Aspects of Using Multiprocessors for Meteorological Modelling
by

G~R. Hoffmann,1 P.N. Swarztrauber,2 and R.A. Sweet3

1 INTRODUCTION

Since the introduction of computers for scientific research, meteorological
modelling has alWays been one of the first disciplines to use the most advanced
computers available at any given time. Today, meteorological institutions
throughout the world operate class VI supercomputers like the CYBER 205,
CRAY-1, or CRAY X-MP. Average processing speeds in excess of 200 Mflops (10
floating operations per second) are achievable for global weather prediction
mo&els with a horizontal resolution of about 100 km in grid-point space. As
the results of the operational meteorological models are only useful during a
very short time--the forecast for today is history tomorrow--~the demands for
greater processing power of computers are obvious, especially when one
considers that a doubling in horizontal resolution extends the forecast range
but in turn increases the computing requirements by the factor 8 = 23, The
next logical step envisaged by meteorologists for the end of the decade is to
double the model resolution without changing the elapsed time for the
computation. Therefore, a computer capable of delivering around 1600 Mflops on
average and in excess of 3000 Mflops as peak rate is required. This estimate
of the computing speed assumes that the complexity of the calculations does not

increase as well.
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Judging from the current trend in technology and assuming that no major
breakthrough in physics like the step from valves to transistors occurs, it can
be safely postulated that any future computer capable of achieving a
performance in excess of 2.5 Gflops (109 floating operations per second) will
employ multiple vector processors. Depending on the architecture used, the
number of processors may vary from as few as possibly four to as many as
thousands. However, currently known projects to build computers of the
required performance seem to assume that the use of a large number of
processors is still extremely difficult and only in the research phase, while
the commercially undertaken studies for class VII computers only use between

four and 256 processors.

In the following, the case of a véry large number of processors will not be
discussed: instead, emphasis will be given to three commercial developments
which are based on currently available class VI machines, i.e., the CDC CYBER
205, the CRAY X-MP, and the Denelcor HEP-1. Rather detailed descriptions of
the architecture of these machines may be found in many places, including
[5,6], and they are therefore not repeated here. Reference will be made to
special features only when we consider it necessary for explaining the expected
structures of the follow-on products. However, we would like to stress that
all qualitative or quantitative statements about the successors to the three
computers discussed here are based on extrapolation only and certainly do not
imply any commitment from the manufacturers. We also wish to note that we do
not intend the exclusion of any class VII supercomputer project to reflect in

any way on the validity of that project.
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After discussing some general aspects of using maultiprocessor systems and
investigating the expected architecture of three future éystems, we will
consider algorithmic structures, and highlight possible problem areas. We will
give the solution of a simple fluid dynamic model, and describe the experience
of implementing it on the CRAY-1, the CYBER 205, and the HEP-1, We will
detail the changes required by using multiprocessor configurations on the CRAY
X-MP/2200 and the HEP-1. We will also show the influence of multiprocessor

architecture for some algorithms commonly used in weather modelling.

2 ASPECTS OF MULTIPROCESSING

In the following, we make some remarks applicable to all multiprocessing
environments. We emphasis aspects which are usually not relevant for SISD or

SIMD architectures, but which affect users of multiprocessor systems (MIMD).

2.1 Parallelisation of code

If a program runs for T units of time on a single processor and is modified to
use p processors in parallel (p > 1), then the percentage S of the total time T
can be found during which the program will use only one processor. Using this

figure, the theoretical maximum speedup SP of the program for using p

Fig. 1 shows the curves for p = 16, 12, 8, and 4.
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Fig. 1: Speedup when using p processors for varying percentages
of sequential code (p = 16, 12, 8, 4)
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In order to achieve an economically feasible CPU utilisation of at least 75%, S
must be less than 0.022; i.e., the sequential code must take less than 2.2% of
the total time T. If overheads are included in the calculation, the figure has
to further decrease in order to achieve the required CPU utilisation; hence it
becomes clear that either the code has to contain very few sequential passages
of the configura;ion has to have sufficient resources to sustain a reasonable
multiprogramming factor. For operational weather forecasting the turnaround
time for a program plays the central role, and hence, the demand for code
parallelisation becomes paramount. .Indeed it may be easier to develop parallel
algorithms for the sequential passagés than to de#elop faster scalar

processors.

2.2 Program decomposition

A program which uses multiple processors in parallel has to be split into
processes which may be distributed across the processors. How a sequential
program is decomposed into a number of parallel processes depends on the
algorithm used and on the scheduling technique chosen. The algorithﬁs and
their inherent parallelism are described later. For scheduling, there exist
two basic strategies: one assumes that the work of the program has been éplit
into separate tasks which have been assigned statically to processes, while the
other requires a queue of work units waiting to be processed and processes
picking up work when they have finished with their previous tasks. The first
strategy works best with a limited number of processes and a problem which can

easily be split into identical work units.

If there is a large number of processes with different computational
requirements that must all be completed before the solution of the problem can
proceed, then some of the processors become idle, which decreases the
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parallelisation of the code and thus the performancg of the system. In these
cases, it may be advisable to split the solution of the problem into a larger
number of smaller work units to put these into a gueue, and then to use
processes which in a loop dequeue work units and process them. The number of
processes in this case equals the number of processors. The granularity
discussed below has to be considered as well. In addition, the decompositioﬁ
of the program may interfere with its vectorising features; in particular, the
average vector length may be reduced. In these circumstances, a detailed
analysis of the effects of the decomposition is required and may lead to the
choice of a different algorithm which allows a more suitable partitioning of

the data.

2.3 Code granularitx

In this paper we define the granularity G of a process as the time, in machine
cycles, during which the process can continue without external or internal
interruption. Usually an interruption is caused byvthe need to wait for
another process to finish. There will be some overhead when the process begins
and Qhen it reaches the end of its uninterrupted spell. If we call the
overhead in machine cycles at the beginning Og and at the end Og, if we

assume S = 0.02, and if we take into consideration that Og and Op are, in

most cases, spent in sequential nrocessing mode, then it follows from the
discussion in Section 2.1 that G » 49(0g + Og)i i.e., G must be about two
orders of magnitude greater than (Og + Og). If operating system calls are
involved in either Og or Og, then the size of O + Op is easily 0(103),

which implies that G must be 0(10°).
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2.4 Memory reguirements

Each process active in a processor must have sufficient memory available to
keep it busy during its granularity G. Subject to the algorithms used, this
condition may imply that some hundreds of thousands of memory cells are to be
accessible without interruption. As weather models seem to be very data-—
intensive, we assume in the following that a process of granularity G will use
0(G) memory cells during its computation. If the memory available to each
process is not big enough to hold all the data for the problem to be solved,
then sufficient space must be available for a read, write and active process.
In this case, however, the granularity of the active process has to increase
substantially because the time in machine cycles for a read/write érocess
involving 10° memory cells is 0(105) to 0(107) depending on the storage medium
used, and this time influences the size of (OB + OE). Taking into
consideration that the data requirements for high-resolution weather models are
on the order of 108 memory cells, then we can deduce that the minimum memory
configuration accessible per process should be on the order of 10® to 108. 1In
addition, one can easily see that the read/write process must be able to
transfer one memory cell per machine cycle because of the granularity
consideration. As future supercomputers will have cycle times between 1 and 4
nanoseconds with 64 bits per memory cell, the I/0 device has to support
transfer rates of 16 to 64 Gbits per second. This requirement can currently
only be met with solid-state memory devices. The memory bandwidth in this case
must be sufficient to allow at least three simultaneous accesses to memory per

machine cycle and per processor.
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2.5 §ynchronisation tools

The tools provided by the manufacturer of a multiprocessor supercomputer for
the mutual exclusion and synchronisation of programs must fit into the
framework of program granularity. The method of implementing these tools
directly influences the granularity of the programs using them, because Og

and Op are determined by the time it takes to synchronise two tasks or to use
locks. Which particular method, e.g.,'sepaphores, monitors, e£c., is chosen by
a manufacturer to allow synchronisation by user programs affects programming

ease for the user but does not have any other impact.

2.6 Process communication

Tt is mainly the algorithm which determines how often and in which way the
processes of a program running in a multiprocessor environment have to
communicate. As is shown later, there often exists a widé spectrum of
algorithms with different attributes to solve a particular problem. The
required granularity of the processes and the memory architecture of the target

machine determine the right choice.

For current configurations with relatively few processors this problem is only
occasionally evident as memory bank conflicts or processor synchronisation.
However, as the number of processors increases, the communication time between
processors or between processors and memory could dominate the computational

time. This remains a concern even for computations that are 100% parallel.
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It is clear that future computers can be designed with a very large number of
processors. What is not so clear is how to interconnect and control the
processors. The goal of the interconnection scheme is to minimize communication
time. For a particular problem one can design a special~purpose computer with
interconnections that match the computational communication paths. However,
communication algorithms and processor interconnection are not well defined for

a general-purpose computer.

Future general-purpose multiprocessors should be configured in such a way as to
_guarantee parallel nonblocking communication. Without this capability a
~multiprocessor is in effect reduced to a serial computer for problems in which

any part of the communication is blocked.

3 FUTURE SYSTEMS

A number of computer manufacturers are currently engaged in designing
supercomputers with performance in excess of 1 Gflops. In the following, we
attempt to examine the proposed architecture of three of these machines. The
already available class VI machines of the same manufacturers provide the basis

for the expected structures.
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3.1 CYBER 205 successor

As a spin-off company of Control Data Corporation, ETA Systems has got the
brief to develop a successor to the CYBER 205. This machine is expected to
become available in 1986 and is called ETall., 1Its performance will lie in the
region of 10 Gflops and will be achieved by liquid-nitrogen-cooled multiple
processors. Each of the processors will be similar to the CYBER 205; in
‘particular, the dual pipeline structure and thé paged memory are expected to be
continued. All processors will have local memories, but will also share a big
glob#i memory and some kind of synchréniéation buffer. The expected

architecture of the machine is depicted in Fig. 2.

Global memory

L

Synchronisation buffer

Fig. 2: Expected structure of CYBER 205 successor with k (k > 1) processors
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We can be assume that the memory sizes both--local and global--will be
sufficiently large to fulfill the requirements outlined in Section 2.4 above.
However, because of the memory hierarchy, read and write processes will have to
be provided, possibly by using built-in paging routines. The optimum way to

use such an architecture seems to be the following:

(1) . Acquire exclusive access to a set of pages in global memory
which require changing.

(ii) Move data to local memory.

(iii) Process data.

(iv) Move processed data back to global memory.
(v) Coﬁtinue with (i) until algorithm finishes.

Of course, steps (ii) to (iv) can be carried out in pﬁrallel if sufficient
local memory is available. Synchronisation will be required for step (i) only,
but may be quite time-consuming if the order of access to pages is not well
planned in advance and the termination of a number of processors has to be
awaited. In addition, the choice of the most suitable algorithm will have to
be considered very carefully, because data changed within one process should
occupy as few pages as possible in order to minimise the set of pages being
exclusively kept by any one process. Because of the parallel read/write
processes, the granularity of the active process will have to be rather large.
This, however, will probably be advisable anyway, because the best vector
performance of the machine can be expected with long vectors, as is the case

with the CYBER 205.
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3.2 CRAY X-MP successor

It can be expected that the development which led to a four-processor CRAY X-MP
after progressing from a CRAY-1 to a two-processor CRAY X-MP will continue for
some time in the future. The architecture of such a multiprocessor CRAY X-MP

can be seen in Fig. 3.

Memory

L——- Shared registers ——-l

Fig. 3: Expected structure of CRAY X-MP successor with k (k > 1) processors

The main difference from the CYBER 205 successor will be the absence of local
memory if one does not count the CRAY machine registers as such. Furthermore,
the current addressing scheme of the CRAY prevents very large memories, which
necessitates the addition of a large solid-sﬁate storage device (SSD) to the
configuration. The SSD acts as a fast I/0 device with a transfer speed meeting
fhe requirements outlined in Section 2.4 above, but nevertheless requiring
read/write processes. In addition, k processors will simultaneously access the
global memory within vector instructions. The demands on the bandwidth of the
memory and the requirement to avoid memory bank conflicts will be major
problems. It is conceivable that the memory access patterns of different
processes will have to be coordinated in order to avoid excessive memory wait

times. A detailed study of the memory structure of the CRAY X-MP can found in

[3].
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Another area of concern will be the absence of any individual memory protection
for the processes of one program. All the memory will be accessible to any
process and the only safeguard againét improper access will be faultless
programming. The reason for this rather unsatisfactory behaviour of the CRAY
X-MP is the fact that only one pair of base address and field length is used
for all processes of one program. Experience has already shown that debugging

a multiprocessor version of such a program becomes an extremely tedious task.

The granularity of the processes can vary widely without affecting performance
because it is possible either to use‘high-level synéhronisation tools or to
access the shared registers directly,‘resulting in a very short synchronisation
time.

3.3 HEP-1 successor

The main development of the HEP-1 gystem can be expected to be an increase in
performance of each processing element (PEM). This may be achieved by using
more advanced technology and possibly by adding some kind of vector

capabilities. The structure of the new system can be seen in Fig. 4.

Global memory

Memory network

| |

Fig. 4: Expected structure of HEP-1 successor with k(k > 1) PEMs
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One of the major differences between the HEP architecture and those of the
previously discussed systems is the existence of an instruction pipeline within
each PEM which contains instructions for all the active processes. Each PEM,
therefore, is able to be looked upon as a multiprocessor system of its own.
From the example discussed later it follows that currently about 20 processes
are required to use a single PEM efficiently for a weather model. The local
memofy of a PEM has therefore to be large enough to allow sufficient active
processes. For the successor of the HEP-1, the number of active processes per
PEM may‘even be larger because the accesses to global memory may become a
bottleneck if the speed of the memory network is not increased in line with the
speed of the individual PEMs, especially if vector capabilities are added. We
expect that in excess of 200 geparate processes will be required to achieve the
envisaged performance of the HEP‘system for weather modelling applications.
Since the synchronisation tools are easy to use and applicable without large
overheads, processes of relatively small granularity may be used. However, the
vector capabilities may enforce a lower limit on the granularity.

- Nevertheless, the large number of active processes will probably require the
self-scheduling programming technique outlined in Section 2.2. The algorithms
for implementation on the HEP system will have to support such a scheme without

too much overhead.
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4 THE SHALLOW-WATER MODEL

In this section we describe a simple atmospheric dynamics model based on what
are known as the shallow-water equations. The model and the computational
methods are given in detail in [8]. The solutions to these equations are
intended to provide rough estimates of the performance of more complex
atmospheric models and to identify areas in which future computer designs might
be improved in order to enhaﬁce performance. The shallow-water equations are
accepted as a primitive but useful model 6f the dynamics of the atmosphere,
particularly since we are concerned, not so much with the physical validity of
the model, as with having the computations somewhat representative of those
found in atmospheric models. The solution of this simple model adapts well to
current supercomputer designs, which is not too surprising since the designers
of these computers are well aware of the importance of computers to atmospheric

science.

