Atmospheric Modeling on a SIMD Computer

by
M. J. Suarez

Goddard Space Flight Center/611
Greenbelt, MD 20771

As technical limits are approached on the speed of processors used in
super—computers, we may expect that greater parallelism will be sought to en—
hance their power. The parallel execution of varied tasks is to some degree
used in all modern mainframes. In the new class of parallel machines, how—
ever, parallelism is a central design concept, and its presence is much more
apparent to the user. Efficient use of a two processor XMP, for example, to
fun a single, 1arge_task such as an atmospheric GCM, is a very different
problem than that of running the.same task on its predecessor, the CRAY-1l.
As the number of processors increases from two to say eight or sixteen, we
cannot expect the total computing power to increase proportionably, but the
difficulty of programming probably will. Furthermore, the increase in com—
putational speed we get from additional processors will depend both on our
task (and how we organize it) and on the organization of the machine itself.
It thus behooves us at these early stages in the development of parallel
super—computers to consider how well our models could be made to perform on
various computer organizations. At Goddard Space Flight Center we started a
project to explore the possibilities of using machines like Goddard's Mas—
sively Parallel Processor (MPP) in atmospheric modeling.

In his landmark paper on computer organization, Flynn (1972) discuss—
ed two types of parallel processors that he termed: single instruction
stream/multiple data stream (SIMD) and multiple instruction stream/multiple
data stream (MIMD). In a MIMD each processor can work on a different set

of instructions and access different data. Problems in its design and use

163



revolve around the assignment and coordination of tasks among the processors
and the avoidance of conflicts in their access to data. Most parallel super-
computers produced or planned are of this type.

The MPP is an example of the SIMD organization. At any one time all
its processors are executing the same instruction, or doing nothing. Each
processor accesses different data, kept in local memory. But addressing,
like any other instruction, is done with all processors in lock-step, so
they all work on the same portion of the locally held data. Because of
their relatively simple organization SIMD machines can be built of a very
large number of processors (the MPP consists of 16K processing elements
(PEs).) The rigidity of their lock—-step execution of instructions, however,
makes them suitable only for the most parallel of tasks.

It is cleér that the wide range of computing tasks encountered in the
atmospheric sciences requires that large, general purpose computers be avail-
able at major centers. It is unlikely SIMD machines will ever be able to
meet this need. However, a large fraction of our computing resources is
devoted to a single large task: the execution of high resolution general
circulation and weather prediction models. Since these models are used
repetitively for years in both research and operational forecasting, omne
can afford to devote considerable effort to optimizing theif codes. The
question underlying our discussion is: Should one also consider the opti-
mization of the organization of the computers on which they are run? Judg-
ing by the attention given to the question, the answer has been - no, it is
preferable to devote our attention to improving and adjusting our codes to
the best available general purpose computers. It is our starting premise
that increased availability and use of parallelism could alter this answer.
In the rest of this note we give a brief discussion of this qustion. We
will identify - probably naively— MIMD with general purpose and SIMD with

specialization, since the latter is the simplest and most economical way

164



of achieving a large degree of parallelism and produces a consequent decrease
in generality.

The main argument against considering a specialized organization is
that it could be justified only for our largest tasks, general circulation
models (GCMs). Because these attempt a comprehensive description of atmos-—
pheric processes they involve most of the tasks of the field as a whole;
consequently they could not be made sufficiently parallel to make efficient
use of the SIMD specialization. In particular these models, in addition
to solving discrete versions of the equations of motion, deal with a number
of sub—grid scale procesess such as radiative transfer through cloudy atmos-—
pheres, condensation, and small scale turbulent and convective motions.
Because existing parameterizations for these processes are highly condi-
tional (do this if there is a cloud, otherwise do that) they will be very
inefficient in a highly parallel SIMD machine. Two questions arise: How
punitive are such "non—parallel” tasks? and how much may their formulation
be modified to make them more amenable to parallel calculation? We will
devote our attentive to the first and easier of the two, assuming (conser—
vatively for‘the SIMD casé) that the answer to the second is - not much.

