PROGRAMMING LANGUAGES FOR MULTIPROCESSOR SYSTEMS

R.H. PERROTT
On leave from :
Department of Computer Science PS Division
Queens's University CERN
Belfast CH-1211 Geneva 23
N.Ireland Switzerland

Abstract

High Tlevel 1anguagés for multiprocessor systems are required to provide
features which control the concurrent activities (called processes) which
can occur in an application program. Specifically the activities which
need to be regulated arise from mutual exclusion situations where it is
required that only one process can access a critical resource at any time
Without interruption and synchronisation situations where processes wish

to co-operate to their mutual benefit.

To illustrate these problems this paper considers a solution to the
bounded buffer problem in two different concurrent programming languages,
viz, Pascal Plus and Ada. These Tlanguages represent the two different
approaches which have been used to regulate concurrent activities in a
programming language. Pascal Plus, 1ike Concurrent Pascal and Modula, uses

a monitor structure while Ada uses message passing primitives.

The solutions indicate the different design techniques which must be used

depending on which synchronisation technigue is employed.

Keywords

Concurrency: Mutual exclusion: Synchronisation: Ada.

223

1. INTRODUCTION

During the 1970's it was the design and implementation of operating
systems which led the research into techniques to regulate concurrent
activities. At the same time the price of hardwaré components was
decreasing enabling the construction of truly parallel configurations,
such as multiprocesser and distributed systems. As these systems became
more widely available it was necessary to introduce concurrent programming
languages to enable applications other than operating' systems to be

programmed.

The term process is used to describe a sequence of program instructions
that can be performed in parallel with other program instructions. The
point at which a processor is withdrawn from one process and given to
another is dependent on the progress of the processes and the algorithm
used to assign the processor(s). The simple and well-defined processor
allocation strategy of a sequential system is replaced in order to achieve
greater processor utilisation. The nett effect 1is that processes are
independent and thus capable of interacting in a time-dependent manner..
The series of states which the system passes through is not necessarily
identical when the same batch of programs is presented with the same data

for execution.

Thus in the concurrent programming environment a programmer requires not
only program and data structures similar to those required in a sequential
programming environment but also tools to control the interaction of the

processes - processes which are proceeding at fixed but unknown rates.

The situations in which the processes interact can be divided into two
categories. The first occurs whenever processes wish to update a shared

variable or a resource at the same time (or in an interleaved fashion).
224

For example, when one process wishes to use a resource which is currently
reserved by another process. A process must be able to carry out such
actions without interference from the other processes; this is described
as mututal exclusion. The second category occurs when processes are
co-operating on some task, they must be correctly interleaved in time. For
example, when one process requires a result not yet produced by another
process. The processes are communicating or scheduling one another and are
now aware of each other's existence and purpose} this 1is described as

process synchronisation.

In this paper two concurrent programming languages, namely Ada (Ada, 1983)
and Pascal Plus (Welsh and Bustard, 1979) are considered. These languages
are chosen as being representative of the two main synchronisation
techniques that have evolved; message passing primitives and monitors with
condition variables. Only the concurrent features of each language are
described in detail and these are then illustrated by means of the bounded
buffer problem. The solutions illustrate the main considerations which
must be addressed in a concurrent programming environment as well as

enabling a comparison of the two languages to be made.

2. PASCAL PLUS
Pascal Plus, as its name implies, is an extension of Pascal. The

extensions are as follows:

i) the envelope structure which is an aid to program modularisation and
data abstraction;

ii) the process, monitor and condition structures which provide a means of
representing parallel processes and controlling any subsequent
interaction.

225

Processes are used to identify independent actions which may take place in
parallel. After a process has been defined, instances of it can be

declared. Once activated the processes proceed conceptually in parallel.

A process is defined as a block with a suitable heading which may include

parameters. For example :

process PRODUCER;
(*1ocal data definitions and declarations*)

begin
(*statements of PRODUCER*)

end ; (*PRODUCER*)

instance
BEE1,BEE2 : PRODUCER;

The last statement activates two processes which may subsequently run in

parallel.