The equations will be solved in Cartesian coordinates on the rectancular domain
a< x< band c €y € d. The shallow-water equations without the Coriolis term

can be written in the form

ou OH _
—a—t- Cv -fa—o (4.1)
ov . 0H _ P
3% +Cu ﬁi; =0 (4.2)
oP 0 o) _
EE.+ g;(Pu)+ 6§{Pu) =0 (4.3)

where u and v are velocities in the x and y directions, respectively; P is
density or pressure; and { is vorticity, given by

_ dv _ du
¢ = dx dy (4.4)

A quantity H which is related to the height field is defined as

H =P + %(u2+v?) (4.5)
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If, in addition, we define the mass fluxes

U = Pu (4.6)
V = Pv (4.7)
and potential velocity
_C
z =3 (4.8)

then (4.1), (4.2), and (4.3) take the form

du 0H _

5; 7wV + Pyl 0 . | (4.9)
ov 0H _

5% + zU + 6;-— 0 (4.10)
dP , dU , OV

-5¥+6-;+a—1;=0 (4-11)

In order to facilitate presentation and implementation, we specify periodic
boundary conditions, in which the variables u, v, U, V, and P satisfy f(x+b,y)
= f(x+a,y) and f(x,y+d) = f(x,y+tc). We wish to obtain an approximate solution
to these equations on the rectangle a<x<b and c<y<d. To this end we select

integers M and N and define the grid

iAx+a 0,%,1,..MH+1

|
f

JAy+b =0,%,1,..8N+1

-
|

where Ax=(b-a)/(M+1) and Ay=(d-c)/(N+1). A staggered grid is used, with the

positions of the dependent variables given in Fig.5 below.
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The variables P and H have integer subscripts, Z has half subscripts, u has
half and integer subscripts, and v has integer and half subscripts. In order to
obtain an approximate solution of (4.9), (4.10) and (4.11) in the form of a
tabulation, the dependent variables are required to satisfy the following

finite-difference approximations of (4.5) through (4.11):
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The leapfrog scheme is used to derive (4.16),

scripts on the left side of these equations designate the time level.
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(4.17), and (4.18).

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

The super-

All

quantities on the right side are evaluated at t, = nAt where At must satisfy

5 At

the stability criterion H

— <
Ax

1.
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The initial velocity fields u(x,y,0) and v(x,y,0) will be selected so that the

balance conditions

daiv v _%u 3 _, (4.19)
0x Oy
and
8 4qivwv =0 (4.20)
at 1 v .

are satisfied. To this end we define a stream function

¥ = A sin 2%¥gin 28X (4.21)
b-a d-c
and set Y Y
e w(x,y,0) = - 5o and vix,y,0) = 53—  (4.22)
It is clear that these initial values will satisfy (4.19).
From (4.9) and (4.10)
d . ) d 92
5% div v = ™ (ZV) By (zV) V<H _ (4.23)
Substituting (4.4) through (4.8) into (4.23), we obtain
) , du dv _du 0Ov 2
— = 2= = - — —)- .24
5T div v (bx By By 6x) vep (4 )

In order to satisfy the balance equation (4.20), we set (4.24) equal to zero
and solve for P. Substituting (4.20), (4.21), and (4.22) into (4.24), we
obtain

2
20 - - 161" A . rx dny 4.25
Ve (b-a)2 (a-c)2 °°° b-a cos ¢! (4.25)
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Integrating we obtain

2
A 27 2 ATx AR Aty
T e — o { —— + .
P=3 [( - )© cos £— (b-a) cos === ] + g (4.26)

where Py is any constant. Equation (4.26) is used to define the initial
values of P at t=0. In practice, the finite-difference approximation of

Poisson's equation is solved in order to initialise P.

The discrete forms of (4.21) and (4.22) are

21X, 21y,
_ . i+ . j+%
Wi+%,j+% A sin ey sin 3o (4.27)
_ Fi, 305~ Yiny, 50 : , (4.28)
Ui+, 5 Ry
Y T T e T | (2.29)
i,3+% Ax )

The leapfrog time differencing implied by (4.16), (4.17), and (4.18) requires
values of the dependent variables u, v, and P at two levels, namely, t; = 0 and
t; = At. The values at t; are provided by the initial data in (4.26) through
(4.29). The values at t, are computed using one step of Euler's method

(1)_ (0), BE
£ = f + T At (4.30)

0
where bf( }Bt for £ = u, v, and P, is computed from (4.16), (4.17), and
(4.18) evaluated at tj. Finally, to handle the weak instability in the
leapfrog scheme, we use the following time filter for £ = u, v, and P.

(n) (n)

F = f + a(f(n+1)—

2 (M) 4 pin=1)y (4.31)

where a@ is the filter parameter.

The filtered values F(n) enter the computation in (4.16), (4.17), and

(4.18) at time level tn-1.
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5 IMPLEMENTATION AND PERFORMANCE OF THE MODEL

In this section we examine the implémentation and performance of the shallow
water model on several supercomputers. The performance of a super-

computer is difficult to evaluate because it depends on many factors. In
practice, maximum computational rates are rarely achieved, and a gap, which
appears to be widening, exists between expected and possible performance. The
extent of this gap depends both on the problem and on the user's ability to
adapt the computation to a particular architecture. More responsibility has
been placed on the user for the performance of the computer, which may be one
té*two orders of magnitude below maximum unless the computation is formulated

in a way tha£ takes advantage of the architectural features.

The computations in the model aré all parallelisable or distributable, which
resulted in relatively high computational rates on all of the computers. The
remainder of this section is divided into four parts in which the results for
each of the computers are presented. In addition to performance figures, each
part includes a discussion abogt programming the model, which includes any
modifications that were necessary in order to take advantage of the particular

architecture.

5.1 The CRAY-1

The program for solving the shallow-water equations is listed in Appendix A. It
was first written for the CRAY-1 and subsequently adapted to the other
computers. The first version of the program contained about 120 lines of code
and took about two hours to write using a screen editor. This version then took
about four hours to debug; The final (second) version in Appendix A contains
242 lines of code and required an additional eight hours for both code

development and debugging.
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The program contains three main double loops that account for most of the
computing time. The antities U, . V.. Z and
Kp g qu i l+1§]’ lj+l§, i+l§3+li’

H;: that are defined in (4.12) through (4.15) are computed in loops 100.

ij
Their FORTRAN names are CU(I+1,J), Ccv(I,J+1), Z(I+1,J+1), and H(I,J),
respectively. The half subscripts i+% or j*+% are converted to the FORTRAN

subscripts I+1 or J+1. In general, for fractional indices, the FORTRAN

subscripts are generated by adding one-half.

(n-1) {(n+1) and anf1)

ith, 50 Vi, e 1,9 that are defined in (4.16, (4.17),

The quantities

and (4.18) are computed in loops 200. Their FORTRAN names are UNEW(I+1,J),
VNEW(I,J+1), and PNEW(I,J), respectively. Time filtering and updating occur in
looés 300. The variables at the three different time levels tn—1' thr

and t,4+1 are stored in three separate two dimensional arrays. For

- +
(n=1) (n) and U(n 1 are stored in the arrays UOLD(I+1,J),

example U i+, 5 i+, 5’ i+hs, 4

U(I+1,J), and UNEW(I+1,J), respectively.

Problem and program parameﬁers are initialized beginning with At = DT = 90
seconds. The variable TDT is set equal to At on the first pass where Euler's
method is used to compute the values of u, v, and P at t = t4q as discussed

near (4.30). The variable TDT is then set equal to 2At on all subsequent
cycles. Most of the parameters that are defined at the beginning of the program
are self-explanatory, with the possible exception of ITMAX, which is the
maximum number of time cycles, and MPRINT, which is the number of cycles
between prints. The variable EL is set equal to both b - a and d - ¢ and hence

the domain is square.
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The initial stream function ¢ and the balanced Pi as
r

i+s,j+s
defined in (4.27) and (4.26), are computed in loops 50. Their FORTRAN

jl

equivalents are PSI(I+1,J+1) and P(I,J). The initial velocities, as defined in
(4.28) and (4.29), are computed in loops 60. Periodic boundary conditions are
'applied throughout the code in loops 70, 75, 86, 110, 115, 210, 215, 320, and
325, Output is produced beginning with the cycle number and model time at the
statement WRITE(6,350) NCYCLE,PTIME. Computational times in seconds are
computed for loops 100, 200, and 300 and étored in the variables T100, T200,
and T300, respectively. The megaflops for each of these loops are computed
based on 24, 26, and 15 floating operations per loop and stored in the
variables MFS100, MFS200, and MFS300, respectively. The computer times and
megaflops are listed in Table 1. These results were obtained using the CRAY

FORTRAN complier CFT 1.13.

TABLE 1
CRAY~1 performance on the
shallow water model for

a 64 x 64 grid

loop time (ms) Mflops
100 1.405 70.0
200 1.670 63.8
300 1.282 47.9

292



5.2 The CYBER-205

The Control Data Corporation CYBER 205 t1], unlike the CRAY~1, has no
intermediate storage through which the vector arithmetic units receive operands
and return results. Instead, the vector operands and results are streamed
directly to and from main memory. Furthermore, on the CYBER 205 the elements
of a vector must occupy consecutive locations in memory. In order to guarantee
conflict-free memory access to any vectors during an operation a sophisticated
microcoded algorithm is executed before each vector instruction. Consequently,
there are rather large start-up times for vector operations. To reduce this
cost one ‘must arrange the calculations in such a way as to create the longest

possible vectors.

For example, operatiohs on modest-sized (on the order of 100 x 100) arrays may
be done column— or row-wise on the CRAY-1 at near peak efficiency. On the CYBER
205 however, column operations alone (using vectors of length 100) yield a
throughput on the order of 50% of the maximum, whereas if the operations can be
performed over the entire array (working on vectors of length 10,000), the
throughput will rise to about 99% of the maximum. All numbers related to speed
or efficiency are based on the timing formula for vector addition and
multiplication which are the fastest-executing. Other vector operations give

slower speeds.

In order to increase vector lengths, bit (logical) vectors have been defined in
the CYBER 205 extension to FORTRAN. Bit vectors may be used to control the
storage of elements of result vectors and are absolutely required for

efficiency when one is working over a subarray that is large compared to the
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array which contains it. Continuing the example above, suppose that one wants
to perform a calculation on a 99 x 99 gub-array of a 100 x 100 array. It is no
longer possible to perform one vector calculation over the entire subarray
because the elements of the vector are no longer contiguously located in
memory. Without bit vectors the calculation would have to be performed over
vectors of length 99 (at 50% efficiency). Defining a bit vector that causes
every 100th result to not be stored will result in the ability to perform

operations on vectors of length 99 x 100 = 9,900 (at 99% efficiency).

A two-pipe CYBER 205 has an asymptotic megaflop rating of 100 for memory-to-
memory vector operations on full 64-bit words. However, it is possible to
direct the output of one vector arithmetic unit into an input port of anotﬁer
vector arithmetic unit. With this iinking process it is possible to double the

asymptotic megaflop rating to 200.

The FORTRAN program SHALOW, described in the previous section and listed in
Appendix A, was run on a two-pipe CYBER 205 located at Colorado State
.University in Fort Collins, Colorado. There were two versions run on the
machine: (i) the original FORTRAN program listed in Appendix A, and (ii) a
modified version in which the principal do loops were recoded using the special
vector extensions to FORTRAN developed by CDC [2]. The modified version is

listed in Appendix B.

For the first version, no changes were made to the original code. The
vectorization and optimization options specified to the FORTRAN 2.1.5 compiler
were O=UOV, which directed the compiler to fully optimize all scalar code and

vectorize as much of it as it could automatically. Examination of the main
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time-stepping loop (statements 99 through 400) revealed that the compiler
vectorized the inner portion of the double loops 100, 200, 300, and 400 and the
single loops 115, 215, and 325. The performance for the three main loops is

given in Table 2.

For the modified version of the code all of the loops mentioned in the previous
paragraph were recoded in special explicit vector notation. The double loops
100 and 200 could not be replaced by single vector operations because they only
worked over the submatrices I = 1,2,...,M, J =1,2...,N of the M+1 X N+1
matrices. A bit vector was defined that allpwed those double loops to be
replaced by single vector operations over the contiguous subarrays

I = 1,2,...,M¥1, J=1,2,...,N. The resulting vector lengths were 4159
(=N*(M+1)-1) so we expect the veetor portion of the code to be running at about
97% of its peak rate. The double loops 300 and 400 were replaced by vector
operations over the entire M+1 X N+1 arrays. The conversion effort required
about eight hours to study, code, and debug. The results of the customisation

for the CYBER 205 are given in Table 3.
Comparison of the results in Tables 2 and 3 vividly demonstrate the benefit

derived by operating on long vectors on the CYBER 205. An unfortunate side

effect is the nonportability of the resulting FORTRAN program.
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TABLE 2

CYBER 205 performance on the
standard FORTRAN version of the
shallow-water model for a 64 x 64
grid.

loop time (ms) Mflops

100 2.66 37.0

200 2.53 42.1

300 1.60 38.4
TABLE 3

- CYBER 205 performance on the
customized FORTRAN version of the
shallow-water model for a 64 x 64

grid.

loop time (ms) Mflops
100 1.08 92.6
200 0.861 126
300 0.526 119
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5.3 The Denelcor HEP-1

Shallowp, a parallel version of the shallow-water equations allowing for an
arbitrary number of parallel processes, written from the original CRAY-1
version, is listed in Appendix C. In the parallel version each of the primary
loops 100, 200, and 300 were put into subroutines, as were the periodic
continuation loops. Each of these routines is called in turn from a subroutine
célled PARSUB. Each loop routine has two inputs: iproc = the process number
and nproc = total number of processes. In each case the outer loop is split
across the.processes by the technique called prescheduling. The loop has the
form:

bO 100 I = iproc, N, nproc

100 CON&INUE
For example, if there were two processes the first would perform all odd rows
and the second would perform all even rows. The value of nproc is input at run
time. In PARSUB a call to barrier is made between each of the various routines
for the purpose of synchronising the processes. As each process enters the
barrier it is terminated, until the last process enters, at which time all
processes are recreated and processing resumes. Using this technique a larger
problem could be run on a four-to eight-PEM system with 128-256 parallel

processes without modifying the program.
These changes required about 40 minutes of design and editing time with a full

screen editor. The program ran on the first trial, but no correct answers were

available at the time for comparisons. The program has since been debugged.
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The program was run on System-0 at Denelcor's home offices in Aurora, Colorado,
under the company's UNIXTM-based operating system HEP/UPX. System-0 is a
minimum 1-PEM configuration. Since the Fortran 77 optimizer was unavailable,
we felt it only fair for the purposes of comparison that some simple
optimisation should be performed by hand. David Snelling, analyst for
Denelcor, adapted the compiler output in such a way as to simulate the loop
invariant removal function of the optimiser. WNo other optimisation was done.
The Mflop rates for loops 100, 200, and 300 are 3.9, 3.5, and 3.9,

respectively.

System-0 at Denelcor was configured with an Eulerian switch, in which each
message visits all ports on the network rather than taking the shortest route.
The memory latency characteristics created by this routing simulate those of an
eight to ten-PEM system, and hence 20 processes were required to achieve full
machine utilisation instead of the 13 processes normally required on a single

PEM.

5.4 The CRAY X-MP/2

The CRAY X-MP/2 has two vector processors, each of which is similar to the
CRAY~-1, except for the following major differences:
(i) The clock period has been reduced from 12.5 to 9.5 nanoseconds.

(ii) The ports to memory have been increased to four per processor, which
permits two vector loads, a store, and an I1/0 transfer to occur
simultaneously.

