNLESS *QV.SYSFC* IS TO BE LOADED IN WHICH

CASE A STOP-FUNCTION MIGHT HAVE BEEN ISSUED AND

WE DON-T WANT TO RECEIVE MORE REQUESTS.

CHECK THE “INDEX REQUIRED FLAG” WHETHER AN INDEX IS TO BE
LOADED OR NOT. IF SO WE HAVE TO BUILD CORRECT LFN-S IN
/LENTABL/

COMMAND TERMINAL MUST NOT REQUEST AN INDEX AS WE CAN-T EXTRACT
THE SUITE TYPE FROM THE *JN*. INDEX LOAD WILL BE IGNORED.
DO WE HAVE TO LOAD THE INDEX ?

HERE AFTER INDEX LOAD HAS BEEN DELT WITH.

HERE AFTER ERRORS HAVE BEEN DETECTED FOR A UCP REQUEST

ENTRY: X1 = (MESSAGE) TO BE WRITTEN TO THE LOGFILE
SCR1 SET = 0 OR <> 0 FOR *SFENDTC*

IF BIT *S$FILREQ* IS SET (I.E. THE CURRENT REQUEST HAS BEEN

LOADED FROM THE REQUEST-FILE) WE HAVE JUST TO CLEAR IT AND

RETURN TO THE IDLE LOOP.

IN AN ERROR CASE WE WILL CALL *SFENDTC* FIRST BEFORE

RESETTING *RA.SSC*. THIS IS NECESSARY SINCE A MEMORY

DEADLOCK SITUATION COULD OCCUR IF *SFENDTC* WAS UNABLE

TO HANDLE THE REQUEST AND WE HAD TO LOAD *QVS$SFEND#

ACCOMPANIED BY A POSSIBLE MEMORY REQUEST.

6.6.7.3 Subroutines Within SMS Main Overlay

BDISPC (MESSAGE) -

ISSUE B-DISPLAY MESSAGE FOR THE CENTRAL OPERATOR.
JUST THE FIRST LINE <= 40 CHARACTERS WILL BE CONSIDERED.

ENTRY: X1 = (MESSAGE)

MESSAGE HAS TO BE IN C-FORMAT OR CAN BE EXACTLY 40
CHARACTERS LONG.

CALLS: BDIS2ND

BDIS2ND -

GENERATE 2ND LINE OF B-DISPLAY MESSAGE
2ND LINE TO CONTAIN THE FOLLOWING:

TID OF SYSTEM - "TID"

TID FOR COMMAND TERMINAL

TID FOR MESSAGE TERMINAL

“ALLMES” FLAG - “-A~

ALL PERMISSIBLE TID-S AS FROM "INITLFN"

“DOWN” IF NO MESSAGE TERMINAL

ACTIVE SUITES AND LAST ACTIVE.SUITE IF INDEX STILL LOADED

EX.:

41

90/G1/G9 AWK1 OEF X
90/29/45 EF
90/F4/DOWN AWK1 TFC X

WHERE X DENOTES THE “LAST ACTIVE SUITE~ IF THE INDEX
OF THAT SUITE IS STILL LOADED.

MACROS: IFBIT, MESSAGE
FIRST WORD

SECOND WORD

THIRD WORD

FOURTH WORD

DMPFLC -

DUMP ALL FIELD LENGTH

THIS ROUTINE IS WRITTEN WITHOUT ANY RJ-INSTRUCTIONS
AS IT IS ALSO CALLED BY *PEX*.

USES: A - 6,
X - 6,1

GENMESS -

GENERATE COMPLETE MESSAGE IN *M.BUF*

1. PRODUCE TIME STAMP

2. MASK OUT ORIGIN IN *M.BUF+1,2%*

3. COPY MESSAGE UP TO 12D WORDS IN C-FORMAT UNLESS TERMINATED
BEFORE BY ESCAPE CHARACTER "ESC.CH".

ENTRY: Bl =1
B5 = (1ST WORD OF MESSAGE)
X5 = WORD TO BE SUBSTITUTED IN C-FORMAT (<= 10 CHARS)

IF "SUBST.CH" IS CONTAINED IN THE MESSAGE
M.BUF+1,2 PROPERLY PRESET (18 CHARACTERS) WITH ORIGIN

EXIT: Bl UNCHANGED
B5 DESTROYED
MESSAGE IN C-FORMAT WITH TIME STAMP GENERATED IN *M.BUF*

USES: A -
X_

O\\I\l

,3,2,1
6.5, 4, ,2,1,0
5,4,3

33 "> ’

o]

MACRO: CLOCK

THIS ROUTINE HAS BEEN PARTLY ADOPTED FROM *COMCSNM* WHICH
SOME PEOPLE MIGHT REMEMBER FROM THE GOOD OLD TIMES.