One solution to the mutual exclusion problem is to gather together any
variables which are shared and the operations which can be performed on
them; such a construct is called a monitor or secretary (Brinch Hansen,
1973; Dijkstra, 1972; Hoare, 1974). The monitor therefore collects all the
critical pieces of code into a single structure and only one process can
have access to this structure at any time. Such a language construct takes
the form :

monitor MONITORNAME;
(*declaration of local data*)

procedure PROCNAME (parameter list);

begin (*procedure body*) end ;
(*declaration of other local procedures*)

begin
(*initialisation of local data*)
end ;

226

On declaration the monitor initialises its local data and all subsequent
calls use the values of the Tocal variables obtained on completion of the
previous call. To invoke a monitor procedure the monitor name and the

required procedure and its parameters are specifjed as
MONITORNAME .PROCNAME (actual parameters);

If a process enters a monitor it may have to be suspended pending the
action of another process; this is achieved by means of CONDITION queues.
The user can.deé]are these queues in the form
instance FULL:CONDITION; |
To suspend itself on a CONDITION queue a process performs a WAIT operation
expressed as
FULL.WAIT

Such an action deactivates the process and appends it to the queue
identified by FULL. It also releases the exclusion on the monitor,

otherwise other processes would be prevented from entering the monitor.

To release a process from a queue another process performs a SIGNAL
operation, indicating to the signalled process that the reason for its
delay no longer holds. This is expressed as

| FULL.STGNAL

Control is immediately passed to the process at the head of the FULL
queue. The signalling process is delayed until the signalled process
releases the exclusion of the monitor; a SIGNAL operation has no effect if
there are no processes waiting. This form of enforced politeness is
necessary in case the condition for resuming a delayed process is
subsequently changed by the signalling process or another process

intervening.

227

To illustrate the use of a monitor with condition variables consider the
situation where several processes (producers) wish to communicate a series
of items to other processes (consumers). This can be achieved by a buffer
of a finite capacity into which the producers deposit items and from which
the consumers remove items when ready. The processes must be synchronised
in such a way that the producers will not produce when the buffer is full
and the consumers will not consume when the buffer is empty. This is known

as the bounded buffer problem.

The necessary process synchronisation can be achieved by associating a
queue with each possible waiting condition, namely a full or an empty
buffer. A producer should perform a SIGNAL operation on the appropriate
queue after it has placed an item in the buffer. A consumer should join
this same queue if the buffer is empty. Another queue is required for the
situation when the buffer is full. In this case the producer should wait

and the consumer should signal.

By this means the processes can co-operate to their mutual benefit as

shown in the following Pascal Plus program fragment.

228

type MESSAGE = definition;
monitor BOUNDEDBUFFER;
var BUFFER : array[0..(N-1)]) of MESSAGE;
POINTER : 0..N-1; .
COUNT : 0..N; (*number of items in buffer*)
instance EMPTY, FULL : CONDITION;

procedure *DEPOSIT (ITEM : MESSAGE);
begin
if COUNT = N then FULL.WAIT;
BUFFER [(POINTER + COUNT) mod NJ := ITEM;
COUNT := COUNT + 1;
EMPTY.SIGNAL
end ; (*deposit*)

procedure *REMOVE (var ITEM : MESSAGE);
begin :
if COUNT = O then EMPTY.WAIT;
ITEM := BUFFER [POINTER];
COUNT := COUNT - 1;
POINTER := (POINTER + 1) mod N;
FULL.SIGNAL
end ;(*remove*)

begin
COUNT := 0; POINTER := 0
end . (*bounded buffer*)

The procedures DEPOSIT and REMOVE are starred indicating that they may be

called from outside the monitor. The value of the variable COUNT

determines whether a process should or should not be delayed.

229

An instance of this monitor can then be declared and

procedures called as shown :

instance BUFFER1 : BOUNDEDBUFFER;

process PRODUCER;
var ITEM : MESSAGE;
begin
repeat
(*produce item*)
BUFFERL.DEPOSIT (ITEM);
until FINISHED
end ;(*producer*)

process CONSUMER;
var ITEM : MESSAGE;
begin
repeat
BUFFERL.REMOVE (ITEM);
(*consume item*)
until FINISHED
end ; (*consumer*)

instance

P : array |1..X] of PRODUCER;

C : array [1..Y] of CONSUMER;

(* X producers and Y consumers are activated*)
begin
end.

230

the

starred

3. ADA

Ada was designed for the U.S. Department of Defense with three main

objectives :

i) a recognition of the importance of program reliability and
maintenance;
ji) a concern fbr programming as a human activity;

iii) efficiency.
To realise these objectives Ada has insisted on the following :

a) readability,

b) strong typing,

c) programming in the large features,
d) exception handling,

e) data abstraction,

f) generic units,

g) tasking.

In Ada the work task rather than process is used to indicate a sequence of
actions. Every task is written in the declarative part of some enclosing
program unit, which is called its parent. A program unit is either a

subprogram, package or task.