(iii) The solid-state disk (SSD), which is available, can be written at a

rate of about one word per CPU cycle.
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The two CPUs operate in a multitask mode. The user generates tasks which are
then scheduled on the processors by the operating system. The user generates a
task either as a main program or by executing a CALL TSKSTART statement. 1In
effect, this calls a subroutine which can be executed at the same time as the
main program. However, unless the computer is dedicated to a particular user
it is likely that the two processors will be executing the programs of two

different users.

At certain times within the user's program it may be necessary to wait for a
set of taéks to be completed befqre’stafting new ones. This can either be
achieved by a CALL TSKWAIT statement or by synchronisation using the event
statements, CALL‘EVPOST,:CALL EVWAIT, and CALL‘EVCLEAR. The subroutine EVPOST
posts an event, EVWAIT waits for an event to occur in the other processor, and
EVCLEAR clears the event, which can then be reused. A detailed description of
the use of these subprograms is contained in the multitasking guide [4]

available from Cray Research. An overview of multitasking is given in [7].

Two multiprocessor programs for the sample model were written and run on a
dedicated CRAY X-MP/2. The first program is listed in Appendix D and uses
TSKSTART and TSKWAIT subroutines in order to synchronise the processors. Six
tasks are defined for each time step, two for each of the three main loops,
namely, 100, 200, and 300. These loops were extracted from the main program
and made into three subroutines. Each of the three subroutines was called
with different parameters which define the region of computation for each

processor.
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For example, loop 100 has been replaced by the statements

CALL TSKSTART(I100A,L100,M,1,N/2)

CALL TSKSTART(I100B,L100,M,N/2+1,N)

CALL TSKWAIT(I100R)

CALL TSKWAIT(I100B)
The first argument, I100A, is called the task array and is used by the system
when a task is defined. The second argument, L100, is the subroutine that
performs the task, and the remaining arguments are used by the subroutine L100.
The first TSKSTART statement initiates the computations in loop 100 that
correspond to the values J=1,N/2. The second TSKSTART statement initiates the
computations that correspond to the remaining values J=N/2+1,N. The tasks are
synchronised prior to the periodic continuation by the CALL TSKWAIT statements.
This procedure is repeated for loops 200 and 300. The performance of this
program is presented in Table 5. For the purpose of comparison, the
performance of the single-processor code in Appendix A on a single CRAY X~-MP/2

processor is listed in Table 4.

TABLE 4

Performance on single-processor
CRAY X-MP of shallow-water model
on a 64 x 64 grid

loop time (ms) mf lops
100 0.963 102
200 1.10 97
300 0.653 94
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TABLE 5

CRAY X-MP/2 performance on
"tasked" version of shallow water
model in Appendix D on a 64 x 64

grid

loop time (ms) Mflops speedup
100 0.55¢9 176 1.73
200 0.616 173 1.78
300 0.407 151 1.61

The second maltiprocessor code is listed in Appendix E. It is synchronised
using events. The program was developed by duplicating loops 100, 200, and 300
and including them in a subroutine called TASK, which is called only once. The
loops are synchronised with those in the main program by using EVPOST, EVWAIT,

and EVCLEAR subroutines.

The performance of the “eveﬁts" program is given in Table 6. As suggested by
Larson [7] and others, its performance is superior to the "tasks" program in

Table 5. The reason is simply that the TSKSTART subprogram is time-consuming
compared to the events program. Of course the results in Tables 5 and 6 would

be closer if the grid size were increased.

TABLE 6

CRAY X-MP/2 performance on "events"
version of the shallow-water model
in Appendix E on a 64 x 64 grid

loop time (ms) mflops speedup
100 0.504 195 1.91
200 0.563 189 1.95
300 0.351 - 175 1.86
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The program in Appendix D that uses tasks was both easier to write and easier
to debug. The total time required was about eight hours using a line editor.
The program in Appendix E took about the saﬁe time, but that was only because
the author (Swarztrauber) had developed more knowledge about both the editor

and multitasking.

6 THE DISTRIBUTED SOLUTION OF POISSON'S EQUATION

In this section we describe the solution of Poisson's equation in a distributed
. processing environment. Although Poisson's eéuation does not appear in the
sample model, it is hevertheless solved in a number of atmospheric applications
and is therefore deserving of some discussion. As we will see, the distributed
solution of Poisson's equation is not quite as straightforward as the solution
of the sample model. On the other hand, the effort that is required to solve
Poisson's egquation is likely more representative of the effort that is required
to distribute the computations in a more realistic and complex model. We will
discuss the solution of Poisson's equation on a computer with p processors,
where p is a relatively small number. We will also assume that the processors
share memory and that each processor is pipelined. These two assumptions
significantly influence the method of solution. A different approach can be

taken if memory is not shared [10].
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We wish to solve Poisson's equation:

A = g (6.1)
on a rectangle a € x £ b and ¢ € y € d and subject to an appropriate boundary
condition. We assume that u = 0 is specified on the boundary; however, the
results are apﬁlicable to any of the standard boundary conditions [11,12].
More precisely, we will obtain an approximate solution of (6.1) in the form of
a tabulation. Given the integers M and N, a grid (xi,yj) is defined by
x;=a+iAx and yi=c+jAy, where Ax=(b-a)/(M+1) and Ay=kd-c)/(N+1). We seek a

tabulation u. .
1,

3 that approximates the exact solution u(xi’yj) at

each of the grid points. To this end we require ui,j to satisfy the

following finite~difference approximation of (6.1).

u, .~2u, .+u, . u, ., .~2u, .+ta, .
i+1,3 i,3 i-1,3 | i,3+1 i,j i, 3-1

=gy . (6.2)
Ax?2 ' AYZ ¢]

where 9,5 = g(xi’yj). A convenient notation is obtained by

introducing the vectors
T

T_ 12
. = . . LR . and .=A ( - . L] . ).
uy =(ay 59, 500t Yy, y) 95= 8Y (94,579 2,477 19 i, 5

Then (6.2) can be written:

= ‘= L3N N ] 6.3
gt =g 3= (6.3)
where — -
=20 1
1 =20 1
1 .
A= . (6.4)
. 1
1 =2a 1
1 =2a

and « =(ﬁ%—2) + 1. With no loss of generality we can assume that Ax = Ay.
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There are a number of methods for solving the system (6.3), which may be
equally attractive, particularly in a time-dependent setting. 1In this‘paper
we investigate the Fourier method, which is known to take only 5 to 10% of the
total computer time in current atmospheric models.

Let Q be the orthogonal matrix whose columns are the eigenvectors of A; then

q. .= l 2 T (6.5)
1,] ';;rr— sin 13M+1

and QTAQ = diag (Xq...,KM), where
k—2[51n k2(M+1)-(Ax) | k=1,...,M . (6.6)

A T ' ' v
If we define uj =0 uj and compute €%=Qng, then, substituting into (6.2), we

obtain
8. .+ QA + 4. . =g (6.7)
3-1 b I g B )
Let ﬁk 3 and 'é'k 3 denote the kth component of ﬁj and Ej, respectively; then
I r’

for each k=1,...M+1 we obtain a tridiagonal system of order N.

4 +%kﬁk,j +

A .
= s 3=, 00 .
e 5m1 G, 3=1reeoN (6.8)

4 .
k,3j+1
The Fourier method can now be summarized.
(i) Compute Gi = Qng using the FFT.
(ii) Solve the tridiagonal systems (6.8) for ﬁk,j and hence ﬁj.

(iii) Compute the solution uy = Qﬁj again using the FFT.
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Note that the Fourier transforms are computed in the x (or i) direction,
whereas the tridiagonal systems are solved in the y (or j) direction, as

depicted in Figure 6.

>

TRIDIAGONAL SYSTEMS

FFTs

-

Figure 6

‘We proceed now to discuss the implementation of the Fourier method on a vector
multiprocessor. We assume that the memory is shared ad that the computer has p
processors. Consider first the FFTs of N sequences of length M, which is
required in steps (i) and (iii) of the Fourier method. Four methods are
presented below. The fourth method will be discussed in detail in the next

section.
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(1)

(ii)

(iid)

(iv)

Method I for FFTs

The simplest approach is to assign N/p FFTs to each processor and to
perform the FFTs individually. The minimum vector length is /M/2,

which can be relatively small.

Method II for FFTs

Again N/p FFTs are assigned to each processor. However, each
operation in the FFT is applied to all N/p sequences. All vectors
have length N/p, which can also be relatively short. This is an

example of how distribution and vectorisation can be at odds. As the

number of processors increases, the vectors become shorter.

Method III for FFTs

Apply each operation in a distributed version of the FFT to all N
sequences. All vectors have length N. This approach requires a
distributed version of the FFT which is discussed in the next
section. This approach is relatively efficient, since the FFT
distributes quite well; i.e., the number of operations in the

distributed FFT is the same as in the non-distributed FFT.

Method IV for FFTs

All N sequence of length M are transformed as a single sequence of
length MN using the "truncated" FFT. The minimum vector length is
/MN/p and the maximum vector length is MN/p. This approach is

discussed in detail in the next section.
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Next we consider the efficient solution of the tridiagonal systems. The
asymptotic operation count for solving the tridiagonal systems is 0(MN), which
is less than 0(MNlogM) for the FFTs. However, it is more difficult to
vectorise the solution of the tridiagonal systems, and in practice it takes a

significant part of the total computing time.

(i) ‘Method I for Solving the Tridiagonal Systems

The simplest approach is to assign M/p tridiagonal systems to each
processor. The systems can then be solved individually using the
tridiagonal version of Gauss elimination. The difficulty with this

approach is that the Gauss algorithm does not vectorise.

(ii) Method II for Solving the Tridiagonal Systems

In each processor, each operation in the Gauss algorithm is applied
to all M/P systems. All vector lengths are M/P; however, a
significant amount of additional storage is required for the LU

decompositions.

(iii) Method III for Solving the Tridiagonal Systems

Each operation in a distributed version of the Gauss algorithm is
applied to all tridiagonal systems. All vector lengths are M. This
method also requires a substantial amount of storage. Another
problem is that the Gauss algorithm does not distribute well. The
number of operations in the distributed algorithm is greater than in

the non-distributed algorithm [9].
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(iv)

Method IV for Solving the Tridiagonal Systems

Each operation in a distributed version of the cyclic reduction
algorithm is applied to all tridiagonal systems, with the result that
the vector lengths are all equal to M. The cyclic reduction
algorithm distributes well and requires only a modest amount of

additional storage.

7 COMPUTING THE FFT ON A VECTOR MULTIPROCESSOR

In the previous section an overview of the Fourier method for solving Poisson's

equation was presented. At the end of the section, vector method IV was

presented in which N sequences of length M are transformed as a single sequence

of length MN using a distributed version of the truncated FFT. -In this section

we discuss this method in greater detail. A survey of vector methods for the

FFT is given in [13].

This section is divided into the following parts:

7.1

7.2

7.3

7.4

A review of the Cooley-Tukey FFT

The loop inversion method for maintaining long vectors
The "truncated" FFT for multiple transforms
Eliminating the sort phase in the FFT

The distributed FFT on the Cray X-MP/2
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7.1 A review of the Cooley-Tukey FFT

The presentation in this section involves modifications of the computation

and storage allocations that are internal to the FFT. Therefore, in order

to develop notation and to describe the results, it is necessary to review the
FFT algorithm for computing the discrete Fourier transform. Given the complex
sequence Xm} then we wish to compute the discrete Fourier transform:

o
i1x T _ (7.1)
m

This computation requires M2 complex multiplications and M(M-1) complex
additions. We begin our discussion of the FFT with a description of the
splitting algorithm which is fundamental to the FFT and which computes the

Xy with about half the number of operations required by (7.1).

If M is even then the sum on the right side of (7.1) can be split into two
sums in which the subscripts on X, are even and odd, respectively. It is

customary to ignore the scale factor of M'l, in which case:

- - 2 7.
M2=1 0 ixomit  M/ET —ik (2m+ 1) (7.2)
X = e M + X M
X 2 2m+1
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If we define the new transforms

M§2-1 ] 21
_ =ik 2m e
Yk— om M/2 (7.3)
m=0
M§2-1 . 21
-ik2m ——
Zk - x2m+1e M/2 (7.4)
then (7.2) takes the form:
_ik 3’12..1&
X =Y + .
" X e Zk (7.5)

From (7.3) and (7.4) it can be determined that Yy and Zy are periodic with

eriod M/2. That is, Y =Y, and Z = Z;,» Also, since
peri / ] K+M/2 k K+M/2 k ’
21 27 (7.6)
-1 M/ 2 Y - —
e i(k+M/ )M = - lkM

271

-1k =—
Xk+N/2 = Yk + e M Zk (7.7)

the splitting algorithm can now be given:
(1) For k=1,...M/2 compute Yj and Z; from (7.3) and (7.4).

(ii) Compute X from Y) and Z, using (7.5) and (7.7)
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The computation of Yy and Z, requires M2/2 multiplications and M(M-1)/2
additions. The computation of X} from (7.5) and (7.7) is proportional to M
which can be ignored for sizeable M. Therefore, the splitting algorithm

requires about half the time taken by (7.1).

The FFT is now a simple extension of the splitting algorithm. Since (7.3) and
-(7.4) have the same form as (7.1) but with M replaced by M/2, the splitting
algorithm can also be used to compute Yy and Z . If N=22 for some

integer @ then the splitting canvbe continued « times, which results in the
FFT. A sample FFT is shown in Table 7 for the case M=23=8. The original
sequence is in column 1 and subsequent splittings are in columns 2, 3 and 4.
From (7.1) we note that the transform of a sequence of length 1 is just the
element itself and therefore colﬁmn 4 also contains the Fourier transforms of

the sequences of length 1.

Columns 5, 6 and 7 are computed using the gplitting formulas (7.5) and (7.7)
with M = 2, 4 and 8, respectively. Columns 1 through 4 are called the sort
phase of the FFT, and columns 5, 6, and 7 are called the combine phase. In
Section 7.4 it is shown that sorting can be eliminated. This is important

since sorting is expensive on a vector processor.
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7.2 The looE inversion method for maintaining long vectors

One of the difficulties associated with computing the FFT on a vector
processor is that the vectors get smaller as the computation proceeds.
This is evident in Table 7 where the lengths of the sequences are halved

from one column to the next until column 4, after which the lengths of the

transforms double from column to column. The short vectors in the centre

columns result in the inefficient use of a vector processor. This is also

evident in the expository FORTRAN programs, given in Figure 7, for the

combine phase of the Cooley-Tukey FFT. The sort phase is not presented

since, as we show later, it can be eliminated.

SUBROUTINE CUCMBN (IS,M,C)

g COMBINE PHASE FOR THE COOLEY-TUKEY FKT
C .
COMPLEX C(1)
N = 2%%M
DO 100 L=1,M
LS = 2%%(L=1)
NS = N/(LS+LS)

CALL CTCMB1 (IS,LS,NS,C)

100  CONTINUE
RETURN
END
SUBROUTINE CTCMB1 (IS,LS,NS,C)
COMPLEX OMEGA,OMEGK,WYK,C(LS,2,NS)
ANGLE=FLOAT (IS)*4 . #ATAN(1.)/FLOAT(LS)
OMEGA=CMPLX (COS (ANGLE) ,SIN(ANGLE))
DO 200 J=1,NS
OMEGK=1.
DO 200 I=1,LS
WYK=OMEGK*C(I,2,J)
C(I,1,J)=C(I,1,J)+WYK
c(1,2,d)=C(I,2,J)-WYK
OMEGK=OMEGA*OMEGK

200 CONTINUE
RETURN
END

Figure 7
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In the program, the length of the original sequence is N and M is log,N.
IS=-1 produces a forward transform and IS=1 produces a backward transform.
Loop 100 with index L computes the columns in the combine phase of the
FFT. In Table 7, columns 5, 6, and 7 are computed with L = 1, 2, and 3,
respectively. The variable 2LS is the length of the sequences in the Lth
column, and NS contains the number of sequences. For example, when
computing.columnAG in Table 7, LS=2 and NS=2. The splitting formulas

(7.5) and (7.7) are evaluated in loop 200.