IT IS STILL GOOD TODAY. (F.H.).

GETFL -

42

GET ENOUGH FIELD LENGTH FOR SUBSEQUENT LOAD

ENTRY: X6 = POINTER TO *OVCTBL*
Bl =1

EXIT: B7 = 0 OR 1 IF FIRST OR SUBSEQUENT LOAD OF OVERLAY

USES: A — 4,2
X - 6,4,2
B -7

CALLS: MEM

KILL -

KILL THIS JOB
USES: A - NONE

X — NONE

B - NONE
MACROES: LOGMESS, SYSTEM
CALLS: SYSEND
NEXT CARD IS *CALL CDLDBINDC
LDBINDC -

LOAD INDEX FROM BACK-UP FILE *STAB..* (NO RECALL).

IT IS ASSUMED ON ENTRY OF THIS ROUTINE THAT
#STAB.. EXISTS AND THAT ENOUGH FL IS AVAILABLE.

THIS ROUTINES SHOULD ALWAYS BE CALLED IF THE INDEX IS
TO BE LOADED FROM THE BACK-UP FILES *STAB..*.

THE “LAST ACTIVE SUITE” IN *SULTES* IS UPDATED AND BIT
SSLOADIN CLEARED.

MACRO: CLEARBIT
CALLS: PIO
MEM -

REQUEST CENTRAL MEMORY.

ENTRY: X6 NUMBER OF CM WORDS
Bl =1

USES: A - 6,1
X - 6,1

MACRO: SYSTEM

IF SYMBOL *MEMSMESS* IS DEFINED

43

PRODUCE LOGFILE MESSAGES FOR THE ACTUAL MEMORY REQUESTED.
USES: X - 5
MACROES: LOGMESS, SYSTEM
CALLS: COD=
MESS -
ISSUE INTERNAL MESSAGES.
ENTRY: X1 = (1ST WORD OF MESSAGE)
X2 (1ST WORD OF MESSAGE ORIGIN - 2 WORDS LONG)
X5 = SUBSTITUTION WORD IF ANY IN C~FORMAT
(CF. *GENMESS*) .

B7 = 0 MESSAGE TO LOGFILE ONLY
< 0 MESSAGE TO LOGFILE AND MESSAGE TERMINAL

1

MESSAGES TO LOGFILE ONLY WILL HAVE A © ~ AS THE 10TH CHARACTER
OF THE FIRST WORD OF THE MESSAGE (WHICH IS THE TIME STAMP) -
MESSAGES TO LOGFILE AND TERMINAL WILL HAVE A “.7 IN THAT POS.
MESSAGES ISSUED BY THE SUPERVISOR (AND NOT BY THE “WRITE
MESSAGES” FUNCTION) WILL HAVE THE SUPERVISOR-S JOBNAME
INCLUDED IN THE MESSAGE ORIGIN.

EXIT: B1 =1

MACROS: WRITEC, IFBIT
CALLS: GENMESS, TERMESS

IF BIT *SSALLMES* IS SET. ALL MESSAGES ARE SENT TO
THE MESSAGE TERMINAL

ovL -
OVERLAY LOADER

ENTRY: Bl = 1
P.OVCTB = POINTER TO *OVCTBL* PROPERLY SET

EXIT: B5 = EPT ADDRESS

MACROS: LOADREQ, IFBIT, CLEARBIT

0VL WILL FIRST CHECK IF THE OVERLAY IS ALREADY
LOADED IN WHICH CASE JUST THE OVERLAY CONTROL TABLE
IS UPDATED (PLUS 1 CALL). AN ORDINARY OVERLAY

LOAD SEQUENCE IS OTHERWISE INITIATED AND THE CONTROL

TABLE UPDATED ACCORDINGLY (PLUS 1 CALL AND 1 LOAD).

