ANALYSIS METHODS FOR THE QUALITY CONTROL OF OBSERVATIONS
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1. INTRODUCTION

A major problem for operational meteorological data analysis schemes
is the quality control of the observational data. 1In an intercomparison of
three analysis systems, using identical data, Hollingsworth et al (1985)
found that in most of the regions of large analysis difference chosen for
case studies there were differences in the quality control. In that study
we did not demonstrate that differences in quality control decisions caused
the analysis differences; in some cases differences in the forecast
background field may have caused both. However it was clear that there was
scope for improvement in the quality control methods, and that this would
have reduced differences between the analyses.

Many analysis systems use the optimum interpolation (OI) analysis
method; this can be readily adapted to quality control observations.
Methods of doing this are discussed in section 2, with examples taken from
the ECMWF analysis scheme (Lorenc 1981). However it is instructive to
reconsider the theoretical basis for this, so in section 3 T present some
simple studies using a Bayesian approach. These suggest an extension of
the methods generally in use for specifying religbility.

If statistically based methods are to be better than older empirically
tuned methods, it is vital that the statistics used are appropriate.
Methods of collecting these are discussed in section 4.

In section 5 some alternative approaches are discussed; an adaptive
Baysian approach (Purser 1984), generalized cross validation (Wahba and
Wendelberger 1980), the treatment of mean errors, and interactive human
intervention. These methods are appropriate for some of the modern
indirect observing systems which can have systematically varying and
correlated errors.

In section 6 I summarise, and speculate about longer term
developments. More theoretical aspects of the equivalence of OI, the
Bayesian approach and variational methods, and of the effect of Finite
resolution and spectral truncation, are dealt with in appendices.

2. QUALITY CONTROL USING OPTIMUM INTERPOLATION

2.1 Definitions and discussion

It is important that I should start by defining and making clear the
difference between the terms quality control, data selection, and
observational error specification. A major part of the effort of an
operational analysis system is expended in choosing which data to leave
out. Two types of data need to be identified; those which are grossly
incorrect or misleading (quality control), and those which carry little
extra information over others which are being used and which can therefore
be disregarded to save time (data selection). Because all data have errors
of observation or representativeness, and because of intrinsic or explicit
assumptions about the smoothness of fields, the analysis has to be a
compromise between the various selected observed values and the background
field; the compromise is specified in OI by the observational errors, which
determine the relative weights.
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The criterion for data selection implied by the above definition is
appropriate to the final production of analysed fields; it is not
appropriate to gquality control which uses the redundant information between
observations. Thus for the analysed fields it is appropriate to pre-select
a reduced network of observations, for instance by using a pre-—determined
gtation list, or by combining nearby observation into 'super—obs’', or by
choosing to use either height or temperature but not both from radiosonde
soundings. This pre—selection is however removing much of the redundant
information necessary for quality control, and if it must be done for
practical reasons it should be combined with a preliminary quality control
which uses the information to be left out.

The definition of cbservational error makes clear its dependence on
the smoothness and resolution of the analysis; error is defined as
deviation from a 'truth' which only resolves certain scales of atmospheric
motion. Thus it is appropriate to assign an error of about 5 m/s to an
aircraft wind report when doing a large scale analysis, even though its
real error, as measured by the next aircraft along the same flight path,
might be only about 2 m/s. This separation of scales should not affect the
quality control criterion derived below, since we will be comparing the
deviation of observation from analysis with the sum of analysis and
observational error variances; our estimate of analysis error uses the same
concept of 'truth' and is correspondingly smaller. However in extreme
cases our definition of 'truth' can affect quality control. For instance a
wind observation from a ship in a fjord would be correct for an analysis
which resolves the fjord, otherwise its error distribution would be so far
from normal that it should be rejected, indeed it is difficult to define
what the smooth analysis should be in this case. (This is discussed
further in Appendix 3).

It is important to realise that the observational error applies to
good cobservations which have passed the quality control checks; it is not a
measure of reliability. In practice reducing the specified observational
error of a particular type of observation causes more observations to be
rejected by a quality control algorithm such as that in section 2.2. WVays
of specifying reliability are discussed in section 3.

2.2 Derivation of equations

A derivation of the basic OI analysis equations, and their application
to quality control, was set out in a paper describing the ECMWF analysis
(Lorenc 1981). For ease of reference I reproduce the relevant parts here,
retaining the same notation and equation numbers, before going on to
further amplify the discussion.

Notation and basic method

The statistical techniques used are independent of the actual
variables observed or interpolated, so I use in this section a notation
which does not explicitly differentiate between them, allowing subscripts
to range as appropriate over all observed or analysed values whatever their
position, level, or variable type. Thus Bj is any observed datum selected
for the analysis, and Ax any analysed value within the analysis volume.
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For all observed or analysed value 1 assume the existence of predicted
( first—guess) values Pj, Pk and 'true' values Ti, Tk, the last being the
value we wish to estimate in the analysis. Note that T is not necessarily
the actual true value, since we do not wish to analyse atmospheric Ffeatures
below a certain scale. Deviations from this 'true' value are denoted by
lower case letters:-—

a=A-T (1a)
b=B-T (1b)
p=P—-T (1lc)

All analysed, observed or predicted values have associated error estimates
E defined by

Ea = <a2 >1/2 (1d)
EO = <b2 >1/2 (1e)
EP = <p2 >1/2 (1£)

where < > indicates an average over a large ensemble of similar
realisations. It is convenient to derive equations in dimensionless form,
and to have symbols for deviations from the prediction, so I define

o = a/E2@ (1g9)
B = b/EP (1h)
m = p/EP (11)
q = (B - P)/EP (13)
r = (A - P)/EP (1k)
€0 = EO/EP (11)
ed = Ea/EP (1m)

All the above take subscripts i (or j) ranging over all observed
values, or k ranging over all analysed values, whatever their position
level or variable.