The definition of a task consists of two parts, its specification and its
body. The specification part is the interface presented to other tasks and
may contain entry specifications which are a 1ist of the services provided

by the task. The task body contains the sequence of statements to be

231

executed when each of the services is requested; it represents the dynamic

behaviour of the task. For example, -- indicates a comment in Ada,

task PRODUCER is

-- specification
end ;
task body PRODUCER 1is
-- body

end PRODUCER;
begin -- active here
-- parent
end ; -~ terminates here

The task automatically becomes active, its body is executed; when the
begin of the parent unit is reached. The task then executes in parallel
with the statements of its parent, i.e. those statements between the

begin and end . The task terminates normally by reaching the final end .

The program unit in which a task (or tasks) is declared cannot be left
until all tasks in that unit have terminated. If several tasks are
required with similar properties it is possible to define a task type and

then to declare as many instances as are necessary. For example :

task type PRODUCER TASK is

-- specification

D icat

end ;

task body PRODUCER TASK is
-- body

end PRODUCER TASK;

defines a type called PRODUCER TASK which is a task and
BEE2, BEEl: PRODUCER_TASK;
declares two instances of the type PRODUCER TASK. These tasks will be

activated at the begin of the parent unit in which they are declared.

232

In Ada tasks can be regarded as either active or passive. Passive tasks
have the function of providing some service (or services) which are used
by other active tasks. An example of a passive and several active tasks
occurs in the bounded buffer problem. In Ada the buffer itself must be
described as a task - a passive task which will accept calls from the

other active tasks, the producers and consumers.

The communication method used is that one task calls a procedure defined
in another task and the parameter 1list is used to provide for the

transfer of data.

The task specification is used to declare the procedures which other tasks
can call, that js, the services available frbm this task. For this reason
they are referred to as entry procedures. For example, the specification
of a task BOUNDED BUFFER which allows items to‘be deposited and removed

from a buffer could have its specification defined as

task BOUNDED_BUFFER is
entry DEPOSIT (ITEM : in MESSAGE) ;
entry REMOVE (ITEM : out MESSAGE);
end ;

indicating that it will accept calls to the procedures DEPOSIT and REMOVE
from other tasks. Thus the specification contains a list of entry
procedures which are the parts of a task which are available to other
tasks to call and thus use. If the task provides no services then it
requires no entry procedures in its specification. In the body of the task
BOUNDED_BUFFER more details of the entry procedures must be given in the

following form :

233

accept DEPOSIT (ITEM : in MESSAGE) do
-- statements

end ;

-~ statements

accept REMOVE (ITEM : out MESSAGE) do
-- statements
end ;

The accept statement must use the same identifier name and a list of
parameters of the same number and type as appeared in the specification
part. The statements between the do and end perform the service
associated with the entry procedure. To use any of the entry procedures

another task must make a call of the form

BOUNDED_BUFFER.DEPOSIT (ITEM);

The task name qualified with an entry procedure name and a list of actual

parameters,

Thus the structure of a solution for the bounded buffer problem takes the

following form :

234

task BOUNDED BUFFER is
entry DEPOSIT (ITEM : in MESSAGE);
entry REMOVE (ITEM : out MESSAGE);
end BOUNDED_BUFFER;
taskABOUNDED_BUFFER is
-- depends on the representation of the buffer
begin
-~ statements
accept DEPOSIT (ITEM : in MESSAGE) do
-- statements
end ;
end BOUNDED_BUFFER;

task type PRODUCER 1is
-- no entry procedures required
end ;
task body PRODUCER is
ITEM : MESSAGE;
begin
Toop
-- produce item
BOUNDED_BUFFER.DEPOSIT (ITEM);
exit when FINISHED;
end loop ;
end PRODUCER;

task type CONSUMER is
-- no entry procedures required
end ;
task body CONSUMER is
ITEM : MESSAGE;
begin
Toop
BOUNDED_BUFFER.REMOVE (ITEM);
-- consume item '
exit when FINISHED;
end loop ;
end CONSUMER;

235

Several instances of these task types can be declared, for example:
P : array (1..X) of PRODUCER;
C : array (1..Y) of CONSUMER;
so that the X producers, the Y consumers and the BOUNDED BUFFER task are

all operating independently and in parallel.

The question now 1is what happens when they wish to communicate. The
information accepted by the BOUNDED_BUFFER task is that of a deposit or
removal of an item as indicated in the specification part. Thus the part
of the task body which will receive the information is the statements
following the accept . Another task requests the information by calling

one of the relevant entry procedures of the task.