A good starting‘model for the behavior of a task as the number of pro-
cessors working on it is increased is “"Amdahl's assertion”. It states, in
effect, that every task contains some fixed fraction of critical work that
while being performed requires all other subtasks idle, awaiting either
access or results. If this fraction is denoted by f, then the time requir-
ed to perform the task with n processors, given in units of the time re-—
quired to perform it with a single, identical processor is

g =00 -f) 4+ ¢

n
and its inverse, the speed-up, is
t7l = __ n (1)
(1 -f) +fn



For small n speed increases linearly, while at large n it saturates at a
value of f~l times the speed of the individual processors. The choices
this model's assumptions offer is to either effectively eliminate critical
tasks or use the complexity allowed the machine for a few fast processors.
Less pessimistic results require relaxing the assumption of a fixed, single-
tasking fraction.

To be definite we consider a simple heuristic model of a GCM. We as-
sume that its tasks fall in three categories: 1local or nearly local un-
branched calculations, such as those used in updating the equations of
motion at grid points; nonlocal unbranched calculations, such as computing
zonal FFT's; and local branched calculations, such as those used in sub~
grid scale processes.

Machines like the MPP -- a SIMD with a nearest neighbor network —— are
ideal for the local unbranched pasks of grid-point models, provided the
model's horizontal grid can be mapped onto the processors array and its ver-
tical grid fits into each processing element. In this case the only over-
head is in accessing a near neighbor's data. The rest of the time is spent
doing arithmetic and accessing local memory. If as n increases the grid
is made finer or the mapping more sparse (fewer grid points per processor);
the calculations per unit time increases like n and the overhead remains
fixed, so

t™l ~n.
This is the ideal case.

As an example of mnon-local unbranched calculations we take an FFT
along one direction of the array of processors. This would be the first
step in solving a Poisson equation on a sphere with a latitude longitude
mapping onto the array and the transform taken in the zonal direction. If
for simplicity we take a squ;re array, and again assume the grid is made

finer with larger n, the result for large n is

166



t=1 ~ va log n . (2)
This is less than ideal but still an attractive speed-up, and suggests that
non-local operations such as the solution of elliptic equations need not
be a serious impediment to SIMD calculations. We note, however, that the
proportionality constant in (2) would depend on the speed with which near
neighbor transfers can be made compared to the arithmetic speed of the
processors.

The third case, branched local calculations, are the most punitive to
the SIMD machine. Flynn (1972) analyzed this case by considering a branch-
ed structure with equal probability of having to execute either side of
the branch. With this assumption the number of processors active at branch-

ing level p is

and beyond level p = logy(n) - 1, processors are executing sequentialy.
If fp is the fraction of the calculations done at each level, the time
required in a SIMD organization is
logy(n)-1 '
t =1+ i el 1l —1], a1 (3)
= Pln
p=o p -~
The speed-up is then crucially dependent on the choice of fp, which depends
on the nature of the task. If the branching is only a few levels deep the

summation would be terminated after these terms and we would have

Pl £
t= ) P2 .

p=0 np
Two idealized cases considered by Flynn serve to illustrate possible behav-
iors of the speed-up. 1In the first, the fraction of the work at successive-
ly deeper levels of branching is assumed to decrease exponentially, just

matching the decrease in the number of processors working.

167



£o= 1
op+l

that is, half the operations are fully parallel, one quarter are at the
first level, and so on. This circumvents Amdahl's assertion by making the
single—tasking fraction decrease as n increases, the speed-up for large n

is then

g7l ~__ o (4)

log (n)
this is probably the weakest dependence for which a large degree of par-
allism should be considered. The second "case is to assume that an equal
fraction of the work must be done at each level. The asymptotic speed up
is then
el ~ log () (5)

this behavior is called Minsky's conjecture, and a task that exhibits it
is clearly unsuitable for highly parallel calculations.

Where does this leave us? First the dynamics calculations should be
amenable to large parallelism, for both local and non—local processes. If
the branched fraction in the physics behaves like (5) and cannot be modifi-
ed, we will be restricted to using a few fast processors. If on average
it behaves like (4), however, then, depending on how economically processors

can be replicated, a fairly large n may be optimal.

Reference:
Flynn, M. J., 1972. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, C-21, 948-960.

168