For L=1 the inner loop has length LS=1 Which significantly degrades the
performance of a.vector processor. This‘problem could be eliminated by
using‘the Pease FFT, in which all vectors have length N/2. However, the
Pease algorithm requires Nlog,N additional storage locations, which makes
it unattractive for large N. A more attractive approach is to lengthen
the vectors by simply inverting the order of the loop. That is, we

replace loop 200 in Figure 7 by the FORTRAN code in Figure 8.

IF (LS.LT.NS) GO TO 300
Do 200 J=1,NS
OMEGK=1.
po 200 I=1,LS
WYK=OMEGK*C(I,2,J)
C(I,1,J):C(I,1,J)+WYK
C(I,2,J):C(I,2,J)—WYK
OMEGK=OMEGA*0OMEGK

200 CONTINUE
RETURN

300 OMEGK=1.
Do 500 I=1,LS
DO 400 J=1,NS
WYK=OMEGK*C(I,2,J)
C(I,1,J)=C(I,1,J)+WYK
C(I,2,J):C(I,2,J)—WYK

Loo CONTINUE
OMEGK=0OMEGA*OMEGK

500 CONTINUE

Figure 8
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Loop 200 is duplicated but with the order of the loops inverted and
renumbered as loops 500 and 400. The IF statement ensures that longest
vectors correspond to the inner loop. This straightforward modification
can reduce computing time by 50% depending on N. The vector lengths still
vary as the computation proceeds but this minimum length is now N/2. 1In
practice the crossover point may not be LS = NS but rather a.function of
the architectufe. For example, in loop 400 the data are not accessed with
a stride of 1, which may create memory conflicts or require a scatter-

gather operation.

In this fart we will continue the search for long vectors which is
particularly important for a distributed FFT. Consider now the problem in
which N sequences of length M are to be transformed. In Table 7 the two
sequences in column 6 are Yy and 7, defined in (7.3) and (7.4) which

are the Fourier transforms on the two sequences Xom and X2m+l in

column 2. More generally, the sequences in columns 5, 6, and 7 are the

" Fourier transforms of the sequences in columns 3, 2, and 1, respectively.
"If we choose to ignore columns 1 and 7 and assume that the two sequences
in column 2 are given, then these transforms Yy and 7, are computed in
column 6. Therefore columns 2 through 6 correspond to a multiple
transform in which M=4 and N=2. Similarly, columns 3, 4, and 5 correspond

to a multiple transform problem in which M=2 and N=4.
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This result generalises to arbitrary M and N, and the resulting algorithm
is called the truncated FFT. It is attractive on a vector processor since
the minimum vector length is now /ﬂﬁ;gj— A FORTRAN program for the
truncated FFT is given in the next part. However, it is based on an

algorithm for the FFT that does not require sorting.

Fortunately, sorting can be eliminated, which results in a significant
improﬁement on a vector processor. There ére several variants of the
Cooley-Tukey FFT which differ only in the way that the intermediate
compﬁtations are stored. These variants, together with the‘Cooley-Tukey‘
FFT are discussed in detail in [13]. Of particular interest are the
Stockham FFTs because they do not havg a sort phase. The intermediate
computations in the combine phase are stored in such a manner as to ensure

that the final transform is ordered.

An expository FORTRAN program for the Stockham algorithm is given in
Fig. 9. It differs from the Cooley-Tukey FFT in Fig. 7, only in the order
of the subscripts in loop 200 and in its use of a work array. Unlike the

Cooley-Tukey FFT, the Stockham FFT cannot be computed in place.
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SUBROUTINE STOCK(IS,M,C,WORK)

C
C THE S'TOCKHAM AUTO-SORYT FFT
C

COMPLEX C(1), WORK (1)

N = 2%%M

DO 100 L=1,M

Ls = 2¥=%(L=1)

NS = N/(LS+LS)
CALL STOCK1(IS,LS,NS,C,WORK)
DO 100 I=1,N
C(I)=WORK(I)
100  CONTINUE
RETURN
END
SUBROUTINE STOCK1(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK,WYK,C(NS,2,LS),CH(NS,LS,2)
ANGLE=FLOAT (IS)*4 . *ATAN(1.)/FLOAT(LS)
OMEGA=CMPLX (COS (ANGLE) ,SIN(ANGLE))
DO 200 J=1,NS
OMEGK=1.
DO 200 I=1,LS
WYK=OMEGK*C(J,2,I)
CH(J,I,1)=C(J,1,I)+WYK
CH(J,I,2)=C(J,1,I)-WYK
OMEGK =OMEGA*OME GK
200  CONTINUE
RETURN

END _
: Figqure 9-°

The Stockham FFT is particularly suited for use with the truncated FFT.
If the N sequences are stored in an array C(I,J), where I=1,...,M and
_J=1,...,N and C is dimensioned as C(M,N), then the truncated FFT computes
the transforms in the J direction. That is, M transforms of length N are
computed. This is particularly useful when the transforms are being
performed as part of a solution to Poisson's equation. Since the FFTs are
performed in the J direction, the solution of the tridiagonal systems can

then be performed in the I direction where the vector elements are stored

consecutively. BAn expository FORTRAN program for the truncated FFT is

given in Figure 10.

317



QOO0

100

200

SUBROUTINE MSTOCK(IS,LI,LJ,C,WORK)
THE TRUNCATED STOCKHAM AUTOSORT FFT FOR MULTIPLE TRANSFORMS

DEFINE M=2%¥%[LI AND N=2#¥#LJ THEN M TRANSFORMS OF LENGTH N
ARE COMPUTED. TTHE TKANSFORMS ARE COMPUTED IN THE DLRECTION
OF THE SECOND INDEX OF THE TWO DIMENSIONAL ARRAY C,

THE FIRST DIMENSION OF C MUST BE EQUAL TO M. THAT IS,

THE SEQUENCES MUST BE STOKED CONSECUTLVELY.

IS = -1 FORWARD TRANSFORM
IS = 1 BACKWARD TRANSFORM

. COMPLEX C(1),WORK(1)

N = 2%%(LI+LJ)

DO 100 L=1,LJ

LS = 2%%(L-1)

NS N/ (LS+LS)

CALL STOCKH(IS,LS,NS,C,WORK)

bo 100 I=1,N

C(I) = WORK(I)

CONTINUE

RETURN

END :

SUBROUTINE STOCKH(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK,WYK,C(NS,2,LS),CH(NS,LS,2)
ANGLE = FLOAT(IS)*4.¥ATAN(1.)/FLOAT(LS)
OMEGA = CMPLX(COS(ANGLE),SIN(ANGLE))
DO 200 J=1,NS

OMEGK = 1.

DO 200 I=1,LS

WYK = OMEGK*C(J,2,I)

CH(J,I,1) = C(J,1,I)+WYK

CH(J,I,2) = C(J,1,I)=-WYK

OMEGK = OMEGA¥*OMEGK

CONTINUE

RETURN

END

Figure 10
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With the results presented above, the distribution of the FFT on a vector
multiprocessor is straightforward. From Table 7 it would seem reasonable
to partition the computations between the upper and lower halves, that is,
to assign the computations in the upper and lower halves of Table 7 to

processors 0 and 1, respectively. The processors would be synchronised at

only one point, namely, between columns 6 and 7.

However, longer vectors are possible if the computations are distributed
in the FORTRAN program for the truncated Stockham FFT given in Fig. 9.
Although the processors must be synchronised between each columm (or wvalue
of L) the long vectors should result in a net increase in speed. A
FORTRAN program for the distributed computation is given in Appendix F.
This program differs from the single processor program in the following

respects.

(i) The computations in loops 200 on the rectangle J=1, NS; I=1,LS are
distributed between the processors. The half that corresponds to
J=1,N5/2 is computed in subroutine STOCKH, and the other half for
J=NS/2+1, NS, is computed in subroutine STOCKG. One processor
executes subroutine MSTOCK, which calls STOCKH. The other processor

executes subroutine TASK, which calls STOCKG.

(ii) The processors are synchronised using events following the

computations in loops 200 in STOCKH and STOCKG, respectively.
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(iii) To avoid the need for additional synchronisation points, the
transfer from the WORK array to the C array has been eliminated by
duplicating the CALL STOCKH and CALL STOCKG statements, with the

order of the arguments C and WORK reversed.

It is important to note that the program is strictly expository. The
loops 200 in STOCKH and STOCKG will not vectorise because of the statement
OMEGK=OMEGA*OMEGK. Also, the loops 200 should be inverted as discussed in
Section 7.2. The computations for thevinverted loops would then be
distributed on the index I. That is, the computations for I=1,LS/2 and

I=Ls/2+1, LS would be assigned to processors 0 and 1, respedtively;

In addition, the CALL TSKSTART statement should be moved to the program
that calls subroutine MSTOCK or to an initialising program. In practice
the trigonometric computations for OMEGK are computed only once in a
separate subroutine that is called the initialising program. The reason
for this is that the trigonometric computations take a substantial amount
of time, and they can be used repeatedly for sﬁbsequent transforms. The
situation is similar for the CALL TSKSTART statement, which can require up

to 4 milliseconds.

The task is started in the initialising program, and its computations are
synchronised using the statements CALL EVPOST, CALL EVWAIT, and CALL
EVCLEAR, whose combined time is about 4 microseconds. The use of these

statements is illustrated in Appendix F.
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The distribution of the FFT for a larger number of processors is somewhat
more complicated because the number of processors is greater than the
range NS on the index J. For example, when L=M then NS=2. If four
processors are available, then the inner loop must also be distributed,
which will result in shorter vectors. However, LS achieves its maximum
value N/2 when L=M, so the length of the inner loop on I is N/4 which is
still a relatively long vector and hence any reduction in performance

should be minimal.
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APPENDIX A

Single processor CRAY-1 version of shallow water model

PROGRAM SHALOW

BENCHMARK WEATHER PREDICTION PROGRAM FOR COMPARING THE
PERFORMANCE OF CURRENT SUPERCOMPUTERS. THE MODEL IS

BASED OF THE PAPER - THE DYNAMICS OF FINITE-DIFFERENCE
MODELS OF THE SHALLOW-WATER EQUATIONS, BY ROBERT SADOURNY
J. ATM. SCIENCES, VOL 32, NO 4, APRIL 1975.

CODE BY PAL N. SWARZTRAUBER, NATIONAL CENTER FOR
ATMOSPHERIC RESEARCH, BOULDER, CO, OCTOBER 1984.

DIMENSION U(65,65),V(65,65),P(65,65) ,UNEW(65,65) ,VNEW(65,65),
1 PNEW(65,65) ,00LD(65,65) ,VOLD(65,65) ,POLD(65,65),
cu(e5,65),cv(65,65),%(65,65) ,H(65,65) ,PSI(65,65)
REAL MFS100,MFS200,MFS300

NOTE BELOW THAT TWO DELTA T (TDT) IS SET TO DT ON THE FIRST
CYCLE AFTER WHICH IT IS RESET TO DT+DT

DT = 90.
TDT = DT
DX = 1.E5
DY = 1.E5
A = 1.E6

ATLPHA = .001
ITMAX = 1200
MPRINT = 120

M= 64

N = 64

MP1 = M+1

NP1 = N+1

EL = FLOAT(N)*DX
PI = 4.*ATAN(1.)
TPI = PI+PI

DI = TPI/FLOAT(M)
DJ = TPI/FLOAT(N)
PCF = PI*PI*A*A/(EL*EL)

INITIAL VALUES OF THE STREAM FUNCTION AND P

DO 50 J=1,NP1

DO 50 I=1,MP1

PSI(I,J) = A*SIN((FLOAT(I)=-.5)*DI)*SIN((FLOAT(J)~.5)*DJ)
P(I,J) = PCF*{COS(2.*FLOAT(I-1)*DI)

1 +COS(2 . *FLOAT(J-1)*DJ) )+50000.

50 CONTINUE

INITIALIZE VELOCITIES
po 60 J=1,N

DO 60 I=1,M
U(I+1,J3) = -(PSI(I+1,J+1)-PSI(I+1,J))/DY
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V(I,J+1) = (PSI(I+1,J+1)-PSI(I,J+1))/DX
60 CONTINUE

PERIODIC CONTINUATION
Do 70 J=1,N
u(1,J3) = U(M+1,T)
V(M+1,J+1) = v(1,J+1)

70 CONTINUE
DO 75 I=1,M
U(I+1,N+1) = U(I+1,1)
V(I,1) = V(I,N+1)

75 CONTINUE
U(1,N+1) = U(M+1,1)
V(M+1,1) V(1,N+1)
DO 86 J=1,NP1
DO 86 I=1,MP1
UOLD(I,J) = U(I,J)
VOLD(I,J) v(I,J)
POLD(I,J) = P(I,J)

86 CONTINUE

I

PRINT INITIAL VALUES

WRITE(6,390) N,M,DX,DY,DT,ALPHA

390 FORMAT(*1NUMBER OF POINTS IN THE X DIRECTION* IS/

* NUMBER OF POINTS IN THE Y DIRECTION* I8/

* GRID SPACING IN THE X DIRECTION * ¥8.0/

* GRID SPACING IN THE Y DIRECTION * ¥8.0/

TIME STEP * F8.0/

TIME FILTER PARAMETER * P8,3)
MNMIN = MINO(M,N)
WRITE(6,391) (POLD(I,I),I=1,MNMIN)

391 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF P * //(8E15.6))
WRITE(6,392) (UOLD(I,I),I=1,MNMIN)

392 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF U * //(8E15.5))
WRITE(6,393) (VOLD(I,I),I=1,MNMIN)

393 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF V * //(8E15.6))
TSTART = 9.5E-9*RTC(DUM)

*
*

U W N -

T300 = 1.
TCYCH = 0,
TIME = 0.
NCYCLE = 0
90 NCYCLE = NCYCLE + 1
TCYC = 9.5E-9*RTC(DUM)

COMPUTE CAPITAL U, CAPATIL V, Z AND H

FSDX 4,./DX
FSDY = 4./DY
T100 = 9,5E~9*RTC(DUM)
DO 100 J=1,N
DO 100 I=1,M
CU(1I+1,J)
CV(I,J+1)

S*(P(I+1,3)+P(1,J))*U(I+1,d)
SE(P(I,TJ+1)+P(I,J))*V(I,J+1)
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1

1

Z(I+1,J+1) = (FSDX*(V(I+1,J+1)-V(I,J+1))~-FSDY*(U(I+1,J+1)
=U(I+1,3)))/(P(I,3)+P(I+1,3)+P(I+1,J+1)+P(I,T+1))
H(I,J) = P(I,J)+.25%(U(I+1,J)*U(I+1,T)+U(I,J)*U(I,J)
+V(I,J+1)*V(I,T+1)+V(I,T)*V(I,J))

100 CONTINUE

110

115

1
2

1

1

T100 = 9.5E-9*RTC(DUM)-T100
PERIODIC CONTINUATION

Do 110 J=1,N

cu(1,J) = CU(M+1,J)
CV(M+1 1J+1 ) = CV( 1 ,J+1 )
Z(1,J+1) = Z(M+1,J+1)
H(M+1,J) = H(1,J)
CONTINUE

DO 115 I=1,M ‘
CU(I+1,N+1) = CU(I+1,1)
Cv(I,1) = CV(I,N+1)

Z(I+1,1) = Z(I+1,N+1)
H(I,N+1) = H(I,1)
CONTINUE

CU(1,N+1) = CU(M+1,1)
CV(M+1,1) = CV(1,N+1)
Z(1,1) = Z(M+1,N+1)
H(M+1,N+1) = H(1,1)

COMPUTE NEW VALUES U,V AND P

TDTS8 = TDT/8.