44

THIS ROUTINE ASSUMES THAT ALL OVERLAYS ARE GENERATED
USING THE *QVLHDR* MACRO AND ALL OVERLAY NAMES ARE
GENERATED BY THE *0OVERL* MACRO. ALL PRIMARY OVERLAYS

ARE LOADED AT MINFL OF THE (0,0)-OVERLAY AND SECONDARY
OVERLAYS ARE LOADED AT MINFL OF THE CORRESPONDING PRIMARY
OVERLAY.

ENTERING THIS ROUTINE REQUIRES ENOUGH FL TO BE AVAILABLE.
IS PRIMARY OVERLAY ALREADY LOADED ? (L1 [X1] = L1 [PADDR])
L2 [X1] = 0 <=> SECONDARY OVERLAY LOAD

OVERLAY ALREADY LOADED ? (Ll L2 [X1] = L1_L2 [PADDR])

LOAD OVERLAY NOW

X1 = 48/0,12/11 L2
B6 = POINTER TO *OVCTBL* FOR THIS OVERLAY.
OVL.SL -

UPDATE *QVCTBL* AND CLEAR BIT *S$LOADOV* AS OVERLAY IS
LOADED. CLEAR ALSO BIT *S$IDTIM* TO INDICATE THAT THE
IDLE DOWN TIMER HAS TO BE SET AGAIN AND *SSIDLE* AS WELL
AS WE ARE NO LONGER IDLE.

ENTRY: B6 (ENTRY IN *QVCTBL*)
X0 MASK OF WHAT TO BE UPDATED
X3 = TO BE ARITHM. ADDED TO TABLE ENTRY

PEX -
X~-PACKAGE ADDRESS AFTER REPRIEVE
THE FOLLOWING ACTIONS ARE TAKEN:

- IF *RA.SSC* IS NOT BUSY THE HIGH ORDER BIT IN *RA.SSC*
WILL BE SET TO PREVENT NOS/BE FROM SENDING NEW REQUESTS.
PLEASE NOTE THAT SETTING THIS BIT IS PERFORMED IN ONE
60-BIT WORD WHICH IS SAFE AS ALL UCP REQUESTS ARE PASSED
BY CPMTR WHICH OF COURSE RUNS IN MONITOR MODE AND ANY
EXCHANGE JUMP WILL LET US COMPLETE THE INSTRUCTIONS IN
THAT WORD (QED).

SSNOREQ WILL BE SET IF WE COULD SET *RA.SSC* COMPLETE
(THE BIT IS NOT SET BY DEFAULT).

- IF BIT *S$KILL* 1S SET THE PROGRAM WILL BE KILLED.
~ SET BITS *S$DROP* AND *S$PEX%.
- DUMP ALL FIELD LENGTH UNLESS OPERATOR KILL.

- 1IF ERROR CODES INDICATE OPERATOR DROP, KILL OR RERUN
THE CORRESPONDING BITS *S$...* ARE SET AND *XJR* IS
CALLED TO RESTORE THE X~PACKAGE AND RESUME EXECUTION.
THE BITS *S$...* ARE CHECKED IN *TERMIN* TO PRODUCE
LOGFILE MESSAGES.

- ALL OTHER ERROR CODES CAUSE AN ERROR MESSAGE TO BE

PRINTED IN THE LOGFILE FOLLOWED BY A CPU ABORT.
DO NOT USE ANY CODE MODIFYING INSTRUCTIONS UP TO

45
THE POSSIBLE EXCHANGE JUMP FOR *XJR* (NOTE: ALSO
RJ INSTRUCTIONS DO MODIFY CODE !!)

THE FOLLOWING EXCHANGE JUMP WILL CAUSE EXECUTION TO
RESUME AT THE P-ADDRESS STORED IN THE X-PACKAGE.

NOW WE WILL TERMINATE THIS PROGRAM IRRESPECTIVELY OF ANY
OUTSTANDING REQUESTS.

GTPC, PTPC, PIO -

PRU I/0 ROUTINES

NEXT CARD IS *CALL PIO

GTPC ~- GET PRU-S.