The basis of the statistical interpolation method is that the analysed
deviation from the prediction is given by a linear combination of N
obsgserved deviations:-—

B

e = L, Wik Qi (2)

with the weights (w) determined so as to minimize the estimated analysis
error EE;
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Substituting (1) in (2) gives

a o
o ek = me+ F wik (81 €5 - mi) (3)
Squaring (3) and taking the ensemble average gives

O .
(g2 =1+2 B wik (o 1> €0 - < mcmy )

o . O
+ igl jgl wik (< 7§ T3 > + ei <3153)ej

- ei < Bj wy > - <mi By > ej) Wik (4)

These summations are conveniently manipulated using a vector and matrix
notation, so I define

wk = [wik] (5a)
Bk = [eme mi > — <7k B > E‘i’] (5b)
a = [ai) (5¢)
M= ([mimy> + & <Bi By > s; (5d)

o o
- e <Bi w3 > — <mi B3 > ej]]

(2) and (4) then become
T
Tk =wk g (6)
a T T

()2 =1-2y pe+wx Mw (7)
I can now proceed to the derivation of the equation for the ‘optimum*
weights, which minimize E®. Since the ensemble average < > is assumed to
be over a large number of similar realizations with the same estimated
errors E, this is equivalent to minimizing the normalized error variance

given by (4) or (7). By equating 3(€2)2/3wijx to zero for i = 1, Nwe get a
set of linear equations for the weights which give:

wk = M1 p (8)
The analysed value and estimated error corresponding to these weights are:-

% =gk bl (9)

()2 = =-p ¥l (10)
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Since M~1 and q are independent of the point being analysed it is
convenient to evaluate their product once only, to give a vector of
analysis coefficients c. Thus for the grid-point analysis the weights wy
are not explicitly calculated, instead (9) becomes

c=ulg (11)

It is usual to call terms such as «wj wj> error correlations and terms
such as <pj pj> covariances, although this is only true if biases such as
<pi»> are zero. This is not strictly necessary for the above derivation,
but if biases are non-zero (2) is not the best interpolation equation. I
shall assume the biases to be zero. It is also usual to neglect
correlations between prediction error and observation error «<wji 3j> (eg
Bergman 1979). If an observation type is to be used for which these terms
are known to be non-zero then their inclusion is straightforward.

Observation check

The final check on each datum is to compare qi with an interpolated
value ¥y using the data selected for the analysis volume. Hence it is
appropriate when deriving the equations for this interpolation to minimize
the expected variance of the difference between these, rather than the
deviation from the true value. Thus instead of (7) we minimize

(- @) > = (P H 1 -2 Wk + W, Mok (18)

If the datum being checked is also used for the interpolation then mx is a
column of ¥ and minimizing (18) leads to the trivial result

Wk = Ok (19)

wvhere dr is defined as a vector whose k'th element is one and other
elements are zero. Since we are trying to interpolate a value for a datum
including its observational error, the best value is naturally the datum
itself.

What we must do is minimize (18) subject to constraints that certain
data (datum k and perhaps other data already rejected) are given zero
weight).

If we let Ly (m = 1 to n) be a list of these data, the constraints can
be written

d? Wk = 0 (form = 1, n) {(20)
Minimizing (18) subject to these constraints gives
Wi = dk + mgl Am W+ g1 (21)

I now write A for the vector (dimension n) of multipliers AR, and D for the
N by n matrix whose m'th column is 21. (20) and (21) become
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D wk = O (22)

Wk =gk + M1 D) (23)

The multipliers A are given by multiplying (23) by QT and using (22)
A= - (RT M1 p)y1 pT gy (24)
Substituting (22) and (23) in 18) gives

(rk - @I = ()2 +1 - W WK (25)

It should be noted that this estimate of the interpolation error is arrived
at assuming that the method, and all the estimated errors and correlations
used, are perfect. 1In practice it was found that this occasionally gave
unrealistically small values. Possible reasons for this are discussed in
sections 3 and 4. To prevent these small values leading to the rejection
of good data, an arbitrary additional error €® is added in the ECMWF
system. A datum is thus considered to have failed the ckeck if

m 2
(rx - ak)Z > T2 (<(xx — qk)2> +(e)) (26)
The tolerance T is currently assigned the value 4, and (em)2 ig 0.1.

Grid point analysis

In order to be able to use interpolation equation (12), while giving
zero weight to data which have been included in M but subsequently rejected
using (26), we need to minimize (7) subject to constraints like those in
(22).

Manipulations like those of Section 3c give

Wk =M lpx -M1p@Fylp)lplylp (27)
Substituting (27) in (6) gives the equivalent of (11)

g=¥lg-Mp@TMIn1pTylg (28)

As we might expect, the solution of the full set of equations

constrained to give certain data zero weight is identical to that of a
reduced set excluding those data. This reduced set has matrix

M =¥ - MRT - T ¥ + pOT wopT (29)
where the additional terms leave out rows and columns ly. Comparison of
{(27) and (28) with (8) and (11) shows that the matrix inverse Erl has been
replaced by

(M1ly =21 -y1p(pTy1lp)1lpTryl (30)
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Simple algebra yields
¥y (gily =73 - T (31)
which is the identity matrix with the same rows and columns left out.

These eqguations are not as difficult to compute as first impressions
might lead you to think, because of the sparce nature of D and the small
number n. For instance for n = 1, 13 = k, (30) becomes

(L) = [(m 1)y 5 - (WD x (M 5/ Lk k] (32)

There are several ways of reorganising these equations to perform the
computations., One can calculate the modified matrix inverse using (30), or
the modified weights using (23). Another reorganisation was used by Craven
and Wahba (1979) for cross validation; this will be discussed in section 5.

The main advantage of using these equations is obtained for N large, n
small, using the same basic matrix repeatedly. One algorithm for doing
this is:—

a. Form a single matrix and inverse for all data.
b. Use (23) to (26) to check each datum in turn.

c. If any data fail reject the worst and use (30) to remove it
permanently from the matrix inverse.

a. If more than one datum failed repeat from b.
e. If no data failed go on to do the analysis using (11) and (12).

This sequence makes it less likely that a bad datum will cause
rejection of nearby good ones, and enables guality control and analysis to
e combined.

These equations allow for correlated observational errors, but the
check is only of the uncorrelated part. In interpolating the best estimate
of an observed value using (21)—(24) any correlated part of the observation
error is estimated as well. Thus observations from an observing system
with abnormally large correlated errors pass the test. It is possible to
derive checking equations to detect abnormally large correlated errors by
replacing constraint (20) by one specifying that the analysis error should
he uncorrelated with the observation error, ie < o By > = 0. This gives

(T - xT) wk = © (33)

Note that for uncorrelated errors this is equivalent to (20). The
equations resulting from this constraint are however more complicated to
evaluate, requiring separate knowledge of the observation and prediction
error covariance components of M, rather than just their sum. Our
knowledge of the correlation structure of observation errors does not
justify such complication. It is probably better to check for correlated
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errors by removing all data from the observing system concerned using (20),
checking them all using (26), and combining the results to either reject or
accept the entire system.

One difficulty in partitioning M into prediction and observational
error components is that this split is dependent on the scale resolved by
the analysis, because of the definition we have used for the truth T. This
is in fact unnecessary for the basic quality control method based on (18)
and (20). We can instead define the prediction error covariances and the
observational error covariances in terms of deviations from the actual
truth, and then partition the prediction error covariances at any spectral
truncation limit. Resolved scales of this partitioned covariance function
are what we have previously called the prediction error covariance (from a
spectrally truncated 'truth'), and unresolved scales are what we have
previously called observational errors of unrepresentativeness. Since the
quality control equations only use the total matrix M, they are independent
of this spectral truncation limit. Equations for this are derived in
Appendix 3.