TDTSDX = TDT/DX

TDTSDY = TDT/DY

T200 = 9,5E-9*RTC(DUM)

Do 200 J=1,N

DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+

TDTSB8* (Z(I+1,J+1)+Z(I+1,T))*(CV(I+1,T+1)+CV(I,T+1)+CV(I,T)

+CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+z(I,J+1))
*(CU(I+1,3+1)+CU(I,JT+1)+CU(I,T)+CU(I+1,T))
-TDTSDY* (H(I,J+1)~H(I,J))

PNEW(I,J) = POLD(I,J)~TDTSDX*(CU(I+1,J)-CU(I,JT))
=TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

210

T200 = 9.5E-9*RTC(DUM)~T200
PERIODIC CONTINUATION

DO 210 J=1,N

UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)
CONTINUE

DO 215 I=1,M

UNEW(I+1,N+1) = UNEW(I+1,1)
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VNEW(I,1) = VNEW(I,N+1)
PNEW(I,N+1) = PNEW(I,1)
215 CONTINUE
UNEW(1,N+1) UNEW(M+1,1)
YNEW(M+1,1) = VNEW(1,N+1)
PNEW(M+1,N+1) = PNEW(1,1)
IF(NCYCLE .GT. ITMAX) CALL EXIT
TIME = TIME + DT
TCYC = 9.5E-9*RTC(DUM) - TCYC
IF(MOD(NCYCLE,MPRINT) .NE. 0) GO TO 370
PTIME = TIME/3600.
WRITE(5,350) NCYCLE,PTIME
350 FORMAT(//* CYCLE NUMBER*I5* MODEL TIME IN HOURS* F6.2)
WRITE(6,355) (PNEW(I,I),I=1,MNMIN)
355 FORMAT(/*DIAGONAL ELEMENTS OF P * //(8E15.6))
WRITE(6,360) (UNEW(I,I),I=1,MNMIN)
360 FORMAT(/* DIAGONAL ELEMENTS OF U * //(8E15.6))
WRITE(6,365) (VNEW(I,I),I=1,MNMIN)
365 FORMAT(/* DIAGONAL ELEMENTS OF V * //(8E15.6))
MFS100 = 24.*M*N/7100/1.E6
MFS200 26 .*M*N/T7200/1.E6
MFsS300 15.*M*N/T300/1.E6
CTIME = 9.5E~9*RTC(DUM)-TSTART
TCYC = CTIME/FLOAT(NCYCLE)
WRITE(6,375) NCYCLE,CTIME,TCYCH,T100,MFS100,T200,MFS200,T300,
1 - MFS300
375 FORMAT(* CYCLE NUMBER*I5* TOTAL COMPTER TIME* E15.6
* TIME PER CYCLE* E15.6 /
* TIME AND MEGAFLOPS FOR LOOP 100 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 200 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 300 * E15.6,F6.1/ )
370 IF(NCYCLE .LE. 1) GO TO 310
CTCYC = 9.5E-9*RTC(DUM)
T300 = 9.5E-9*RTC(DUM)
DO 300 J=1,N
po 300 I=1,M
UoLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+U0LD(I,T))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD{(I,J))
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)
300 CONTINUE
T300 = 9.S5E-9*RTC(DUM)-T300

> WN -

PERIODIC CONTINUATION

DO 320 J=1,N

UOLD(M+1,J) = UOLD(1,J)
VOLD(M+1,J) = VOLD(1,J)
POLD{(M+1,J) = POLD(1,J)

o(M+1,J) = U(1,J)
V(M+1,T) v(1,J)
P(M+1,J) P(1,J)
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320 CONTINUE
DO 325 I=1,M
UOLD(I,N+1) UOLD(I,1)
VOLD(I,N+1) VOLD(I,1)
POLD(I,N+1) = POLD(I,1)
U(I,N+1) = U(I,1)
V(I,N+1) v(I,1)
P(I,N+1) P(I,1)

325 CONTINUE

It

UOLD (M+1,N+1) = UOLD(1,1)
VOLD(M+1,N+1) = VOLD(1,1)
POLD(M+1,N+1) = POLD(1,1)

U(M+1,N+1) = U{1,1)
V(M+1,N+1) = V(1,1)
P(M+1,N+1) = P(1,1)
TCYC = TCYC + 9.5E~9*RTC(DUM) - CTCYC
TCYCH = TCYC
GO TO 90
310 TDT = TDT+TDT
DO 400 J=1,NP1
DO 400 I=1,MP1
uoLb(I1,J) = U(I,J)
VOoLD(I,J) = V(I,J)
POLD(I,J) = P(I,J)
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) PNEW(I,J)
400 CONTINUE
GO TO 90
END
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APPENDIX B

Cyber 205 version of shallow water model
PROGRAM SHALOW(INPUT,OUTPUT, TAPES=INPUT, TAPE6=0UTPUT)
BENCHMARK WEATHER PREDICTION PROGRAM FOR COMPARING THE
PERFORMANCE OF CURRENT SUPERCOMPUTERS. THE MODEL 1S
BASED ON THE PAPER ~ THE DYNAMICS OF FINITE-DIFFERENCE
MODELS OF THE SHALLOW-WATER EQUATIONS, BY ROBERT SADOURNY
J. ATM. SCIENCES, VOL 32, NO 4, APRIL 1975.

CODE BY PAUL N. SWARZTRAUBER, NATIONAL CENTER FOR
ATMOSPHERIC RESEARCH, BOULDER, CO, OCTOBER 1984.

CONVERSION TO CYBER 205 VECTOR FORTRAN BY ROLAND SWEET,
NATIONAL BUREAU OF STANDARDS, BOULDER, CO. OCTOBER 1984.

DIMENSION U(65,65),V(65,65),P(65,65),UNEW(65,65),VNEW(65,65),
PNEW(65,65),00LD(65,65) ,VOLD(65,65) ,POLD(65,65),
CU(65,65),CV(65,65),Z(65,65),H(65,65),PSI(65,65)

REAL MFS100,MFS200,MFS300 ~

CYBER 205 DECLARATION OF BIT VECTOR FOR CONTROLLED STORE OPERATION

BIT INTER((M+1)*N-1)

BIT INTER(4159)

NOTE BELOW THAT TWO DELTA T (TDT) IS SET TO DT ON THE FIRST
CYCLE AFTER WHICH IT IS RESET TO DT+DT.

DT = 90.
DT = DT
DX = 1.E5
DY 1.E5
A = 1.E6

ALPHA = .001
ITMAX = 1200
MPRINT = 120
M = 64

N = 64

MP1 = M+1
NP1 = N+1

DEFINE CYBER 205 BIT VECTOR TO STORE ONLY IN THE SUB-ARRAY
1=1,2,...,M, J=1,2,...,N OF THE ARRAY DEFINED FOR
I=1,2,... ,M,M+1, J=1,2,...,N,N+1.

LV = MP1*N-1

INTER(1;LV) = Q8VMKO(M,MP1;INTER(1;LV))
I = MP1*NP1
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86

390

U b W =

EL = FLOAT(N)*DX

PI = 4.ATAN(1.)

TPI = PI+PI

DI TPI/FLOAT(M)

DJ = TPI/FLOAT(N)

PCF = PI*PI*A*A/(EL*EL)

INITIAL VALUES OF THE STREAM FUNCTION AND P

DO 50 J=1,NP1
DO 50 I=1,MP1
PSI(I,J) = A*SIN((FLOAT(I)~.5)*DI)*SIN((FLOAT(J)~.5)*DJ)
P(I,J) = PCF*(COS(2.*FLOAT(I-1)*DI) S
+COS(2.*FLOAT(J~1)*DJ) )+50000.

CONTINUE -

INITIALIZE VELOCITIES

DO 60 J=1,N
DO 60 I=1,M
U(I+1,J3) = -(PSI(I+1,J+1)-PSI(I+1,J))/DY
vV(I,J3+1) (PSI(I+1,J+1)-PSI(I,J+1))/DX
CONTINUE :

PERIODIC CONTINUATION

po 70 J=1,N

U(1,J) = U(M+1,J)
V(M+1,J+1) = V(1,J+1)
CONTINUE

DO 75 I=1,M
U(I+1,N+1) = U(I+1,1)
V(I,1) = V(I,N+1)

CONTINUE
U(1,N+1) = U(M+1,1)
V(M+1,1) = V(1,N+1)

DO 86 J=1,NP1
DO 86 I=1,MP1
UoLD(I,J) = U(I,d)

VOLD(I,J) = V(I,J)
POLD(I,J) = P(I,J)
CONTINUE

PRINT INITIAIL VALUES

WRITE(6,390) N,M,DX,DY,DT,ALPHA
FORMAT( * INUMBER OF POINTS IN THE X DIRECTION* I8/

* NUMBER OF POINTS IN THE Y DIRECTION* I8/

* GRID SPACING IN THE X DIRECTION * F8.0/
* GRID SPACING IN THE Y DIRECTION * F8.0/
* TIME STEP * F8.0/
* TIME FILTER PARAMTER * ¥8.3)

MNMIN = MINO(M,N)
WRITE(6,391) (POLD(I,I),I=1,MNMIN)
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110

FORMAT(/* INITIAL DIAGONAL ELEMENTS OF P * //(4E25. 13))
WRITE(6,392) (UOLD(I,I),I=1,MNMIN)
FORMAT(/* INITIAL DIAGONAL ELEMENTS OF U * //(4E25.13))
WRITE(6.393) (VOLD(I,I),I=1,MNMIN)
FORMAT(/* INITIAL DIAGONAL ELEMENTS OF V * //(4E25.13))

TSTART = SECOND(DUM)
T300 = 1.

TIME = 0.

NCYCLE = 0

NCYCLE = NCYCLE + 1

COMPUTE CAPITAIL: U, CAPITAL V, Z AND H

FSDX = 4./DX
FSDY = 4./DY
T100 = SECOND(DUM)

CYBER 205 VERSION OF DO 100 LOOP

WHERE (INTER(1;LV))

CU(2,1;LV) = .5%(P(2,1;LV)+P(1,1;LV))*U(2,1;LV)
Cv(1,2;LV) = .5%(p(1,2;
Z(2,2;LV) = (FSDX*(V(2,2;LV)-V(1,2;LV))-

FSDY*(U(2,2;LV)~U(2,1;LV)))/
(P(1,1;LV)4P(1,2;LV)+P(2,2;LV)+P(2,1;LV))

H(1,1;LV) = P(1,1;LV)+.25%(U0(2,1;LV)*U(2,1;LV)
+U(1,1;LV)*U(1,1;LV)+V(1,2; LV)*V(1,2;LV)
+V(1,1;LV)*V(1,1;LV))
END WHERE

T100 = SECOND(DUM)-T100
PERIODIC CONTINUATION
DO 110 J=1,N

CU(1,J3) = CU(M+1,J)
CV(M+1,J+1) = CcV(1,J+1)

Z(1,J+1) = Z(M+1,J+1)
H(M+1,J) = H(1,J)
CONTINUE

CYBER 205 VERSION OF DO 115 LOOP

CU(2,NP1;M) = CU(2,1;M)
Ccv(1,1;M) = CV(1,NP1;M)
z2(2,1:M) = Z(2,NP1;M)
H(1,NP1;) = H(1,1;M)

CU(1,N+1) CU(M+1,1)
CV(M+1,1) = CV(1,N+1)
z(1,1) = Z(M+1,N+1)
H(M+1,N+1) = H(1,1)
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COMPUTE NEW VALUES U,V AND P

TDTS8 = TDT/8.
TDTSDX = TDT/DX
TDTSDY = TDT/DY
T200 = SECOND(DUM)

CYBER 205 VERSION
WHERE (INTER(1;LV)

UNEW(2,1;1LV) =

VNEW(1,2;LV)

PNEW(1,1;LV)

' END WHERE

T200 = SECOND(DUM)

OF DO 200 LOOP

)

UOLD(2,1;LV)+TDTS8*(Z(2,2;LV)+7(2,1;LV) ) *
(CV(2,2;LV)+CV{1,2;LV)+CV(1,1;LV)}+CV(2,1;LV))
~-TDTSDX*(H(2,1;LV)-H(1,1;LV))
VOLD(1,2;LV)-TDTS8*(Z(2,2;LV)+Z(1,2;LV))*
(CU(2,2;LV)+CU(2,1;LV)+CU(1,1;LV)+CU(1,2;LV))
-TDTSDY* (H(1,2;LV)~H(1,1;LV))
POLD(1,1;1LV)~TDTSDX*(CU(2,1;LV)~-CU(1,1; LV))
-TDTSDY*(CV(1,2;LV)-CV(1,1;LV))

~-T200

PERIODIC CONTINUATION

bo 210 J=1,N

UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J3+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

CONTINUE

CYBER 205 VERSION

OF DO 215 LOOP

UNEW(2,NP1;M) = UNEW(2,1;M)
VNEW(1,1;M) = VNEW(1,NP1;M)
PNEW(1,NP1;M) = PNEW(1,1;M)

1

UNEW(1,N+1)

UNEW(M+1,1)

VNEW{M+1,1) = VNEW(1,N+1)
PNEW(M+1,N+1) = PNEW(1,1)
IF(NCYCLE .GT. ITMAX) STOP

TIME = TIME + DT

IF(MOD(NCYCLE,MPRINT) .NE. 0) GO TO 370

PTIME = TIME/3600.