Whichever task reaches its communication statement first, that is, the

accept or call statement, waits for the other task, when both tasks are
ready to communicate we have a rendezvous. At the rendezvous the
parameters are transferred and the body of the accept statement executed.
The calling task is held up and can only proceed when the execution of
the accept statement has been completed. The two tasks then proceed

independently. Thus the synchronisation of the tasks is implicit.

The BOUNDED BUFFER task does not know which of the consumer tasks has

called it.

Associated with each entry procedure there is a single queue of waiting

tasks which are processed on a first come first served basis.

Non-determinism has been introduced by means of the select statement.
The select statement enables a choice among several entry calls to be

specified. For example, the BOUNDED BUFFER task 1is not programmed to

236

accept producer calls before consumer calls, the order of selection is

non-deterministic and programmed as

select
accept DEPOSIT (ITEM : in MESSAGE) do
-- statements
end ;
or
accept REMOVE (ITEM : out MESSAGE) do
-- statements
end ;

end select ;

If neither of the entry procedures has been called the BOUNDED BUFFER task
waits; if one of them has been called it is executed; if both have been
called then either one is selected and executed. It is not known which
call will be selected, the choice is at random and the programmer cannot

rely on the selection algorithm used.

A conditional execution of a select alternative can be introduced by means

of a when statement which specifies what is called a guard. For example:

when COUNT{ N=2
accept DEPOSIT (ITEM : in MESSAGE) do
-- statements
end ;

will ensure that the value of COUNT is less than N before the accept
statement is activated. The guards are evaluated at the beginning of
the select statement, if an alternative of the select statement does not

have a guard then it is regarded as being true. One of the true

237

guards is selected at random for execution. If all the guards evaluate to
false an error is reported. It is possible for a select statement to have
an else part which will be executed if other alternatives are false.

A solution for the bounded buffer problem is as follows

task BOUNDED BUFFER is
entry DEPOSIT (ITEM : in MESSAGE);
entry REMOVE (ITEM : out MESSAGE);
end BOUNDED BUFFER;

task body BOUNDED BUFFER is
BUFFER : array (INTEGER range 0..N-1) of MESSAGE;
POINTER : INTEGER range O0..N-1 :=0; -- initially O
COUNT : INTEGER range 0..N :=0;

begin
loop
select
when COUNT< N="
accept DEPOSIT (ITEM : in MESSAGE) do
BUFFER ((POINTER + COUNT) mod N) :=ITEM;
end ;
COUNT := COUNT + 1;
or
when COUNT > 0 =7
accept REMOVE (ITEM : out MESSAGE) do
ITEM := BUFFER (POINTER);
end ;
POINTER := (POINTER + 1) mod N;
COUNT := COUNT - 1;
end select ;
end loop ;

end BOUNDED BUFFER;
The accept statements are the critical sections and the calling task is
de1ayed while an accept statement is executed. However, the updating of
the variables POINTER and COUNT is not part of the critical sections which

was the case in the monitor solution.

238

4. CONCLUSION

The Pascal Plus and Ada solutions to the bounded buffer problem illustrate
the essential differences between these two synchronisation methods. In
Ada the transfer of data is direct and synchronised while in Pascal Plus
jt is through a passive abstract data structure. These two different

communication techniques require different program design methods.

In Ada the buffer is represented as a task with the synchronisation
specified in terms of entry, select and accept statements while in Pascal
» Plus the CONDITION, WAIT and SIGNAL primitives are used to control the
buffer; In both cases the buffer is accessed in a mutually exclusive
manner. In Ada the tidying up operations, for example the adjustment of
the value of the variable COUNT can be performed without delaying the

calling process.

5. REFERENCES

Ada 1983, Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A). United States Department of Defense, Washington D.C.

Brinch Hansen, P., 1973: Operating Systems Principles. Prentice-Hall, New
Jersey.

Dijkstra, E.W., 1972: Hierarchical Ordering of Sequential Processes in
Operating Systems Techniques. (Eds.) C.A.R. Hoare and R.H. Perrott,
Academic Press, London, pp.72-79.

Hoare, C.A.R., 1974: Monitors: An Operating System Structuring Concept.
Comm. ACM 10, pp.549-557.

Welsh, J., and Bustard,D.W., 1979: Pascal Plus - Another Language for
Modular Multiprogramming. Software Practice and experience, 9, 947-957.

239