CALLED AS: GTPC (FET[O],LFN,BUF,PRU NO.,NO. OF PRU-S,RECALL)
USES: X - 6

CALLS: PAR, PIO

PTPC - PUT PRU-S.

CALLED AS: PTPC (FET[O],LFN,BUF,PRU NO.,NO. OF PRU-S,RECALL)

PRU NO. = O => WRITE AT EOI AND RETURN PRU ADDRESS
PRU NO. <> O => REWRITE FROM INDICATED PRU

USES: X - 6,3

CALLS: PAR, PIO

PIO - MAKE PRU I/O REQUEST.

ENTRY: Bl = 1
B2 = 1/0 FOR RECALL/NORECALL
X2 = (BUFFER)

X3 = PRU NO. / (RMS RETURN INFO)
X4 = NUMBER OF PRU-S

X5 = LFN ‘

X6 = FUNCTION CODE

Al = (FET [0])

USES: A - 7,6,
X -7,6
B~ 2,1

5,4,2,1
5,4,2,1

’»-"32 7)) >

MACRO: SYSTEM

PI0 DOES NOT CHECK IF THE I/0 IS COMPLETE FOR THE INDICATED
FET. THIS IS ENTIRELY USER-S RESPONSIBILITY.

PAR - SET REGISTERS FROM PARAMS
Al IS EXPECTED TO POINT TO A SYMPL ADDRESS VECTOR FOR:
FET [O],LFN,BUF,PRU NO.,NO. OF PRU-S,RECALL

THE REGISTER ASSIGNMENT WILL SUIT *PIO*

46

NEXT CARD IS *CALL CDRECALLC

RECALLC -

RELINQUISH THE CPU UNTIL PP FUNCTION IS COMPLETED

ENTRY: X1 = FET ADDRESS

MACRO: RECALL

RSRASSC -

RESET/SET *RA.SSC* UNLESS BIT *S$DROP* HAS BEEN SET BEFORE
FOR SUBSYSTEM TERMINATION OR BIT *S$FILREQ* IS SET IN WHICH
CASE WE ARE TO PROCESS A REQUEST FROM THE REQUEST FILE AND
THE FREE UCP BUFFER IS USED ANYWAY.

USES: A - 6
X - 6,2

MACRO: IFBIT
CALLS: UCPBADD

RIDME -

READ REAL TIME CLOCK

USES: A - 6,1
X - 6,1

»0
MACRO: RTIME
EXIT: X6 = REAL TIME IN SECS, X0 = MASK (-24D)
SFENDTC -
INFORM UCP OF SUBSYSTEM TASK COMPLETION
SYMPL CALLABLE: SFENDTC (FLAG).
FLAG = O => ISSUE FUNCTION WITH *UCPA* > O
(*UCPA* TAKEN FROM *AP+1%)
FLAG <> 0 => ISSUE FUNCTION WITH UCPA = -1
FUNCTION “SF.ENDT” WILL BE ISSUED UP TO *CT$SFRT* TIMES.

IF NOT SUCCESSFUL *OV.SFEND* IS LOADED TO HANDLE THE
REQUEST.

MACROS: RECALL, SFCALL, IFBIT
CALLS: MEM, LOADGO, RECALLC

ISSUE “SF.ENDT” FUNCTION TO UCP. *JN/JDT* AS WELL AS *UCPA*
CAN BE EXTRACTED FROM THE UCP BUFFER WITH ADDRESS IN *UCP$BA*.

“SF.ENDT” NOT SUCCESSFUL FOR *CT$SFRT* RETRIES OR *SSF*

47

ERROR RETURN CODE DIFFERENT FROM *SFRC$USO* WHICH MEANS
UCP NOT SWAPPED OUT. WE WILL LOAD OVERLAY *QV$SFEND* TO
PROCESS THE REQUEST. (NOTE: *QVS$SFENDT* WILL OVERLAY THE
CURRENT FUNCTION OVERLAY).

SYSEND -

GENERAL CLEAN-UP AT END—OF—PRQGRAM
TERMESS -

SEND MESSAGE TO MESSAGE TERMINAL.

SEND THE MESSAGE IN *M.BUF* TO THE INTERACTIVE TERMINAL USING
MES. THE PARAMETER BLOCK *MESS$PAR* IS EXPECTED TO BE SET
PROPERLY WITH THE CORRECT TID FOR THE MESSAGE TERMINAL.