WRITE(6,350) NCYCLE,PTIME

FORMAT(//* CYCLE NUMBER*I5* MODEL TIME IN HOURS* F6.2)
WRITE(6,355) (PNEW(I,I),I=1,MNMIN)

FORMAT(/* DIAGONAL ELEMENTS OF P * //(4E25.13))
WRITE(6,360) (UNEW(I,I),I=1,MNMIN)

FORMAT( /* DIAGOWAI. ELEMENTS OF U * //(4E25.13))
WRITE(6,365) (VNEW(I,I),I=1,MNMIN)
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365 FORMAT(/* DIAGONAL ELEMENTS OF V * //(4E25.13))

MFS100 = 24.*((M+1)*N-1)/T100/1.E6

MFS200 = 26.%((M+1)*N-1)/T200/1.E6

MFS300 = 15.%((M+1)*N-1)/T7300/1.E6

CTIME = SECOND(DUM)-TSTART

TCYC = CTIME/FLOAT(NCYCLE)

WRITE(6,375) NCYCLE,CTIME,TCYC,T100,MFS100,T200,MFS200,T300,MFS300
375 FORMAT(* CYCLE NUMBER*IS5* TOTAL COMPUTER TIME* E15.6
* TIME PER CYCLE* E15.6 /
* TIME AND MEGAFLOPS FOR LOOP 100 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 200 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 300 * E15.6,F6.1/ )

B W N -

TIME SMOOTHING AND UPDATE FdR NEXT CYCLE

370 IF(NCYCLE .LE. 1) GO TO 310
T300 = SECOND(DUM)

CYBER 205 VERSION OF DO 300 LOOP

UoLD(1,1;L) = U(1,1;L)+ALPHA*(UNEW(1,1;L)=2.*U(1,1;L)+U0LD(1,1;L))
VOLD(1,1;L) = V(1,1;L)+ALPHA* (VNEW(1,1;L)=2.*V(1,1;L)+VOLD(1,1;L))
POLD(1,1;L) = P(1,1;L)+ALPHA*(PNEW(1,1;L)-2.*P(1,1;L)+POLD(1,1;L))
U(1,1;L) = UNEW(1,1;L) "

V(1,1;L) = VNEW(1,1;L)

P(1,1;L) PNEW(1,1;L)

T300 = SECOND(DUM)-T300

PERIODIC CONTINUATION
DO 320 J=1,N
UOLD(M+1,J) = UOLD(1,J)
VOLD (M+1,J) VOLD(1,J)
POLD(M+1,J) = POLD(1,J)
U(M+1 IJ) = U( 1 IJ)
V(M+1,J) = V(1,J)
P(M+1,J) P(1,J)

320 CONTINUE

CYBER 205 VERSION OF DO 325 LOOP

i}

UOLD( 1,NP1;M) UOLD(1,1;M)
VOLD{1,NP1;M) = VOLD(1,1;M)
POLD{1,NP1;M) = POLD(1,1;M)
U(1,NP1;:M) Uu(1,1;M)
V(1,NP1;M) V(1,1;M)
P(1,NP1;M) P{1,1;M)

[l

UOLD (M+1,N+1) UoLD(1,1)
VOLD{(M+1,N+1) = VOLD(1,1)
POLD(M+1,N+1) = POLD(1,1)
U(M+1,N+1) = U(1,1)
V(M+1,N+1) = v(1,1)
P(M+1,N+1) P(1,1)

GO TO 90
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310 TDT = TDT+TDT

CYBER 205 VERSION OF DO 400 LOOP

UoLD(1,1;L)L = U{1,1;L)
VOLD(1,1;L)L = V(1,1;L)
POLD(1,1;L)L = P(1,1;L)
U(1,1;L) = UNEW(1,1;L)
v(1,1;L) = VNEW(1,1;L)
P(1,1;L) PNEW(1,1;L)

Il

GO TO 90
END
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APPENDIX C
HEP.1 version of shallow water model
PROGRAM SHALLOWP

BENCHMARK WEATHER PREDICTION PROGRAM FOR COMPARING THE
PERFORMANCE OF CURRENT SUPERCOMPUTERS. THE MODEL IS

BASED ON THE PAPER -~ THE DYNAMICS OF FINITE-DIFFERENCE
MODELS OF THE SHALLOW-WATER EQUATIONS, BY ROBERT SADDURNY
J. ATM. SCIENCES VOL. 32,NO. 4 APRIL 1975.

CODE BY DAVID SNELLING, DENELCOR, DENVER, CO OCTOBER 1984.

PROGRAM PERFORMS NDIM**2 * (29+25) + (NDIM+1)**2 * 15 FLOATING
POINT OPERATIONS PER TIME STEP.

ON THE CRAY-1 AT NCAR FOR NDIM=64
RUN TIME PER TIME STEP = 0.00525 SECONDS.
MFLOPS = 54.2
MACHINE CYCLE TIME (MS) * MFLOPS = 0.677 (EFFICIENT)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),’
1UNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1),CV(NDP1,NDP1),Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

COMMON /SYNC/ KOUT,NPROC,DONE, IBARR(52),FINISH

EXTERNAL PARSUB
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INITIALIZE THE RUNTIME PARAMETERS.

A = 1.0 E 6

TDT = 90.0

DX = 1.0 ES5

DY = 1.0 E5

ALPHA = 0.001

ITMAX = 1200

M = NDIM

N = NDIM

MP1 =M + 1

NP1 =N + 1

PI = 4.0 * ATAN(1.0)
TPI = 2.0 * PI

DI = TPI/FLOAT(M)
DJ- = TPI/FLOAT(N)

EL = FLOAT (N) * DX
PCF = PI*PI*A*A/(EL*EL)

WRITE (6,77)

FORMAT (' ENTER NPROC AND MPRINT (32 120).')

READ (5,1001) NPROC,MPRINT
FORMAT (I2,I5)

WRITE (6,78) NPROC
FORMAT(///,'NPROC = ',I5,///)

INITIALIZE DATA FOR PROBLEM.
CALL INIT
CALL PRINTIT (6)

CALL INTIME
CALL CLOCK (ISTART)

CALL SETE (DONE)
CALL SETE (KOUNT)
IBARR (1) = NPROC
IBARR (2) =0
FINISH = 0

DO 10 I=1,NPROC-1

CALL AWRITE (KOUNT,I)
CALL CREATE (PARSUB)
CONTINUE

CALL AWRITE (KOUNT,NPROC)
CALL PARSUB

CALL WAITF (DONE)
CALL OUTIME (6)
STOP

END
SUBROUTINE PARSUB
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PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),

{UNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) , PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) , VOLD(NDP1,NDP1) , POLD(NDP1,NDP1) ,

'3CU(NDP1,NDP1) ,CV(NDP1,NDP1) ,Z(NDP1,NDP1) ,H(NDP1,NDP1),

920

4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

COMMON /SYNC/ KOUNT,NPROC,DONE, IBARR(52),FINISH
IPROC = IAREAD(KOUNT)
NCYCLE = 0
TOP OF LOOP.
CONTINUE
NCYCLE = NCYCLE + 1
COMPUTE CAPITAL U, CAPITAL V, Z, AND H.
CALL CAPUV (IPROC,NPROC)
CALL BARRIER (IBARR)
PERIODIC CONTINUATION.
CALL CONCAPS {IPROC,NPROC)
CALL BARRIER (IBARR)
COMPUTE NEW U, V, AND P.
CALL NEWUVP (IPROC,NPROC)
CALL BARRIER (IBARR)
PERIODIC CONTINUATION.
CALL CONNEW(IPROC,NPROC)
IF (IPROC .EQ. 1) THEN

TEST FOR EXIT AND PRINT INTERMEDIATE RESULTS.
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IF (NCYCLE .GT. ITMAX) FINISH = 1

CALL CLOCK (ITIME)

TIME = 1.0E~7 * FLOAT({ITIME-ISTART)

TYC = TIME/FLOAT(NCYCLE)

IF (MOD(NCYCLE,MPRINT) .EQ. 0) WRITE (6,1000) NCYCLE,TIME,TCYC

1000 FORMAT (' NCYCLE = ',I5,' TOTAL TIME =',6E12.4,
1 ' TIME PER CYCLE =',E12.4)
IF (FINISH .EQ. 1) CALL AWRITE (DONE,1.)
ENDIF

TIME SMOOTHING AND UPDATE FOR NEXT CYCLE.
CALIL BARRIER (IBARR)
IF (FINISH .EQ. 1) GOTO 999

IF (NCYCLE .GT. 1) THEN
CALIL. SMOOTH (IPROC,NPROC)
CALL BARRIER (IBARR)
CALL CONSMO (IPROC,NPROC)

ELSE
IF (IPROC .EQ. 1) TDT = 2.0 * TDT
DO 400 J=IPROC,NP1,NPROC
DO 400 I=1,MP1
UoLD(I,J) = U(I,J)
VOLD(I,J) v(I,J)
POLD(I,J) P(1,J)
U(1,J) = UNEW(I,J)
v(I,J) VNEW(I,J)
P(I,J) = PNEW(I,J)

400 CONTINUE
ENDIF

IF (MOD(NCYCLE,MPRINT) .EG. 0) THEN

CALL BARRIER (IBARR)

IF (IPROC .EQ. 1) CALIL PRINTIT(6)
ENDIF
CALL BARRIER (IBARR)

GOTO 90

999 CONTINUE
RETURN
END

SUBROUTINE INIT

PARAMETER (NDIM = 64)
PARBMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),

1UNEW(NDP1,NDP1) ,VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1),CV(NDP1,NDP1),Z(NDP1,NDP1) ,H(NDP1,NDP1),
4APSI(NDP1,NDP1)
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COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

INITIALIZE VALUES OF THE STREAM FUNCTION.

DO 50 J=1,NP1

DO 50 I=1,MP1

PSI(I,J) = A*SIN((FLOAT(I)-.5)*DI) * SIN((FLOAT(J)-.5)*DJ)
P(I,J)=PCF*(COS(2.0*FLOAT(I-1)*DI)+COS(2.0*FLOAT(J~1)*DJ))
1 + 50000.0

CONTINUE .

INITIALIZE VELOCITIES.

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-PSI(I,J+1))/DX
CONTINUE

PERIODIC CONTINUATION.

Do 70 J=1,N

u(1,J) = U(M+1,J)
V(M+1,J+1) = V(1,J+1)
CONTINUE

DO 80 I=1,M
U(I+1,N+1) = U(I+1,1)

V(I,1) = V(I N+1)
CONTINUE

U(1,8+1) = U(M+1,1)
V{M+1,1) = V(1,N+1)

INITIALIZE OLD VALUES.

DO 86 J=1,NP1

DO 86 I=1,MP1
UOLD(I,J) = U(I,J)
VOLD(I,J) = V(I,J)
POLD(I,J) = P(I,J)
CONTINUE

RETURN
END
SUBROUTINE CAPUV (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) , PNEW(NDP1,NDP1) ,
2UOLD(NDP1,NDP1) , VOLD(NDP1,NDP1) , POLD(NDP1,NDP1) ,
3CU(NDP1,NDP1),CV(NDP1,NDP1) ,Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)
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COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 100 J=IPROC,N,NPROC

DO 100 I=1,M

CU(I+1,J) = 0.5 * (P(I+1,3)+P(I,J))*U(I+1,J)

CV(I,J+1) = 0.5 * (P(I,J+1)+P(I,J))*V(I,JT+1)

Z(I+1,J+1) = 4.0 * ((V(I+1,3+1)=-V(I,T+1))/DX~-{U(I+1,T+1)

1 -U(I+1,J)).DY) / (P(I,J)+P(I,J+1)+P(I+1,J)+P(I+1,J+1))

H(I,Jd) = P(I,J)+0.25%(U(I+1,T)**2+U(I,J)**2+V(I,JT+1)**2+V(I,T)**2)
CONTINUE

RETURN
END

SUBROUTINE CONCAPS (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 = NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1) ,CV(NDP1,NDP1),Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 110 J=IPROC,N,NPROC
cU(1,J) = CU(M+1,J)
CV(M+1,J+1) = CV(1,J+1)
Z(1,J+1) = Z(M+1,3+1)
H(M+1,J) = H(1,J)
CONTINUE A

DO 115 I=IPROC,M,NPROC
CU(I+1,N+1) = CU(I+1,1)
CV(I,1) = CV(I,N+1)
Z(I+1,1) = Z(I+1,N+1)
H(I,N+1) = H(I,1)
CONTINUE

IF (IPROC .EQ.1) THEN
CU(1,N+1) = CU(M+1,1)
cv(M+1,1) = CV(1,N+1)
Z{(1,1) = Z(M+1,N+1)
H(M+1,N+1) = H(1,1)

ENDIF
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RETURN
END
SUBROUTINE NEWUVP (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 = NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1 (NDP1) ,P(NDP1,NDP1),
1TUNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) ,PNEW(NDP1 NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1 NDP1),
3CU(NDP1,NDP1),CV{NDP1,NDP1),Z(NDP1 (NDP1) ,H(NDP1,NDP1),

- 4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 200 J=IPROC,N,NPROC

DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+TDT*

1(0.125%(Z2(I+1,J+1)+Z{I+1 (J)I*(CV(I+1,T+1)+CV(I, J+1)+cv(I J)
2+CV(I+1,J3))=-(H(I+1,J)-H(I,J))/DX)

VNEW(I,J+1) = VOLD(I,J+1)-TDT*

1(0.125* (Z(I+1,T+1,)+2(I,TJ+1) ) * (CU(T+1 1 JH1)+CU(I,T+1(+CU(I,T)

2+CU(I+1,J))-((H(I,J+1)-H(I,J))/DY)

PNEW(I,J) = POLD(I,J)-TDT*

1((cu(1+1,J3)-CU(I,J))/DX + (CV(I,J+1)=-CV(I,J))/DY)
200 CONTINUE

RETURN
END
SUBROUTINE CONNEW (IPROC,NPROC)

PARAMETER (NDIM
PARAMETER (NDP1

64)
NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
TUNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) , VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1) ,CV(NDP1,NDP1) ,Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 210 J=IPROC,N,NPROC
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)
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CONTINUE

DO 215 I=IPROC,M,NPROC
UNEW(I+1,N+1) = UNEW(I+1,1)
VNEW(I,1) = VNEW(I,N+1)
PNEW(I,N+1) = PNEW(I,1)
CONTINUE

IF (IPROC .EQ. 1) THEN
UNEW(1,N+1) = UNEW(M+1,1)
VNEW(M+1,1) = VNEW(1,N+1)
PNEW(M+1,N+1) = PNEW(1,1)

ENDIF

RETURN
END
SUBROUTINE SMOOTH (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) ,VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1),CV(NDP1,NDP1) ,%(NDP1,NDP1),H(NDP1,NDP1),
4PSI(NDP1,NDP1) '

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 300 J=IPROC,N,NPROC

DO 300 I=1,M

UOLD(I,J) = U(I,J) + ALPHA*(UNEW(I,J)-2.0%U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J) + ALPHA*(VNEW(I,J)=-2.0*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J) + ALPHA*(PNEW(I,J)-2.0*V(I,J)+POLD(I,J))
U(I,J) = UNEW(I,J)

V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)
CONTINUE

RETURN

END

SUBROUTINE CONSMO (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) , VNEW(NDP1,NDP1) , PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1),CV(NDP1,NDP1),Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)
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COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 100 J=IPROC,N,NPROC
UOLD(M+1,J) = UoLD(1,J)
VOLD(M+1,J) = VOLD(1,J)
POLD(M+1,J) = POLD(1,J)
U(M+1,J) = U(1,J)

SUBROUTINE CONSMO (IPROC,NPROC)

PARAMETER (NDIM = 64)
PARAMETER (NDP1 NDIM + 1)

COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) ,VNEW(NDP1,NDP1) ,PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1),VOLD(NDP1,NDP1) ,POLD(NDP1,NDP1),
3CU(NDP1,NDP1) ,CV(NDP1,NDP1),Z(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

DO 100 J=IPROC,N,NPROC
UOLD(M+1,J3) = UOLD(1,J)
VOLD(M+1,J) VOLD(1,J)
POLD(M+1,J) = POLD(1,J)
U{(M+1,J) = U(1,3)
vV(M+1,J) = v(1,J)
P(M+1,J) P(1,J)
100 CONTINUE
DO 200 I=IPROC,M,NPROC
UOLD(I,N+1) = UOLD(I,1)
VOLD(I,N+1) VOLD(I,1)
POLD(I,N+1) = POLD(I,1)
U(I,N+1) = U(I,1)
V(I,N+1) v(I,1)
P(I,N+1) P(I,1)