2.3 Examples

In order to be able to correctly quality control observations one must
have redundant information. My first example (from Lorenc 1981)
illustrates in asidealised case what can happen if this redundant
information is not available. Figure 1 shows a 1000 km wavelength wave in
the 1000 mb height field, just resolved by 9 observations with a 500 km
spacing and deviations of alternately +20 m and —20 m from the background
which is 40 m everywhere. The top half shows analyses of this wave for
three different values of the prediction error scale parameter s. Only
half of the symmetric situation is shown. The bottom half shows the same
analyses after application of the quality control algorithm described in
the last section. For small scales (s = 300 km) there is no redundant
information, and the analysis is unchanged. For larger scales there is
redundant information, but not enough to say clearly which of the data are
wrong, so the quality control is not robust, and different scale
specifications reject different data. Note that the analysis differences
between the curves in the bottom half of Figure 1 are much larger than
those in the top half. This is in agreement with the finding of
Hollingsworth et al (1985) that large analysis differences are often
associated with differences in quality control. However this example shows
that they can be a symptom of insufficient data redundancy rather than poor
quality control methods.

Since observation networks are not designed to give large amounts of
redundant information, every effort should be made to use whatever
information there is; this implies that multivariate analysis methods
should be used for quality control. Other examples from Lorenc (1981)
demonstrate this clearly. For instance temperature soundings give
information about the geostrophic wind shear, and if sufficently accurate
they can be used together with a low level wind to check an upper level
wind. Except when all used together in this way the observations contain
little redundant information. However the advantage to be gained by using
data multivariately in this way decreases if the background field is of
similar accuracy to the observations.

404



80 -

70

1000 mb geopotential height (m)

X .

—— 5=300KM
— - — 5=500KM

10 + —— == S=T00KM

0 | | | I [ !

0 500 1000 1500 2000 2500 3000
Distance (km)
80 |-
70

1000 mb geopotential height (m)

0 500 1000 1500 2000 2500 3000
Distance (km)
1. Analyses of a 1000 km wavelength wave from nine observations marked X

for various horizontal prediction error correlation scales (s). Top:
without quality control of data. Bottom: with quality control rejection
of some data. Only half of the symmetric situation is shown.
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RADIOSONDES

LEVEL

100
250
500
1000

N N N N

250
500
700
850

H H 3 43

500 RH
700 RH
850 RH

SATEM (ref level 1000 mb)

~100 Dz
-500 Dz

509
571
590
564

573
591
583
556

579
577
553

617
617

250 WIND

TEMP 5
T, SHIP
PILOT

AIREP 4
SATOB

32

7
91
64
51

6HR
MO
60
46
30
22

25
21
20

39
33

8.4
12,1
10,5
11,2

9.9

B@§

PC ANAL,
EC MO
50 62
38 45
21 26
22 15
2.0 1.3
1.7 1.3
1.7 1.2
2.4 1.5
29 18
23 15
22 13
37 30
23 24
VECTOR_RSH
7.5 4.8
9.6 5.4
8.9 6.1
9.9 8.7
8.8 7.2

34
19

6HR
MO
32
28

16
18

MEAN
FC ANAL,
EC MO EC
17 44 7 M
16 34 3 M
7 17 -1 M
-4 2 -5 M
2 .0 .1 K
o2 .6 -,1K
-.0 5 =.2K
-.3 .5 -5 K
-16 -6 =14 %
-10 0 -8 s
-10 0] -6 %
8 14 4
9 16 5
MEAN_SPEED
.6 4 .4 M/s
1.9 .3 2.6 M/S
-.2 -.2  =,2 M/s
1.1 «0 .3 M/S
-1.6 -.1 -.9 M/S

1 Tahle showling mean and rms differences between observations valid at 12

EMT 7 June 1934 and the corresponding Met OfFfice ang ECMW

background fields and anzluyses.
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Considerable effort has been put into tuning the ECMWF system to
reduce the rms errors of the background field, by controlling the noise
generated in the total analysis—initialisation—forecast cycle. This means
that average background field errors are small, as shown in Table 1 ( from
Lorenc 1984), and statistics to this effect have been provided to the
quality control algorithms (Hollaingsworlh 1984), which therefore use the
background to provide much of the redundant information for quality
control. Thus for the current ECMWF system use of a multivariate analysis
method does not have much direct effect on quality control. 1In four recent
test analyses the average number of rejected data was 76; when the
multivariate coupling between height and wind was removed only on average 4
of these quality control decisions changed (D Shaw, personal
communication). Based on the limited number of changes, which all occurred
near the surface or in the upper stratosphere, D Shaw concluded that the
multivariate check was acting beneficially. The observations near the
surface, which could be better examined subjectively, were judged to be
better evaluated with the multivariate check, which is modestly more
stringent than a univariate one.

3. BAYESIAN APPROACH TO QUALITY CONTROL

I mentioned in section 2.1 the appavent problem that specifying an
observation to be more accurate in an OI based scheme leads to it being
rejected more often. Furthermore, in a scheme where all other parameters
can at least in principle be related to statistics of model and
observational errors, it should be possible to base the rejection criterion
(set to 4 in section 2.2) on statistical evidence. A formalism for doing
this, and removing the first problem, is provided by Bayes' Theorgm.

This enables us to calculate the likelihood that any statement is
true, based on prior estimates and new evidence. The OI equations can be
derived using Bayes' Theorum and assuming normally distributed (Gaussian)
errors. Let us consider the simplest case:-

T = the true value is t
0 = the observed value is ©
B = the prior (background) estimate is b

Then P(B|T) is the probability that B is true given that T is true. For a
normal background error distribution

P(B|T)
where N(x,V)

N (b~-t, V)
(2nv)~1/2 exp (-x2/2V)

i

Then with no other information
P(T|B) = N(b-t, Vp)

From now on we shall understand knowledge of B always, and not represent it
explicitly, eg we shall write P(T) for P(T|B).
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Bayes' Theorum states that

P(T|O)

P(OIT) P(T)/P(0) . (32)

Ll

P(O|T) p('r)/fp(ow) p(T) dt
If P(O|T) = N (o~t, Vg) then thigs gives us

P(T|0)

N(t-a, Va)
where 1/Va = 1/Vo + 1/Vp, and a = Va (o/Vo + b/Vp).

This is shown in figure 2 for four different values of o. The values of a,
the expected true value (the analysis value), and Va are identical to those
given by OI for this trivial zero dimensional case. A general Bayesian
derivation of OI is given in Appendix 1.