IF *TERMESS* FAILS FOR THE FIRST TIME THE CENTRAL OPERATOR
WILL BE INFORMED BY A NEW B-DISPLAY MESSAGE (CF. *BDIS2ND*).
WE WILL JUST CLEAR BIT *S$MESS* AND CALL *BDIS2ND*.

NOTE THAT SENDING MESSAGES TO INTERACTIVE TERMINALS USING
MES IS JUST POSSIBLE AFTER A MODIFICATION MADE LOCALLY

AT ECMWF. BECAUSE ONLY A LIMITED NUMBER OF OUTPUT BUFFERS

CAN BE ALLOCATED BY *MES* (*MES* USES MACRO *QUTPP*) "PGM.SMS"
CAN GET STUCK IF THE MESSAGE LOGGING TERMINAL IS ASYNCHRONOUS
AND IN SENDING MODE NOT FOLLOWED BY A CARRIAGE RETURN. *MES*
WILL THEN GO INTO THE DELAY STACK AND JUST WAIT (NOTE THAT
THE CALL IS AUTO-RECALL). TO AT LEAST GIVE THE OPERATOR A
CHANCE TO GET HIS TERMINAL WORKING AGAIN A B-DISPLAY MESSAGE
M.TERM IS ISSUED BEFORE TO CALL *MES*. THIS MESSAGE WILL
STAY IN THE ABOVE SITUATION AND IS CLEARED OTHERWISE AFTER
THE CALL. ‘ : '

ENTRY: Bl

i
T

v O OV

USES: A
X_
B—

MACROS: IFBIT, CLEARBIT, MESSAGE, RECALL, SYSTEM, WRITEC

CALLS: BDIS2ND, GENMESS

SEND MESSAGE TO INTERACTIVE MESSAGE TERMINAL

MES FAILED -> CLEAR BIT *S$MESS* AND REFRESH B-DISPLAY

AND WRITE SOME NOTIFICATION INTO THE LOGFILE AS WELL

TERMIN -

EXIT FROM SCP STATUS / TERMINATE PROGRAM

IF BIT *SSPEX* IS SET (I.E. *TERMIN* CALLED AFTER *PEX*) WE

ALSO CHECK BIT *S$NOREQ* TO SEE IF WE HAVE TO PROCESS A LAST

UCP REQUEST. IF SO WE WILL CLEAR *#SSPEX* AND #SSMORFR¥*,

PROCESS THE LAST REQUEST AND WILL COME TO *TERMIN* AGAIN

(!! *S$DROP STILL SET) AND END NORMALLY.

IF BIT *S$SCP* IS SET WE WILL CALL *SSF* TO CANCEL SCP
STATUS. NORMAL TERMINATION WILL THEN INCLUDE AN ERROR

‘48

MESSAGE WRITTEN TO THE LOGFILE IF BITS *SSEROD* OR
SSERRN ARE SET FOLLOWED BY A CALL TO *SYSEND* AND
ENDRUN.

MACROS : CLEAEBIT",‘ ENDRUN, IFBIT, LOGMESS, SFCALL

CALLS: SYSEND
—= EXIT FROM SCP STATUS. THE FOLLOWING ACTIONS ARE PERFORMED.
. MAKE AN “SF.EXIT” CALL
. CLEAR *RA.SSID*

. CALL *SYSEND*
. ISSUE *ENDRUN* OR KILL JOB

S~

—-—- UCPBADD -

ALSO EXTERNALLY CALLABLE FUNCTION TO RETURN THE ADDRESS
OF THE FREE UCP BUFFER.

USES: A - 2
X - 6,2
B — NONE

6.7 Data Structures

All more complex (SYMPL) data structures have been defined using “system
independent arrays” (cf. SYMPL Ref. Man.). At the present moment there is no
program available which will plot tables describing these data structures, but a
procedure named VARLIST is contained within the SMS UPDATE OLDPL which will
produce a line printer output of most data structures containing the variable
name, the data type, the starting word and bit positions plus the length of each
variable defined.

For some of the most common structures a description will be given here.