200 CONTINUE IF (IPROC .EQ. 1) THEN
UOLD{M+1,N+1) = UOLD(1,1)
VOLD(M+1,N+1) VOLD(1,1)
POLD(M+1,N+1) POLD(1,1)
U(M+1,N+1) = U(1,1)
V(M+1,N+1) = v(1,1)
P(M+1,N+1) P(1,1)

i

ENDIF
RETURN
END
PARAMETER (NDIM = 64)
= NDIM + 1)

PARAMETER (NDP1
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COMMON /DATA/ U(NDP1,NDP1),V(NDP1,NDP1),P(NDP1,NDP1),
1UNEW(NDP1,NDP1) ,VNEW(NDP1,NDP1) , PNEW(NDP1,NDP1),
2UOLD(NDP1,NDP1) ,VOLD(NDP1,NDP1) , POLD(NDP1,NDP1),
3CU(NDP1,NDP1),CV(NDP1,NDP1),%(NDP1,NDP1) ,H(NDP1,NDP1),
4PSI(NDP1,NDP1)

COMMON /PARA/ A,TDT,DX,DY,ALPHA,M,N,MP1,NP1,PI,TPI,DI,DJ
1 ,ISTART,ITMAX,MPRINT,EL,PCF

SUBROUTINE PRINTIT (IOUT)

WRITE (I0UT,1000) N,M,DX,DY,TDT,ALPHA
1000 FORMAT ( 'N = ',I3,' M = ',13,' DX = ',F8.0,' DY = ',F8.0
1 ," DT = ',78.0,' ALPHA = ',F8.3)
WRITE (IOUT,1001) (P(I,I),I=1,N)
WRITE (IouT,1001) (U(I,I),I=1,N)"
© WRITE (IOUT,1001) (V(I,I),I=1,N)}
1001 FORMAT (///(8E15.6))
. . RETURN ‘
END
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APPENDIX D
The "tasked" multiprocessor program for the CRAY X-MP 2
PROGRAM SHALOW

BENCHMARK WEATHER PREDICTION PROGRAM FOR COMPARING THE
PERFORMANCE OF CURRENT SUPERCOMPUTERS. THE MODEL IS

BASED OF THE PAPER - THE DYNAMICS OF FINITE-DIFFERENCE
MODELS OF THE SHALLOW-WATER EQUATIONS, BY ROBERT SADOURNY
J. ATM. SCIENCES, VOL 32, NO 4, APRIL 1975.

CODE BY PAUL N. SWARZTRAUBER, NATIONAL CENTER FOR
ATMOSPHERIC RESEARCH, BOULDER, CO, NOVEMBER 1984.

COMMON U(65,65),V(65,65),P(65,65),UNEW(65,65),VNEW(65,65),
PNEW(65,65) ,U0LD(65,65),VOLD(65,65) ,POLD(65,65),
Ccu(65,65),Cv(65,65),2(65,65) ,H(65,65) ,PSI(65,65)

3 ,DT,TDT,DX,DY,ALPHA

DIMENSION I100A(3),I100B(3),I200A(3),I200B(3),I300A(3),1300B(3)
EXTERNAL L100,L200,L300
REAL MFS100,MFS200,MFS300

N -

NOTE BELOW THAT TWO DELTA T (TDT) IS SET TO DT ON THE FIRST
CYCLE AFTER WHICH IT IS RESET TO DT+DT

I100A(1) = 3

I100A(3) = '1100A'
I100B(1) = 3
I100B(3) = 'I100B'
‘I200A(1) = 3
I200A(3) = 'I200A°
12008(1) = 3
I200B(3) = 'I1200B'
I300A(1) = 3
I300A(3) = 'I300A'

1300B(1) = 3
I300B(3) = "I300B'

DT = 90.

DT = DT

DX = 1.E5
DY = 1.E5

A = 1.E6
ALPHA = .001

ITMAX = 1200
MPRINT = 120

M= 64

N = 64

MP1 = M+1

NP1 = N+1

EL = FLOAT(N)*DX
PI = 4.*ATAN(1.)
TPI = PI+PI

DI = TPI/FLOAT(M)
DJ = TPI/FLOAT(N)
PCF = PI*PI*A*A/(EL*EL)
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INITIAL VALUES OF THE STREAM FUNCTION AND P

DO 50 J=1,NP1
DO 50 I=1,MP1
PSI(I,J) = A*SIN((FLOAT(I)=.5)*DI)*SIN((FLOAT(J)~.5)*DJ)
P(I,J) = PCF*(COS(2.*FLOAT(I~1)*DI)
1 +COS(2.*FLOAT(J-1)*DJ) )+50000.
50 CONTINUE

INITIALIZE VELOCITIES

DO 60 J=1,N

DO 60 I=1,M

U(I+1,J) = =(PSI(I+1,J+1)-PSI(I+1;J))/DY

v(I,J+1) (PSI(I+1,J+1)-PSI(I,J+1))/DX
60 CONTINUE

PERIODIC CONTINUATION

DO 70 J=1,N
U(1,J3) = U(M+1,TJ)
V(M+1,J+1) = v(1,J+1)
70 CONTINUE
Do 75 I=1,M
U(I+1,N+1) = U(I+1,1)
V(I,1) = V(I,N+1)
75 CONTINUE
U(1,N+1) = U(M+1,1)
v(M+1,1) V(1,N+1)
DO 86 J=1,NP1
DO 86 I=1,MP1
UoLD(I,Jd) = U(I,d)
VOLD(I,J) = Vv{(I,J)
POLD(I,J) P(I,J)
86 CONTINUE

PRINT INITIAL VALUES

WRITE(6,390) N,M,DX,DY,DT,ALPHA
390 FORMAT(*1NUMBER OF POINTS IN THE X DIRECTION* 18/
* NUMBER OF POINTS IN THE Y DIRECTION* 18/
GRID SPACING IN THE X DIRECTION * ¥8.0/
GRID SPACING IN THE Y DIRECTION * ¥8.0/
TIME STEP * F8.0/
TIME FILTER PARAMETER * ¥8.3)
MNMIN = MINO(M,N)
WRITE(6,391) (POLD(I,I),I=1,MNMIN)
391 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF P * //(8E15.6))
WRITE(6,392) (UOLD(I,I),I=1,MNMIN)
392 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF U * //(8E15.5))
WRITE(6,393) (VOLD(I,I),I=1,MNMIN)
393 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF V * //(8E15.6))
TSTART = 9.5E-9*RTC(DUM)

(520" S TV S
* % * *
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T300 = 1.

TCYCH = 0.
TIME = 0.
NCYCLE = 0

90 NCYCLE = NCYCLE + 1
TCYC = 9.5E-9*RTC(DUM)

COMPUTE CAPITAL U, CAPITAL V, Z AND H

T100 = 9.5E-9*RTC(DUM)

CALL TSKSTART(I100A,L100,M,1,N/2)
CALL TSKSTART(I100B,L100,M,N/2+1,N)
CALL TSKWAIT(I100R)

CALL TSKWAIT(I100B)

T100 = 9.5E-9*RTC(DUM)~T100

PERIODIC CONTINUATION

po 110 J=1,N
CU(1,J) = CU(M+1,J)
CV(M+1,J+1) = CV(1,J+1)
Z(1,3+1) = Z(M+1,J+1)
H(M+1,J) H(1,J)

110 CONTINUE
DO 115 I=1,M
CU(I+1,N+1) = CU(I+1,1)
Cv(I,1) = CV(I,N+1)
Z{(I+1,1) = Z(I+1,N+1)

H(I,N+1) = H(I,1)

115 CONTINUE
CU(1,N+1) = CU(M+1,1)
CV(M+1,1) = CV(1,N+1)
Z2(1,1) = Z(M+1,N+1)

BH(M+1,N+1) = H(1,1)
COMPUTE NEW VALUES U,V AND P

T200 = 9,5E~-9*RTC(DUM)

CALL TSKSTART(I200A,L200,M,1,N/2)
CALL TSKSTART(I200B,L200,M,N/2+1,N)
CALL TSKWAIT(I200A)

CALL TSKWAIT(I200B)

T200 = 9.5E-9*RTC(DUM)~-T200
PERIODIC CONTINUATION

DO 210 J=1,N
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

210 CONTINUE
DO 215 I=1,M
UNEW(I+1,N+1) = UNEW(I+1,1)
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VNEW(I,1) = VNEW(I,N+1)
PNEW(I,N+1) = PNEW(I,1)
215 CONTINUE
UNEW({1,N+1) UNEW(M+1,1)
VYNEW(M+1,1) = VNEW(1,N+1)
PNEW(M+1,N+1) = PNEW(1,1)
IF(NCYCLE .GT. ITMAX) CALL EXIT
TIME = TIME + DT
TCYC = 9.5E-9*RTC(DUM) - TCYC
IF(MOD(NCYCLE,MPRINT) .NE. 0) GO TO 370
PTIME = TIME/3600.
WRITE(6,350) NCYCLE,PTIME
350 FORMAT(//* CYCLE NUMBER*I5* MODEL TIME IN HOURS* F6.2)
WRITE(6,355) (PNEW(I,I),I=1,MNMIN)
355 FORMAT(/* DIAGONAL ELEMENTS OF P * //(8E15.6))
WRITE(6,360) (UNEW(I,I),I=1,MNMIN)
360 FORMAT(/* DIAGONAL ELEMENTS OF U * //(8E15.6))
WRITE(6,365) (VNEW(I,I),I=1,MNMIN)
365 FORMAT(/* DIAGONAL ELEMENTS OF V * //(8E15.6))

MFS100 = 24.*M*N/T100/1.E6
MFS200 = 26.*M*N/T200/1.E6
MFS300 = 15.*M*N/T300/1.E6

CTIME = 9.5E-9*RTC(DUM)~TSTART

TCYC = CTIME/FLOAT(NCYCLE)

WRITE(6,375) NCYCLE,CTIME,TCYCH,T100,MFS100,T200,MFS200,T300,

1 MFS300
375 FORMAT(* CYCLE NUMBER*I5* TOTAL COMPUTER TIME* E15.6
* TIME PER CYCLE* E15.6 /
* TIME AND MEGAFLOPS FOR LOOP 100 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 200 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 300 * E15.6,F6.1/ )
370 IF(NCYCLE .LE. 1) GO TO 310

CTCYC = 9.5E~9*RTC(DUM)

7300 = 9.5E-9*RTC(DUM)

CALL TSKSTART(I300A,L300,M,1,N/2)

CALL TSKSTART(I300B,L300,M,N/2+1,N)

CALL TSKWAIT(I3003)

CALL TSKWAIT(I300B)

T300 = 9.5E-9*RTC(DUM)-T300

[N TV S QY

PERIODIC CONTINUATION

DO 320 J=1,N
UOLD(M+1,J) UoLD(1,J)
VOLD(M+1,TJ) VOLD(1,J)
POLD(M+1,J) = POLD(1,J)
U(M+1,J3) = U0(1,J)
V(M+1,J3) = v(1,J)
P(M+1,J) P(1,J)
320 CONTINUE
DO 325 1I=1,M

i

Il

UOLD(I,N+1) = UOLD(I,1)
VOLD(I,N+1) = VOLD(I,1)
POLD(I,N+1) = POLD(I,1)
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325

310

400

N

1

1
100

1

3

U(I,N+1) = U(I,1)
V(I,N+1) = Vv(I,1)
P{I,N+1) = P(I,1)
CONTINUE

UOLD(M+1,N+1) = UOLD(1,1)
VOLD(M+1,N+1) = VOLD(1,1)

POLD(M+1,N+1) = POLD(1,1)

U(M+1,N+1) = U(1,1)

V(M+1,N+1) = V(1,1)

P(M+1,N+1) P(1,1)

TCYC = TCYC + 9.5E-9*RTC(DUM) - CTCYC

TCYCH = TCYC

GO TO 90

TDT = TDT+TDT

DO 400 J=1,NP1

DO 400 I=1,MP1

voLD(1,J) = U(I,J)

VOLD(I,J) v(I,J3)

POLD(I,J) = P(I,J)

U(I,J) = UNEW(I,J)

V(I,J) VNEW(I,J)

P(I,J) = PNEW(I,J)

CONTINUE

GO TO 90

END

SUBROUTINE L100(M,NS,NF)

COMMON U(65,65),V(65,65),P(65,65),UNEW(65,65),VNEW(65,65),
PNEW(65,65),U00LD(65,65) ,VOLD(65,65) ,POLD(65,65),
Ccu(65,65),cv(65,65),2(65,65) ,H(65,65),PSI(65,65)
,DT,TDT,DX,DY,ALPHA

FSDX = 4./DX

FSDY = 4./DY

DO 100 J=NS,NF

DO 100 I=1,M

CU(I+1,J) = 5*(P(I+1,J)+P(I,J))*U(I+1,J)

CV(I,J+1) = .5*%(P(I,J+1)+P(I,J))*V(I,T+1)

Z(I+1,3+1) = (FSDX*(V(I+1,J+1)=-V(I,J+1))-FSDY*(U(I+1,J+1)
=U(I+1,3)))/(P(I,T)+P(I+1,J)+P(I+1,3+1)+P(I,J+1))

H(I,J) = P(I,J)+.25*(U(I+1,J)*U(I+1,T)+U0(I,JT)*0(I,J)

+V(I,JH1)*V(I,T+1)+V(I,T)*V(I,T))

CONTINUE

RETURN

END

SUBROUTINE L200(M,NS,NF)

COMMON U(65,65),V(65,65),P(65,65),UNEW(65,65),VNEW(65,65),
PNEW(65,65),UOLD(65,65),VOLD(65,65),POLD(65,65),
CU(65,65),CV(65,65),Z(65,65),H(65,65),PSI(65,65)
,DT,TDT,DX,DY,ALPHA

TDTS8 = TDT/8.