Let us now extend this to a case where gross errors are possible. To
proceed we need prior assumptions about the characteristics of these gross
errors. Assume that the probability of a gross error occurring is
independent of T, and that if a gross error has occurred the observed value
is useless, also being independent of T, while if a gross error has not
occurred the observation error is normally distributed as before:-

G = the observation has a gross error
P(GaT) = P(G) P(T)
P(O|GaT) = N(o-t, Vo)

where denotes not, and 0 denotes and. Using Bayes' Theorum it is easy
to show that:-

P(G|0) = P(G)/(P(G) + P(E) P(Ola)/P(OIC)) (35)
P(T|0) = P(G|O) P(T) + P(G|{0) P(T|ONG) (36)
P(0|G) = N(o-b, Vo + Vp) (37)

We still have not completely specified P(0|G); it is assumed
independent of T, but we need to know the distribution. Let us assume that
over the region of interest (ie where P(0) and P(T) are significantly
non-zero) it is a constant k. Climatologically unlikely observations would
be rejected at an early stage, and for some sources of gross error (eg
position errors) a climatological distribution is appropriate, so it is
reasonable to assumed that the error variance Vg of gross errors is related
to the climatological variance. Por the flat distribution assumed, k =
(3/4Vg)l/2. BAn example showing P(T|0) for four values of o is shown in
figure 3; this can be compared with the case without gross errors ( figure
2). Note that for (o-b)2/(Vo + Vp) large then the analysis distribution
with the possibility of gross errors becomes distinctly bimodal.
Practically, since operationally we need a single 'best' analysis, we then
have the problem of picking the 'best' value. One can argue for the mean,
the median, or the mode; the variation of these with o-b is shown in Figure
4. If we take the mean then we can see that in OI terms this is equivalent
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to reducing the weight given to the observation by the factor P(G|{0), shown
in Figure 5a. However for bimodal distributions the mean value can be
rather unlikely to actually occur. Frequently in likelihood theory the
modal value is taken. For bimodal distributions there is an abrupt jump in
this value when one peak becomes larger than the other. For small a priori
probability of gross errors this jump occurs approximately when

(0-b)2 > (Vo + Vp) In( (P(G)/P(G))2 (Vg/Vo) /1.5m) (38)
If instead we calculate when P(G|0) > 1/» then we get
(0-b)2 > (Vg + Vp) In( (P(G)/P(G))2 (Vg/(Vo + Vb)) /1.5m) (39)

For small a priori probability of gross error the position of the rapid
change in the median value is also approximately given by (39). The
existence of the rapid changes in distribution parameters visible in figure
4 justify approximating the behaviour by simple acceptance or rejection, ie
by saying that the ‘best' value a is given by

9./_‘_,9_.1-_94!9 for (o-—b)z ¢ T2 (Vo + V) (40)

a

a=>b for (o-b)2Z > T2 (Vg + V)

(38) and (39) now give us some guidance on how to choose the tolerance T
objectively. The criterion based on the mode (38) is only appropriate if
we want to maximise the probability of being very nearly right; for small
Vo we do this by choosing an analysis value near the observed value even
vhen P(G|0) is large, since because of its larger variance the background
is right less often. (39), which describes the behaviour of both the mean
and (approximately) the median, is a better general criterion, and if T is
based on this then (40) approximately gives the local mode nearest to the
mean or median. Effectively we are approximating P(G|0) in (36) by O when
P(G|O) < 0.5 and by 1 when P(G|0) > 0.5. The values of T implied by (39)
for various values of Vg/(Vo + Vp), and P(G) are plotted in figure 5b. The
equivalent approximation for the variance of the analysis is

1/Va = 1/Vg + 1/Vp for (o-b)2 < T2 (Vg + vj,) (41)
Va = Vi for (o-b)2 > T2 (Vo + Vp)

The actual variance of the posterior distribution given by (36) about its
mean, and about the value given by (40), are shown in Figures 5c and d4;
they are much larger than given by (41). Thus although (40) gives a
reasonable approximation to the 'best' analysis, (41) underestimates the
actual analysis error. This has implications for the further use of the
analysis for quality control of other data, and is one justification of M
in (26). :

The Bayesian approach can be extended to two or more data each with
uncorrelated gross errors possible. For instance for two observations it
can be shown that

I

P(Gy{01002) = P(G3|01)/B ‘ (42)

P(Gz10100z2) = P(Gz2]02)/B

409



URTEENEDH B pue O JO FanTea jUsIaIFIP INOT I03
pue ‘uorjeaiasdqo ‘punoabyoeq 103 suotjzouny L3Tsusp L3TTIqRqOId

(GA+0A)1H0SxL"¢=0

UOTINQIIAISTP I0IID TRUOTIRAIISCO
‘grsiTeue ueisadeg

‘e

(BA+0A11¥OS™L " 2=0

¢ B'S §2 0°Z S'1 0°1 0 00 50~ 0°1- §°1- S'% 0°% S§§ 0°¢ 62 02 &1 01 S0 00 §0-01- m._ﬁ.U .
d i 1 1 - A e A - A s O-Q (- “I. -1- s A e A .- e e e - .
10 ,.,.. . - 100
: b2 0 ..,_ 2'0
/ L0 Y Lc0 o
; S | 2
.... vd.DﬂuM .... #.QU
H @ \ o
; L -0 — " - S0 —
. = : -
! Ls0 Y 90
; < i =<
..f \..cnu _.. 'h.cﬂ
H m \ m
! L 8'0 = ' lg0=Z
s o A »
e . et 0 Lo 60
o SISATUNE X =< . SISATUNE X -
NOl1UA¥3ISE0 ~--- aNnoy¥oywayg —— -0l NOILYA¥3SEOD" --- aNnO¥YoXMIHe — 071
0000°=(91d OA-O = (GA+0A)0 =0A G2 =0A 1=8A *0=9
(GA+0A)1H¥0S=L"1=0 (BA+0AI1Y40S=L"0=0
s'§ 0°€ S§'2 02 &1 01 S0 00 §0- 0°1- 1~ S 0% 5§ 0°§ 52 02 S1 01 S0 00 $0- 0°1- §°1-
et . " , P R 00 . . . s . , , \ A , \ s 00
/.;... 10 L1o
5 20 20
I s 0 9 570 2
“ o (o]
| B F0 D
‘\ [ws] (s3]
\ L 500 — : ; - 50 —
\ H | H ~
i . L 90 Y ! 90
i ; —=< - N —<
| : S - i : F L0
.._ ... . m .__. ... m
80 % N F8'0 %
-~ T LA L 60
SISATUNY X =< . .SISATHUNE X f ~<
NOI1HA43S80 --- ONNOYOMIHG —— "0 NOI1lYAY3ISEO --- ONNDY¥OYMIBE —— 0!