6.7.1 /FI/ - Family Index Definition

For each family defined in a suite a so-called Family Index entry is generated.
Within the definition of /FI/ is also contained the header for the files STASx
and STABx. The following allocation holds:

49

FI$ INT 0 0 60
FI$CHECK INT 1 0 60
FISLFN CHAR 2 0 6
FI$CRDAT CHAR 2 36 4
FISOPDAT CHAR 3 0 10
FI$OPSYY CHAR 3 6 2
FISOPSMM CHAR 3 24 2
FISOP$DD CHAR 3 42 2
FISSTSUITE UNS 4 0 11
FISFILSIZE UNS 4 11 10
FISDECK BOOL 4 21 1
FISLAST UNS 4 22 11
FISFBENTLG UNS 4 33 3
FISPRU CHAR 5 0 20
FISFAMNAM CHAR 7 0 5
FISNEXTFA UNS 7 30 10
FISFBLAST UNS 7 40 8
FISFAMSTAT UNS 7 48 12
FISSTBIT BOOL 7 50 1
FISPTBIT BOOL 7 51 1
FISETBIT BOOL 7 52 1
FI$TBIT BOOL 7 53 1
FISRBIT "BOOL 7 54 1
FISFRIT BOOL 7 55 1
FI$SBIT BOOL 7 56 1
FISEBIT BOOL 7 57 1
FISABIT BOOL 7 58 1
FI$CBIT BOOL 7 59 1
FI$STARTIM UNS 10 0 11
FISENDTIM UNS 10 11 11
FISRESTIM UNS 10 22 11
FISUNUSED2 - UNS 10 33 3
FISPRUTT UNS 10 36 12
FISPRUBUP UNS 10 48 12

/FI/ is sorted alphabetically according to the family name (FI$fAMNAM) in order
to be able to perform binary searches. The original order is preserved through
forward links (FISNEXTFA).

6.7.2 /FE/ - Family Event Table

The Family Event Table contains all families which have a “TRIGGER™ parameter
associated with them. Each of these family entries is followed by an entry for
each (family name, event) pair in the “TRIGGER™ list.

/FE/ is stored following /FI/ on STASx and STABx.

FESFAMNAM CHAR 0 0 5
FESTRIGGER BOOL 0 30 1
FESBITMAP UNS 0 31 14
FESEVENTNA UNS 0 31 17
FESLAST UNS 0 48 12

6.7.3 /FB/ - Family Buffer

A Family Buffer of variable length is generated for each family the random
addresses of which on STASx and STABx respectively are stored in /FI/. Each
“TASK” entry and each “FAMILY” entry within a family definition occupy one
Family Buffer entry:

50

FBSTASKFAM CHAR 0 0 5
FBSJIN CHAR 0 0o 7
FBSBITMAP UNS 0 42 9
FBSNOREST BOOL 0 51 1
FBS$STATUS UNS 0 51 9
FBSTIBIT BOOL 0 52 1
FBSOBIT BOOL 0 53 1
FBSDBIT BOOL 0 54 1
FBSFBIT BOOL 0 55 1
FB$SBIT BOOL 0 56 1
FBS$TBIT BOOL 0 57 1
FBSABIT BOOL 0 58 1
FBSCBIT BOOL 0 59 1
FBSSTARTIM UNS 1 0 11
FBSMCTYPE UNS 1 11 3
FBSDATEBIT BOOL 1 14 1
FBSWEEKBUF UNS 1 15 7
FBSDATEBUF UNS 1 15 45
FBSDECKPRU UNS 2 0 12
FBSEVSPACE CHAR 2 12 18

The Family Buffers /FB/ are copied behind /FE/ on STASx. Only families which
have been started and are not yet complete will have a Family Buffer on the work
file STABx. The position is random and is determined during execution. The
length of a Family Buffer is recorded in the corresponding family entry in /FI/
(FISFBLAST).

6.7.4 /DT/ — Delay Table

The so-called Delay Table occupies the space behind /FE/ on the work file STABX.
Delay table entries are generated for families or tasks with start times ahead
of the times when their S-Bits are being set.

DT$NEXTDAY BOOL 0 0o 1
DTSINT - INT 0 0 60
DTS$FAMFLAG BOOL 0 1 1
DT$TIME UNS 0 2 11
DTSFI UNS 0 13 10
DTSFB UNS 0 23 8

6.8 Installation Notes

The entire SMS Subsystem source code is contained in an UPDATE OLDPL program
library. This library is structured in sections containing source codes for the
different compilers being used. The beginning of a new section is identified by
a new deck name of the form “*xyz” where “xyz~ is a mnemonic for the section to

follow. The current section identifiers are:

*CC—-DECKS Standard NOS/BE Common Common Decks plus some non-standard ones in
use by the subsystem.

*COMDECKS All UPDATE COMDECKS being used.
*CALTEXTS CAL texts.

*CFT CFT subroutines.

#¥CFTPROGS ~ CFT programs.

51

*COMTEXTS COMPASS texts.

*SYMTEXTS SYMPL texts.

*COMPASS COMPASS subroutines and presét type definitions.
*SYMPL SYMPL subroutines.

*CAPSULES CAPSULES being used by the UCP interface.

*C~PROGS COMPASS main programs.

*#S~PROGS SYMPL main programs.

*INSTJOB Installation jobs for CYBER and CRAY production and test versidns.
*PROCS CCL procedures to be used in conjunction with the SMS subsystem.

*TESTPRGS For test programs.

The convention has been adopted that within each of the above section all decks
are alphabetically ordered. Furthermore, COMPASS and CAL deck names always have
a “C” appended to them and all CRAY decks have a “-C” string appended as well.
Decknames always symbolise the program unit names. (Ex.: Deck TTGENC contains
the COMPASS main program of the task table generator while deck TTGEN contains

the SYMPL part of the program). COMPASS preset decks have always got a "=
appended, eg. deck SMSFDL= contains presets for routine within deck SMSFDL.

The installation jobs within the SMS UPDATE program library rely on the the
structure described above (note, that all of the “*...” decks contain “*WEOR”
cards; so, decks are expected to be at the right place).

An interactive CCL procedure “SMSI”~ is contained within the SMS UPDATE library
which when excecuted performs an update of the existing installation jobs for
the CYBER and CRAY versions of SMS in the same program library to install a new
version of either the CRAY or CYBER part. In case of the CYBER installation the
subsystem is built from the so-called user 1libraries (cf. NOS/BE Installation
Handbook: User Library Method) and EDITLIBed into appropriate libraries for
subsequent deadstart tape generations; for CRAY versions an installation run is
performed using the standard products and libraries: a new CRAY BUILD library is
generated which is subsequently disposed via the CYBER/CRAY link in transparent
format to the NOS/BE install private device set from where it can subsequently
be copied etc. '

N

L]
M~ -

[« RO T B UL N

PLWWWWWWWLWNDNDNDDND DN

WWWWLWWWwWwLWwwwLwww®w

.
.

P
« .
w N =

. .
.
.
v~

« .
o »
U~ N

WNNMBNNNDNF PP

W DN =

B R TR

B s S I i g e T o L S St S

MEDNAAELEDNPDPPLOWWWWLWWLWWLLWWLWLWWLWWLWNDNDND N

CRC N RE R R,
. L] .
e

. L]
-

. .
W=

52
INDEX

Contents

ACKNOWLEDGEMENTS
Preface

Suite Concept For Operational Forecasts At ECMWF
Definitions: Suite, Family, Task, Event
Family Definitions

“START”, “END”, “P~

“TRIGGER”

Equivalenced Families (<=>)

“TASK” And “FAMILY~

Definitions For The Family Body

“EVENT”

“TIME”

“DAY”, “DATE”

“PRINT”

“NORESTART”

Machine Type Definition

Examples Of Family Descriptions

Functional Description Of The SMS—-Subsystem
General Consideratioms

How To Get Started

Define Suites — Task Tables

The Initialisation File

SMS: Initialisation — Work Environment — Active Suites

The Status Of Families And Tasks
Family Status Flags
E-Bit (Executable Bit)
S-Bit (Start Bit)

A-Bit (Active Bit)

C-Bit (Complete Bit)
F-Bit (Force Bit)

Task Status Flags

§-Bit (Start Bit)

A-Bit (Active Bit)

C-Bit (Complete Bit)
T-Bit (Abort Bit)

F-Bit (Force Bit)