410



® 03 Tenbe :Oﬂ#:nwuwmﬁu I0I1D® TRUOTIPAIISHO Ue IOF z aanbrly sy

S*% 0% S°¢ 0°¢

(GA+DA)LHOS=L"¢=0

54

0-Z

St 1

0t

S*0 0°0 S5°0- 0°1-

S 1-

NOIlbA¥3sg8c ---

0010°=19)d

02

SISATUNY
aNAOYINIBE

OA°D0S

(HA+0A)LYOS*L " 1=
s'1 0°1 50

00 5°0-

0-1-

0°0

ALISN3IQ A11718680d4d

(8A+0A) 001

St 1-

NO11bA¥3S80

-
Py

SISATUNY
GNNOYIMIBEY

i

X

00

ALISN3IO ALI7186804d

T
0
[=]

_— 0

-jue3zsuco Treus ' snid ueissnes
‘'t

(BA+0A)LY¥OSHL"2=0
S'v 0% §°§ 0%

§'2 02 S'! 0°1 §0 00 50- 0°1- 6 1-
/x K - 10
i ) 20
4 i ! 50 o
| i S
3 . H F 90 D
\ ‘ @
Y ! F ST 0 —
4 A —
__. ..\ . .w.c“
... ... . -
.... ....~ 'B.OU
Vo . m
L, g0z
.v. \. . w
T L 60
SISATIUNY X ~<
NOT1HAY3SE0 --- aNNO¥OY¥IHEg —— "0
=OA G2 =0A 1=8A “0=4
(BA+0A)1H0Sx®L D=0 )
S*% 0% 6S°¢ 0°¢g 62 02 61 0-1 S0 0°0 S°0- O0°I- S§°1-
. . o mens , . , . - 0°0
FI1°0
120
L g0
o
AR
lws)
.m.OI
o
a0
=<
. .
m
re-0=
w
. L6 0
. .SISATHNH X ﬁ =
NOILlHA¥3SE0D --- aONNOY¥OMIHE — 0]

411



‘1011e ssoab Jo sarjTrTqeqoad aotad snotIeA I03 ‘9nTeA punoixbyoeq

SNUTW DIAIIBAO pIzITewIoOU jsurebe pajzjord
aY3z 3O ‘ueaul 8y} 3S9ILdU Ipoll pur

{8A+0A)L¥0S/(ONNOYSUIBE-80)

‘apoul j3sabaer

‘uoT3INGTIFSTP Stsdreur
‘ueTpaul ‘ueap o

: {GA+0A)LYDS/(ONNOYONIEE-80)
S°S 0°s S*n [\ ] St 0% S 2 02 Sl 01 1] 0°0 875 0°s S 04 S s 0t 82 02 G 01 S0 00
. R P ; R , \ , , 0°0 . . - o . X , . \ 00
. . o -
W - : AR w ' ot
: . = : . :
: ) Ls 15 : - s
H - m . n
. .o.N..N.._ . vo.~..rlqv..
m D ; : “
“_ .m.~qﬂ ." vm.Nl.
“ L 2
.m 0§ ¢ _m .o.nm
: = ."
L e 2 ; .
g 0005°=9d ¥0I¥d + [%F 0005°=0d ¥0lyd + [*'F
0001 =94 ¥0I¥d v 0010 =9d ¥01l¥yd X .. 00Ul =9d ¥0Idd v 0010 =9d ¥0Iyd X ﬁ .
0I100°=9d ¥0l¥d --- 1000°=0d ¥0I¥d — 9" 0100°=9d ¥0I¥d --- 1000° =9d ¥014d —— O"
(8A+0A)°00T1 =0A G =0A | *1=8A
{BA+0A)LHDS/ (ONNONONILE-80) (GA+0A)LHOS/(ONNOYONIEE-80)
S°S 08 S*n 0" S g 0°¢ 9z 0-2 s°1 0-1 S0 00 5°S 05 S [P} S ¢ 0-g 52 [yAr4 S 1 01 50 0°0
. 4 + = = 0°0 ezt N . . . . . . 00
//, .... .-.- ...... .... L s 0 // Y. .  coo
_.._. -. - ............... L o1 ./ Lo-1
M . . o s 1 / " bst
f .-....-..- = \ ... =5
H \ *» - s
; , ) .9~m s “eenenn? orzm
; D \ =
L5 2 Z M = Lgz
e L o-s Lo-s
- ‘tss - g€
0006 =0d ¥013¥d + 0005 =9d ¥01dd +
0001°=9d ¥01¥d v 0010°=9d ¥0Iyd X L. 0001°=90d ¥0I¥yd v 0010 =9d ¥01dd X ﬁ .
0100 =0d ¥0l¥d --- 1000°=9d ¥0l¥d — " 0100 =9d d01yd --- 1000° =9d ¥01¥d 0o

412



*(o%)
Aq uaath anTea 3yjy jnoge soURTIBA 8Y3 IO0J O S ip ‘urawW S3T 3noge uoTingrijlstp

ToTaa3zsod Syj JO aourIIRA Y3} I0F ® SY 0 ‘Io11ad ssoxb jo Ajritqeqoxd zotad

ayy jsurebe posjzord ‘saoixe ssoxb Jo sourTIRA 9Y3x noge suoTjdumsse SNOTIABA I0J
*Z/y butsq Io1xe ssoxb Jo A3TTTIqeqoad zoTasjzsod ayj uo paseq ‘I PoueISTO} UOTIOVALaY
tq ra1o01as ssoab jo sar1jxrTTIqeqoad aotad snoTaea 103 ‘anTea punoabioeq snutu
poaIzasqo pasiTeulIou jsurebe pajjord ‘aoxie ssoxb jJo A3TrTTqeqoad aotaszsod

e -
{GA+0A) LY0S/ (ONNOYOUIYE-80) {GA+0A)LHDS/ L ONNO¥IYMIHE-80)
‘s 0°S S'w 0w 5§ . 0'fE S§Z 02 8P 01 S50 00 S 0°S Sw o 0% §E 0§ §'2Z 62 &1 01 §0 00
: . : . . . . s s : . 0 . ‘ . . . . . . - st D
.......... g . _
AT TP VN st vN
e < rES
e e
LD " g
= 2
LS S
L S 9
o o
L~ L —
D D
0005°=9d ¥0ldd + [B 000G =0d ¥0I¥d + [°
000V:-=9d ¥014d ¥ 0010-=94d ¥0Iy¥d X | 0001 =3d d¥0I¥d @ 0010 =94 ¥0I¥d X e
0100°=9d ¥01¥d --- 1000"=9d d0I¥d — mA_u 0100°=9d ¥0l¥yd --- . 1000° =04 ¥01¥d —— Ao
(8A+0A)L¥DS/(ONNO¥DYIBE-80)
1 moxmw SS0¥3 40 _w.ko_immmomm _w%.n__mm 1000° 0 G5 g's S (VR ] ST g 0-¢ 52 02 S 1 01 S0 [/}
: oo , . _ . : - T T 00
o e e L1-0
L A T z'0
Lset Ls0
D.Nm oS
AN wn
Le-z O Fso
c.mW .a.om
$5 o L0 =
g o
05 8'0 —
a._anv 5
5 . - L0~
m . .... A.....
Los P T EPTT ORI 0005 =94 M¥01udd + Lo
~00001=18A+0AI/9A ¥  *0001 =(8A*DAI/GA X 0001°=0d ¥0l¥d v  0010°=0d ¥0ldd X

H A - L.
001 ={8A+0A1/OA =--- 01 Z(gA+0A)/OA li.mmAn_ 0100*'=9d ¥01¥d --- 1000 =0d ¥01dd — g_A

413



B =1 - P(G1|01) P(Gz]02) (1 — P(01002|G1052 )/P(0711G1 )P(021G2))
= 1 - P(G1101) P(G2102) (1 — P(03|G10020Gz )/P(01 161 ))

some algebra yields a Gaussian expression for this last term:-

P(011G102052) (V1 _+ VBX(V2 + Vb) (43)
P(011G1) Vivz + ViVp + VaVp
- 2 -bj2 -b y2 -] =
exp [ Vb [ eachy2 | (op-b)2 _ 2(01-b)(ozd) 4,

2(V1Vat ViVh + Vo) V1+Vp V2+Vp Vb

It may be more practical to implement a sequential series of
independent quality control checks on data, including 'buddy’' checks
between nearby data, particularly during any pre-selection of data for
provision to the main analysis. These equations show how the Bayesian
probability of gross error can be used to combine the results from these
when individually they are inconclusive. Firstly a historical record of
station reliability, checks on positions for ships, checks on format etc
etc can be used to provide preliminary estimates of P(G). The observed
values can then be compared with the forecast background using (35) to give
P(G|0). Nearby pairs of data can then be intercompared and the
probabilities updated using (42) and (43). The algebra for calculating an
exact formula for P(Gj|03{102(103) becomes complicated, but it is probably
sufficiently accurate to use (42) and (43) recursively.

Of course a better estimate against which to check an observation can
be obtained using multivariate OI and the equations of section 2.2. The
algorithm proposed there can be expressed in the terminology of this
section thus:- '

b. Calculate P(Gj|03002 ...... On) for i = 1, N, assuming that P(G5)
=0 for j ¥ i.

c. If any data have this probability > 1/ then assume that the
datum with greatest value has P(G)=1.

d. Repeat from b.

Note that the assumption in b. that P(G) is either 0 or 1 for all data
except that being checked enables us to use (35) and (39), replacing the
background by the analysis, since the analysis will have Gaussian errors.
The discussion of (40) and (41) shows that this analysis should be a
reasonable approximation, but that its estimated error will be too small.

Although this method is better able to check for a single erroneous
datum among many, it is not well able to cope with two or more bad data
which happen to agree. This is discussed further in section 5.

4. COLLECTION OF STATISTICS

In order to apply equations like those in the last section one needs
estimates of the frequency and a priori probability distribution of gross
errors, as well as the estimated background errors and the cobservational
errors for good observations. These statistics can be collected as part of
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an operational system which is operating reasonably well, and used to
improve it. An example is shown in Figures 6 and 7, which show histograms
for the deviations between ship pressure cbservations (converted to 1000 mb
height) and the background field for all observations and for rejected
observations. The shape of Figure 7 can be used to justify assumptions
about the distribution of gross errors, the proportion rejected (with some
allowance for filling the gap near O of gross errors not detected) can be
used to give a probability of gross error, and the variance of the
histogram of accepted ships can be used to check Vp + Vo. The variance of
a similar comparison of accepted observations with the analysed field
should be € Vg if the analyses method is working correctly. Such
statistics collected during the analysis are dependent on preliminary
estimates used in the analysis, and so some human monitoring and judgement
is necessary to ensure that they converge towards reasonable values. As
well as monitoring the quality of the observations the statistics can be
used to monitor the performance of quality control, analysis, and forecast
programs. For instance Figure 6 reveals an interesting bias, probably in
the forecast pressure.

The collection of statistics is even more critical for quality control
than for OI for several reasons: (1) statistics are needed for the
distribution of rather rare events, (2) we need to know observation error
EC and prediction error EP independently, rather than just their ratio, (3)
the use of inappropriate prediction error correlations has much more effect
on the estimated analysis error which is used in quality control than on
the actual analysis error; for instance Franke (1984) showed that too large
an estimate for the horizontal scale of prediction error correlations
caused €@ to be underestimated, although actual errors in the analysis were
- slightly increased. This is another justification for the term €™ in (26).

It is precisely those observations which deviate from the background
field and which are correct which contain the most new information, so we
must take care not to reject them by underestimating the analysis error.
This can occur if the estimated background error is too small, or if the
prediction error correlations are too large. If we use time average
statistics for these, independent of meteorological situation, these are
both likely to happen in regions of developing small systems, near active
jet streams. Both the resolved prediction error and the unresoclved error
of representativeness are likely to be larger than average in such areas,
while the scale of prediction error is likely to be smaller than average.
Thus there is a strong case for attempting to stratify the statistics used
for quality control to take account of the actual meteorological situation.
In the empirically tuned guality control algorithms used in the old Met
Office 10-level model analysis scheme an objective method of recognising
such active gituations was successfully used.

The collection, maintenance and use of such a statistical database
should be an integral part of an operational analysis system. it must be
flexible; a great variety of types of error can be postulated, both
systematic and random, in both the cbservations and the various components
of the analysis system. It should be possible to use the database to
investigate the significance of any type of error, before designing
corrections or guality control tests to cope with it automatically.
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HISTOGRHM ALL SHIPS
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6. Histogram of observed — background differences for all ship
observations of sea level pressure (converted to 1000 mb height) from the
ECMWF analysis system.
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HISTOGRAM FOR REJECTED SHIFPS
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As figure 6 for ships rejected by the analysis quality control.
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5. ALTERNATIVE METHODS

The Bayesian approach used in section 3 is like that of Purser (1984),
but the result, a criterion for completely accepting or rejecting a datum,
is not. This is because of the assumptions made about the random nature of
gross errors, with bad data giving no information at all, lead to the
bimodal posterior probability distribution which can be modelled by gimple
rejection or acceptance. For many types of observations, in particular for
indirect remote sensing data, these assumptions about the characteristics
of gross errors are inappropriate; a continuous range of varying degrees of
error occurring. The equations of section 3 can be easily adapted to apply
to the case where observations which are 'grossly' in errxor in fact still
carry some useful information, by assuming that P(0|GhGT) = N(o-t, Vg). Por
Vg large, as in figures 3, 4 and 5, results are little altered, but for
smaller Vg and larger P(G) the posterior distribution has much less of
distinct bimodal structure (figure 8), and it is not appropriate to
approximate its parameters (figure 9) by equations like (40) and (41).
Purser (1984) shows how the most likely analysis (ie the mode of the
posterior distribution) for such a non~-Gaussian distribution can be
obtained by using the OI equations with an effective observation error
given by

Vo = - 35 In [P (0-a)l/(o-a) | (43)

where Po is the observational error probability distribution. Note that
this gives the same analysis equation as before for Po(o—a) = N(o—a, Vo).,
but that for all other non-Gaussian distributions Vo is a function of a and
the analysis equation is implicit. By iteration any reasonably behaved
observational error distribution can be allowed for, if it is known. For
distributions with longer tails than a Gaussian the effect is to increase
Vo and decrease the weight for observations which deviate from the
analysis. (The rejection criterion of section 3 is a limiting case of
this). Other approximations can be suggested, either to the OI equations
to make the iterations less expensive, or by using the deviation from the
background as an estimate of o-a.