The “STATUS” Function
The Processing Of Suites
General Remarks
“RESTART” Processing

SMS Operator Control

SMS Interaction Commands
“Issue Event To SMS~
“Write Message To Message Logging Terminal”
“End-Task Notifications”

Operator Capabilities And SMS Interaction Commands
Console Capabilities

SMS = Supervisor (*%%)

Control Card Description

B-DISPLAY Description

Important Messages During Initialisation

Page

N

NP PEPLLLWLWLWLWLNDEN

O OVRWOWMWMWNN~NOOTOOYUT 1

R ol =l e g el s
NNNNHEEHEHFOOOOO

12
12
13
13
14
14

w
.

o

.« .

.

~N o U

[

L) L] . - - . . L] L] L] L] - L) . L] .
. L[] - L) - L] . L] . . L
N
.

H o000 N W

ooV PN O

e e o s e
. o .
Ul W

NP WWWWWWNNNNNNONDNODNDRDPDNONDNDNDND NN

MUuUuuuuLuuUuuuuUuuuuuuuuoiuuuiunuuub Lt Ut n

W=

P
Wi

« e * 8 e s
NN N~N~NOO OO OO OO TR PRLWWLWWwWWLND &
. s » .
N =

NN NN YU DN

LR
. .
.
w o

N R R R RO R R AR AR AR AN AR\l W= W«)i« Je)Jle) e \3¥e R0 ARl e R)]
« = =

« o o

~ W o=

53

Stage 1 Messages — Low-Level Environment

Stage I1 Messages — High Level Environment
Stage III Messages — Mainframe Logical ID Check
Stage IV Messages — Restart Mode

“n.X OPS,command.” Interface (*%%)

SMS Operator Commands

ALLMES - Set/Clear ALLMES Indicator (*%%)

DATE - Initialise New Suite (*%%)

EXEC - Set E-bit(s) (*%%)

EXST ~ Set E-bit(s) And Start First Family (¥*%%)
INITMES - Initialise Message Terminal (¥**%)
LOGFILE - Logfile Handler (#*%%)

PROPQT - Process Output—Queue-Table (**%)

REST - Restart Suite(s) (*¥%%)

RUNTSK — Run Task (¥%%)

SETIM — Set/Clear Time(s) For Family Or Task (*%%)

SETUP — Set-up Command/Message Terminal (**%)

SMSLOG —~ Procedure To Handle Back-up Logfiles (%*#%%)

START - Start Family Or Task (%#%%¥)
STATUS - Status Enquiry Facility (*%%)
STOP — General Stop Command (*%%¥)

SUITDAT - Date And START Time Of Active Suiltes (%*%%)

Other SMS Interaction Commands

ABTT - Task—-Abort Notification
ENDT - Task—End Notification

ISSEV - Issue Event

ISSWMES - Write Message To Terminal
SMSFCT - Extermal Calling Facility
Special Programs

ATTARLF ~ Attach Archived Logfile
INGEN — Initialisation File Handler
LOGANAL — Logfile Analyser

TTGEN - Task Table Generator

The Technical Implementation Of The SMS Subsystem
Preliminaries

Programming Languages

Symbol Definitions And System Texts

Common Symbol Definitions

System Texts: COMPTXT, SYMDEFS, CALTEXT
Other SYMPL Texts

The I/0 Interface Used By The SMS Subsystem
Sequential Files

Random Files

The SMS Logfile And The Message Logging Interface
Notes On The Implementation Of SMS

System Control Point

File—Request Interface

The CYBER User Interface

Overlay System

Reprieve Processing

CRAY Q-Enqiry Facility

Internal Documentation Of SMS
Initialisation Code

Internal Documentation Of SMS™ IDLE SYSTEM
Subroutines Within SMS Main Overlay

Data Structures

/FI/ - Family Index Definition

/FE/ - Family Event Table

/FB/ — Family Buffer

/DT/ - Delay Table

14
15
16
16
18
18
18
19
19
20
20
21
21
22
22
22
23
23
23
24
25
25
25
26
26
27
27
27
28
28
28
30
31

32
32
33
33
33
34
34
34
35
35
35
35
35
36
36
36
37
37
38
38
39
40
48
48
49
49

50

6.8

Installation Notes

54

50