The methods described so far all require prior estimates of the
statistics, although we did discuss in section 4 how statistics could be
accumulated during the analysis to improve the estimates in subsequent
analyses. A method which short-circuits this, and uses each analysis to
estimate its own appropriate statistics, is called generalized cross
validation (GCV)., It was presented by Craven and Wahba {(1979), and Wahba
and Wendelberger (1980) for a variational spline—-fitting analysis method,
but it is suitable for OI since this can be couched in variational form.
The basis of the method is to choose a few parameters in the statistics to
minimize a function (GCVF) equal to a weighted sum of squares of the
deviation of each observation from an analysis made not using it. Now
these deviations are precisely what I have used to quality control the
data, and so not surprisingly the matrix manipulations proposed by Craven
and Wahba (1979) for efficient calculation of the GCVF are equivalent to
those used in section 2 for quality control, if we assume that observation
errors are uncorrelated. Extending my notation of section 2 so that X}y is
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the standard OI analysis at the position of datum k, and r)* is the
analysed value not using datum k, then as long as datum k does not have
correlated errors:

e’ = (rg — Wkl D)/ (1-wik) (44)

Then GCVF, which is a weighted sum of (rx’" - qr )2, can be efficiently
calculated by

GOVF = & R(rk = @)2(€Q )12/(1 + 5 F vidk) (45)

Just like gquality control, GCV is reliant on there being redundant
information in the data; it could not cope with my example of figure 1.
Generally only a few parameters in the statistics can be reliably
calculated; usually just the ratio of observation error to prediction
error. Quality control and GCV can be looked on as alternatives; in
quality control prior statistics and redundant information are used to
reject bad data, in GCV identical comparisons are used to produce revised
statistics.

One method used in other disciples for fitting data while
simultaneously eradicating wild points is the use of the Lj norm ( Barrodale
1968). This replaces the squared penalty function on the fit to
observations (the first term in (A2) in Appendix 1) by a mean of absclute
deviations. In zerc dimensions this is equivalent to finding the median
rather than the mean of the data; the median is independent of the values
of extreme data. Such a technigque might have applications to fitting data
with errors whose characteristics are not well known, such as satellite
temperature soundings. However it does not have as convenient mathematical
properties and is not as easy to implement as the standard Lz norm.

For some indirect observing systems, meteorological parameters which
are not well observed affect the accuracy of the observations; one example
is in the assignment of cloud motion winds to a particular height, another
is in the retrieval of temperature profiles from observed radiances.
Errors in the latter are particularly difficult to cope with; they are
usually correlated and occasionally large. One bad example was studied by
Adams (1984). BAn active trough over the UK had a very low tropopause
behind it; the statistical retrieval algorithm used could not deduce this,
and produced soundings with a climatologically appropriate tropopause.
These therefore deviated from the background in a systematic way, as shown
in figure 10. Other observations did agree with the background; the use of
the satellite data as they were would degrade the analysis in this case.
The main hope for correcting errors such as these is in a closer
integration of the observation processing and analysis, using background
fields or preliminary analyses to provide missing information such as
tropopause height, or vertical structure for cloud motion wind level
assignment.

Sometimes entire observing systems can be grossly in error. Examples
I have seen are:— erroneous orbit parameters causing all temperature
soundings to be misplaced, high level cloud motion winds all assigned to
low level, a radar misaligned so that all radiosonde wind directions were
wrong, a station altitude wrong so that all radiosonde height data were
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1430 COARSE MESH FORECAST
TEHPERATURE HERMES OBSERVATIONS.

VALID AT 147 ON 2/3/1984 DAY 62 DATA TIME 122 ON 2/3/1984 DAY 62
LATITUDE: 57 - 57
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10. Cross section showing deviations of high resolution satellite temperature
retrievals from a background field. The section runs from 11°W to 11°E and the
deviations of all data near 57°N are shown in K.
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wrong, and anomalous echos on a radar so that radar rainfall measurements
were wrong. Such errors cannot be reliably detected using the equations of
section 3, which rely on P(G) being independent between observations.
Specific tests on particular cbserving systems can be incorporatedin the OI
checking procedure of section 2, by omitting and checking entire observing
systems simultaneously, but no general expression for a rejection criterion
can be given, since this depends on the likely nature and structure of
gross error. Thus specific coding is necessary for each type of gross
error, and for a long time to come we will have to rely on human
monitoring to look for patterns in unforeseen errors and to form and test
hypotheses as to their cause. Automatic analysis procedures can greatly
aid this procedure however, by identifying areas where something appears
abnormal, for closer study by the monitor. One useful tool for this is a
display of the analysis increments (ie the difference from the background
field). If those are abnormally large it is likely that either the
forecast, or the observations, or the analysis process is in error.

The automatic methods of sections 2 and 3, if provided with reasonable
statistics, should be able to cope with random gross errors at least as
well as a human monitor, and because of their reliability and speed they
are to be preferred. Human monitoring should be confined to areas where
there is a distinct advantage over automatic processing; these are pattern
recognition, and hypothesis formation and testing. One area where human
skill at pattern recognition might be used to improve current automatic
systems without the effort of scanning individual observations is in the
specification of regions where the background field is likely to be
abnormally erroneous. As automatic methods for this, and for detecting
various types of correlated errors are developed, their performance will
need careful monitoring. Human resources are probably bettex deployed
doing this than in real time guality control of individual observations.

6. ~ CONCLUDING REMARKS

. I have shown that a statistically sound basis for quality control of
observations can be provided if prior assumptions about the distribution
and probability of errors are made. This implies that one needs to know
the type of error one is looking for; there is no such thing as a general
check for all errors. In particular different checks are needed for a
single datum and for related errors in several data from one observing
system.

In section 3 a Bayesian approach was used to derive eguations for
calculating the probability of gross error, assuming that grossly erroneous
observations carry no information. it was argued that this should provide
a criterion for accepting or rejecting the datum completely, as is done in
most current analysis systems. It also provided a basis for combining
consecutive, individually inconclusive, independent tests to give a final
more conclusive criterion.

On the other hand for many indirect observing systems such as
satellite temperature soundings we wish to allow for abnormally large
errors in data which still contain some useful information. In this case
complete rejection is inappropriate, and adaptive analysis methods should
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be used such as a non—Gaussian Bayesian analysis if observational error
distributions can be specified, or cross validation if they need to be
estimated from the data. These were discussed in section 5.

Whatever the method used, lack of complete information redundancy
means that results will be probabilistic in nature, based on statistical
criteria. The accumulation of the relevant statistics is a crucial part of
the quality control programs, as indeed it is for any statistically based
analysis method, and should be considered at the design stage of any
analysis suite. It should be possible to build up statistics of the
probability and distribution of each type of error, and to use these to
improve quality control criteria. This was discussed in section 4.

There remain several areas which are difficult to automate, and where
human monitoring should be useful. These use the human skills of pattern
recognition, hypothesis formation and testing, and flexibility in
unforeseen circumstances. Unforeseen is a key word in this; human
resources are best deployed after automatic methods of quality control, so
that as these are extended to cope with more types of error, the human can
concentrate on those areas where his pattern recognition skill can use
cloud pictures or knowledge of meteorological structures to decide on
borderline data. Eventually I believe that real-time routine
quality—-control of observations by a human will in most cases be found to
be counter-productive, because the time taken delays forecasts, on not
cost—-effective, because of the skilled manpower needed to cope with the few
cases where automatic methods can be bettered. However as automatic
methods become more complex there will be an increasing need to monitor
their performance on a non-real—-time basis.

The programming and maintenance of the flexible, integrated,
quality-control statistical-database and monitoring system I advocate would
be difficult. The steady advance in computer technology should be used to
produce a flexible modular high—level system, capable of expansion to cope
with the multiplicity of specialised statistics and checks which accumulate
to deal with specific types of error. Research in artificial intelligence,
and self-teaching expert systems, should be used to aid the design of a
system which, if the investment in software is to be justified, will have
to outlast the current generation of computers.
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Appendices

1. A Bayesian derivation of OI

(This derivation was the notation of Purser (1984)).

Let the prior background field have a state vector B. (The elements of
this can be grid points/variable values, but they can also be spectral
modes). Deviations of this from the truth are represented by B' = B-T.

Then the background field error covariance matrix is given by C. = < B* B'T»
(A1)

This has eigenvector matrix V and diagonal eigenvalue matrix A which can
transform the co—ordinates of B' to an orthogonal set:-—

«(VIB') (VIB')T> = VFPCV = ) (A2)

Assume that in these orthogonal co-ordinates each element ; is
independently
normally distributed with variance Ajj. Then

P(B)a exp - 1/5 (VIB')T A-1 (VTB')
a exp 1/, B'T c-1 B : ‘ (A3)

Similarly consider a vector of observed values O with error covariance E.
Then

P (0) o exp —-1/5 0T E-1 0o : (A4)

Now the elements of O and B are not the same. ILet us assume the existence
of a linear transformation D which converts from the basic state space of ‘B
to the observed parameters of O. If B is expressed as grid point values
then the elements of D are interpolation coefficients, if B is in spectral
coefficients then they are modes evaluated at the observation positions.
If the observed parameter is an area average then D should reflect this.
If the observed parameter is not one of the independent variables chosen
for B (eg it might be a radiance) then D represents the appropriate
transformation. Note that D need not be linear as long as it can be
approximated linearly in the region of B and T. In its linear form D is a
rectangular matrix. Using this we can always express T in the state space
of B eg

o' =0 - DT (B5)

Now Bayes' Theorum states that the probability of state A given B and O is
given by

P(A| BRO)aP (O |BOA) P (A | B) (A6)
Now if background and observation errors are uncorrelated then

P(O | BQA)=P (O | A)

Also, without the knowledge of the observations, Bayes'® Theorum
gives us
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P(A| B)Y=P (B | A)
Therefore (A6) becomes
P(A| BnoO)a P(O|A) P (B| B . (A7)

P(A | BnO)a exp (-1/z2 (0-DA)TE-1 (0-DA)) exp (-1/2 (B-A)TC-1(B-An)
(A8)
The maximum likelihood estimate of A (ie the mode of the posterior

distribution) is given when this is a maximum. In(x) is maximum when x is
maximum, so this is given by

0 = %i {1/2 (0-pA)TE-1 (O0-DA) + 1/2 (B-a)YTc—1 (B-A)] (A9)

where 8/9A is notation for a set of equations for each element of A. This
gives

o = c1 (B-A) + DTE-1 (0-DA)
= c-1 (B-a) + DTE"1 (0-DB) + DTE-1D (B-A) (A10)

If D is only a linear approximation to a noﬁ—linear function D' then

p'(B) = D'(A) + D (B-3A) (All)
This gives

(A-B) = (DTE-1D + c~1)-1 pTE-1 (0-D'(B)) (A12)
This equation is an 'inside out' OI, which might be useful when the number
of observations exceeds the order of B, eg for the analysis of a few
planetary modes when B is in spectral form, since the matrix inverse
required is of the order of B. To turn it the 'right way out' we need

(pcpT + E)~Y (DCDT + E) = I (A13)
Then (Al2) gives

(a-B) = (DTE-1)-1pTE-1(DCDT +E) (DCDT + E)~1 (0-D'(B))

it

(DTE-1 D + c-1)~1(DTE-1 pcDT + C~1cDT ) pcoT 4+ E)Y-1(0-D'(B))

i

A-B = (DC)T(DcpT + E)~1 (0-D'(B)) ’ (R14)
which is the standard OI eguation.

2. The equivalence of OI and variational methods

Note that other variational approaches can also give (A9), the first temm
being a penalty function for the fit to the data, the second (particularly
in spectral space if C is nearly diagonal) being a penalty on smoothness.
The equivalence of the approaches is discussed by Wahba and Wendelberger
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(1980). Note that for smoothing splines there is no penalty on constant or
linearly varying fields. It can be seen from (A9) that this is equivalent
to an infinite background error variance for these, ie they are totally
derived from the data in the analysis. This explains the poor behaviour of
the spline method when extrapolating beyond the edge of a data area.

3. The effect of spectral truncation

In the above derivation we have not considered resolution. Since we
have derived generalized OI equations which are valid for B expressed in
spectral modes, it is easy to include practical limits on truncation.
Unlike in section 2.2, here we do not define T to be spectrally truncated.
Instead we postulate the existance of a spectral truncation operator S with
properties:—

ss = 8§ = sT _ (Al5)
SB = B - : : (Al16)
S <T > =< ST > (Al17)

(Al7) states that the best estimate of the truncated analysis (as derived
in section2.2), is given by the spectral truncation of the full analysis
(as derived in the appendix). This might not be true if there are
significant correlations across the truncation limit, for example if the
truncation does not resolve a fjord. Using these (Al4) gives

sa = B + (Dsc)T (pscpT + D(1I-s)cDT + EYy~1 (0-D'(B)) (R18)

Here SC is the truncated covariance function used in section 2.2 and
D(I-8)cDbT the part of observational errors due to unrepresentativeness.
Note that for certain types of area average observation we have said that D
has smoothing properties; for these the second term will be small because
D(I-S) is small.
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