TDTSDX = TDT/DX

TDTSDY = TDT/DY

DO 200 J=NS,NF

DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+
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1 TDTS8* (Z(I+1,IJ+1)+2Z(I+1,J))*(CV(I+1,IJ+1)+CV(I,J+1)+CV(I,T)
2 +CV(I+1,J))~-TDTSDX*(H(I+1,J)-H(I,J))
VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z{(I+1,J+1)+Z(1,J+1))
1 *(CU(I+1,J+1)+CU(I,T+1)+CU(I,T)+CU(I+1,T))
2 -TDTSDY* (H(I,J+1)-H(I,J))
PNEW(I,J) = POLD(I,J)~TDTSDX*(CU(I+1,J)-CU(I,J))
1 ~TDTSDY*(CV(I,J+1)-CV(I,JT))
200 CONTINUE
RETURN
END
SUBROUTINE L300(M,NS,NF)
COMMON U(65,65),V(65,65),P(65,65) ,UNEW(65,65) ,VNEW(65,65),

1 PNEW(65,65) ,U0OLD(65,65) ,VOLD(65,65) ,POLD(65,65),
2 Ccu(65,65),CvV(65,65),%(65,65) ,H(65,65) ,PSI(65,65)
3 ,DT,TDT,DX,DY,ALPHA

DO 300 J=NS,NF

DO 300 I=1,M

voLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U0(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*{(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))

POLD(I,J) = P{(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)

P(I,J) = PNEW(I,J)
300 CONTINUE :
RETURN
END
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APPENDIX E

The "events" multiprocesor program for the CRAY X-MP 2

PROGRAM SHALOW

'BENCHMARK WEATHER PREDICTION PROGRAM FOR COMPARING THE
PERFORMANCE OF CURRENT SUPERCOMPUTERS. THE MODEL IS

BASED OF THE PAPER - THE DYNAMICS OF FINITE~-DIFFERENCE
MODELS OF THE SHALLOW-WATER EQUATIONS, BY ROBERT SADOURNY
J. ATM. SCIENCES, VOL 32, NO 4, APRIL 1975,

' CODE BY PAUL N. SWARZTRAUBER, NATIONAL CENTER FOR
ATMOSPHERIC RESEARCH, BOULDER, CO, NOVEMBER 1984

COMMON U(65,65),V(65,65),P(65,65) ,UNEW(65,65),VNEW(65,65),
PNEW(65,65) ,U0LD(65,65) ,VOLD(65,65),POLD(65,65),
Cu(65,65) ,CV(65,65),2(65,65) ,H(65,65) ,PSI(65,65)
,DT,TDT,DX,DY,ALPHA, ITMAX
,IV1,Iv2,1IV3,1V4,IV5,IV6,IV7,IV8,IV9,IV10,IV11,IV12

DIMENSION ITASK(3)

EXTERNAL TASK

REAL MFS100,MFS200,MFS300

ITASK(1) = 3

ITASK(3) = 'TASK'

CALL EVASGN(IV1)

CALL EVASGN(IV2)

CALL EVASGN(IV3)

CALL EVASGN(IV4)

CALL EVASGN(IV5)

CALL EVASGN(IV6)

CALL EVASGN(IV7)

CALL EVASGN(IV8)

CALL EVASGN{IV9)

CALL EVASGN(IV10)

CALL EVASGN(IV11)

CALL EVASGN(IV12)

bW N -

NOTE BELOW THAT TWC DELTA T (TDT) IS SET TO DT ON THE FIRST
CYCLE AFTER WHICH IT IS RESET TO DT+DT

DX = 1.E5

DY = 1.E5

A = 1.E6
ALPHA = .001
ITMAX 1200
MPRINT = 120
M = 64

N = 64

MP1 = M+1

NP1 = N+1

NS2 = N/2
NS2P1 = N32+1
EL = FLOAT{N)*DX 350
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PI = 4.*ATAN(1.)

TPI = PI+PI

"DI = TPI/FLOAT(M)

DJ = TPI/FLOAT(N)

PCF = PI*PI*A*A/(EL*EL)

INITIAL VALUES OF THE STREAM FUNCTION AND P

DO 50 J=1,NP1
DO 50 I=1,MP1
"PSI(I,J) = A*SIN((FLOAT(I)=-.5)*DI)*SIN((FLOAT(J)-.5)*DJ)
*P(I,J) = PCF*(COS(2.*FLOAT(I~-1)*DI)
1 +COS(2.*FLOAT(J~1)*DJ) )+50000.
50 CONTINUE

INITIALIZE VELOCITIES

Do 60 J=1,N

DO 60 I=1,M .

U(I1+1,J) = -(PSI(I+1,J+1)-PSI(I+1,J))/DY

V(I,J+1) = (PSI(I+1,J+1)-PSI(I,J+1))/DX
60 CONTINUE

PERIODIC CONTINUATION
po 70 J=1,N
U(1,J3) = U(M+1,T)
V{M+1,J3+1) = V(1,T+1) ,
70 CONTINUE v '
DO 75 I=1,M
U(I+1,N+1) = U(I+1,1)
v(I,1) = V(I,N+1)
75 CONTINUE
U(1,N+1) = U(M+1,1)
V(M+1,1) = V(1,N+1)
DO 86 J=1,NP1
DO 86 I=1,MP1
UoLD(I,J) = U(I,J)
VOLD(I,J) = V(I,J)
POLD(I,J) P(1,J)
86 CONTINUE

PRINT INITIAI. VALUES

WRITE(6,390) N,M,DX,DY,DT,ALPHA
390 FORMAT(*1NUMBER OF POINTS IN THE X DIRECTION* I8/

1 * NUMBER OF POINTS IN THE Y DIRECTION* 18/

2 * GRID SPACING IN THE X DIRECTION * 8.0/
3 * GRID SPACING IN THE Y DIRECTION * ¥8.0/
4 * TIME STEP * F8.0/
5 * TIME FILTER PARAMETER * ¥8.3)

MNMIN = MINO(M,N)
WRITE(6,391) (POLD(I,I),I=1,MNMIN)

391 FORMAT(/* INITIAL DIAGONAL ELEMENTS OF P * //(8E15.6))
WRITE(6,392) (UOLD(I,I),I=1,MNMIN)
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392

393

20

FORMAT(/* INITIAL DIAGONAL ELEMENTS OF U * //(8E15.5))
WRITE(6,393) (VOLD(I,I),I=1,MNMIN)

FORMAT (/* INITIAL DIAGONAL ELEMENTS OF V * //(B8E15.6))
TSTART = 9.5E-9*RTC(DUM)

T300 = 1.

TCYCH = 0.

TIME = 0.

NCYCLE = 0

CALL TSKSTART(ITASK,TASK,M,NS2P1,N)

NCYCLE = NCYCLE + 1

~ TCYC =.9.5E~9*RTC(DUM)

~ COMPUTE CAPITAL U, CAPiTAL V, 2 AND H

100

115

T100 = 9.5E<9*RTC(DUM)

CALL EVPOST(IV1)

CALL EVWAIT(IV7)

CALL EVCLEAR(IV7)

FSDX = 4./DX

FSDY = 4./DY

DO 100 J=1,NS2

Do 100 I=1,M

CU(I+1,T) = .5%(P(I+1,J)+P(I,J))*U(I+1,J)

CV(I,J+1) S*(P(I,T+1)+P(I,JT))*V(I,T+1)

Z(I+1,J+1) = (FSDX*(V(I+1,J+1)=V(I,J+1))~FSDY*(U(I+1,J+1)
1 ~U(I+1,3)))/(P(I,T)+P(I+1,3)+P(I+1,TJ+1)+P(I,J+1))
H(I,J) = P(I,J)+.25*%(U(I+1,3)*U(I+1,T)+U(L,T)*U(I,J)

1 +V(I,J+1)*V(I,J+1)+V(I,T)*V(1,T))

CONTINUE

CALIL EVPOST(IV2)

CALL EVWAIT(IV8)

CALL EVCLEAR(IVS)

T100 = 9.5E-9*RTC(DUM)-T100

PERIODIC CONTINUATION

DO 110 J=1,N

CuU(1,J) = CU(M+1,J)
CV(M+1,J+1) = CV(1,J+1) -
Z(1,J+1) = Z{M+1,T+1)
H(M+1,J3) = H(1,J)
CONTINUE

po 115 I=1,M .
CU(I+1,N+1) = CU(I+1,1)
CV(I,1) = CV(I,N+1)
Z(I+1,1) = Z(I+1,N+1)
H(I,N+1) = H{(I,1)
CONTINUE

Cu(1,N+1) cu(M+1,1)
CV(M+1,1) = CV{1,N+1)
Z{(1,1) = Z(M+1,N+1)
H(M+1,N+1) = H(1,1)

COMPUTE NEW VALUES U,V AND P
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1
2

1

T200 = 9.5E-9*RTC(DUM)

CALL EVPOST(IV3)

CALL EVWAIT(IV9)

CALL EVCLEAR(IV9)

TDTS8 = TDT/8.

TDTSDX = TDT/DX

TDTSDY = TDT/DY

DO 200 J=1,NS2

DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+

TDTE8* (Z(I+1,J+1)+Z(I+1,T) ) *(CV(I+1,I+1)+CV(I,T+1)+CV(I,T)

+CV(I+1,J))~-TDTSDX* (H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(I,J+1))
*(CU(I+1,J+1)+CU(T,T+1)+CU(I,T)+CU(I+1,T))
-TDTSDY*(H(I,J+1)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))
~TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

210

215

350

355

360

365

CALL EVPOST(IV4) -
CALL EVWAIT(IV10)
CALL EVCLEAR(IV10)
7200 = 9.5E-9*RTC(DUM)-T200

PERIODIC CONTINUATION

po 210 J=1,N

UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)
CONTINUE

DO 215 I=1,M

UNEW(I+1,N+1) = UNEW(I+1,1)
VNEW(I,1) = VNEW(I,N+1)
PNEW(I,N+1) = PNEW(I,1)
CONTINUE

UNEW(1,N+1) UNEW(M+1,1)
VNEW({M+1,1) = VNEW(1,N+1)
PNEW(M+1,N+1) = PNEW(1,1)
IF(NCYCLE .GT. ITMAX) CALL EXIT
TIME = TIME + DT

TCYC = 9.5E~9*RTC(DUM) - TCYC
IF(MOD(NCYCLE,MPRINT) .NE. 0) GO TO 370

I}

‘PTIME = TIME/3600.

WRITE(6,350) NCYCLE,PTIME

FORMAT(//* CYCLE NUMBER*I5* MODEL TIME IN HOURS* F6.2)
WRITE(6,355) (PNEW(I,I),I=1,MNMIN) "

FORMAT(/* DIAGONAL ELEMENTS OF P * //(BE15.6))
WRITE(6,360) (UNEW(I,I),I=1,MNMIN)

FORMAT(/* DIAGONAL ELEMENTS OF U * //(8E15.6))
WRITE(6,365) (VNEW(I,I),I=1,MNMIN)

FORMAT (/* DIAGONAL ELEMENTS OF V * //(8E15.6))

MFS100 = 24.*M*N/T100/1.E6

MFS200 = 26.*M*N/T200/1.E6
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MFS300 = 15.*M*N/T300/1.E6
CTIME = 9.5E-9*RTC(DUM)~-TSTART
WRITE(6,375) NCYCLE,CTIME,TCYCH,T100,MFS100,T200,MFS200,T300,
1 MFS300
375 FORMAT(* CYCLE NUMBER*I5* TOTAL COMPUTER TIME* E15.6
* TIME PER CYCLE* E15.6 /
* TIME AND MEGAFLOPS FOR LOOP 100 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 200 * E15.6,F6.1/
* TIME AND MEGAFLOPS FOR LOOP 300 * E15.6,F6.1/ )
370 IF(NCYCLE .LE. 1) GO 7O 310
CTCYC = 9.5E~9*RTC(DUM)
T300 = 9.5E-9*RTC(DUM)
CALL EVPOST(IV5)
CALL EVWAIT(IV11)
CALL EVCLEAR(IV11)
Do 300 J=1,NS2
DO 300 I=1,M
UOLD(I,J) = U(I,J)+ALPHA* (UNEW(I,J)-2.*U(I,J)+U0LD(I,J))
VOLD(I,J) V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))
U(I,J) = UNEW(I,J)
Cv(L,T) VNEW(I,J)
P(I,J) = PNEW(I,J)
300 CONTINUE
CALL EVPOST(IV6)
CALL EVWAIT(IV12)
CALJ, EVCLEAR(IV12)
T300 = 9,5E-9*RTC(DUM)~-T300

BW N -

PERIODIC CONTINUATION

DO 320 J=1,N

UOLD(M+1,J) = UOLD(1,J)
VOLD(M+1,J) = VOLD(1,J)
POLD(M+1,J) = POLD(1,J)

U(M+1,J3) = U(1,J)
V{M+1,J) = Vv(1,d)
P(M+1,T) P(1,J)

320 CONTINUE
DO 325 I=1,M
UOLD(I,N+1) uoLD(I,1)
VOLD(I,N+1) = VOLD(ZI,1)
POLD(I,N+1) = POLD(I,1)
U(I,N+1) = U(I,1)
V(I,N+1) = V(I,1)
P(I,N+1) = P(I,1)

325 CONTINUE
UOLD{M+1,N+1) uoLD(1,1)
VOLD(M+1,N+1) voLD(1,1)
POLD(M+1,N+1) = POLD(1,1)
U(M+1,N+1) = U(1,1)
V(M+1,N+1) v(1,1)
P(M+1,N+1) P(1,1)
TCYC = TCYC + 9.5E-9*RTC(DUM)-CTCYC

1}
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TCYCH = TCYC

GO TO 90

310 TDT = TDT+TDT
DO 400 J=1,NP1
DO 400 I=1,MP1
yoLD(I,Jd) = U(I,J)
VOoLD(I,J) v(I,d)
POLD(I,J) P(I,J)
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)

400 CONTINUE.
GO TO 20
END ‘
SUBROUTINE TASK(M,NS,NF)
COMMON U{(65,65),V(65,65),P(65,65) ,UNEW(65,65),VNEW(65,65),

li

i

1 PNEW(65,65) ,U0LD(65,65) ,VOLD(65,65) ,POLD(65,65),
2 cu(65,65),CV(65,65),2(65,65) ,H(65,65),PSI(65,65)
3 ,DT,TDT,DX,DY,ALPHA, ITMAX
4 ,Iv1,Iv2,IV3,Iv4,1IV5,1Iv6,IV7,IV8,IV9,IV10,IV11,IVI2
NCYCLE = 0

90 NCYCLE = NCYCLE+1
CALL EVPOST(IV7)
CALL EVWAIT(IV1)
CALL EVCLEAR(IV1)
FSDX =4./DX
FSDY= 4./DY
DO 100 J=NS,NF
po 100 I=1,M

CU(I+T,T) = 5*(P(I+1,T)+P(I,T))*U(I+1,T)

CV(I,J+1) = .5*%(P(I,J+1)+P(I,J))*V(I,J+1)

Z(I+1,J+1) = (FSDX*(V(I+1,J+1)=-V(I,J+1))-FSDY*(U(I+1,J+1)

1 ~U(I+1,3)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,JT+1))
H(I,J) = P(I,J)+.25%(U(I+1,J)*U(I+1,J)+U(1,J)*0(1,J)

1 +V(I,J+1)*V(I,J+1)+V(I,T)*V(I,T))

100 CONTINUE
CALL EVPOST(IV8)
CALL EVWAIT(IV2)
CALL EVCLEAR(IV2)
CALL EVPOST(IV9)
CALIL EVWAIT(IV3)
CALL EVCLEAR(IV3)
TDTS8 = TDT/8.
TDTSDX = TDT/DX
TDTSDY = TDT/DY
DO 200 J=NS,NF
DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+

1 TDTS8* (Z(T+1,J+1)+Z(I+1,T))*(CV(I+1,TJ+1)+CV(I,T+1)+CV(I,JT)
2 +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)—TDTSB*(Z(I+1,J+1)+Z(I,J+1))

1 *(CQU(I+1,J+1)+CU(I,J+1)+CU(I,T)+CU(I+1,T))

2 ~-TDTSDY* (H(I,J+1)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1 ,J)=CU(I,J))
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200

300

55

1 ~TDTSDY*(CV(I,J+1)-CV(I,T))

CONTINUE
CALL EVPOST(IV10)

CALL EVWAIT(IV4)

CALL EVCLEAR(IV4)
IF(NCYCLE.GT.ITMAX) GO TO 55
IF(NCYCLE .LE. 1) GO TO 90
CALL EVPOST(IV11)

CALL EVWAIT(IV5)

CALL EVCLEAR(IV5)

DO 300 J=NS,NF

DO 300 I=1,M

UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)=2.*V(I,J)+VOLD(I,J))

POLD(I,J)
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(1,J) = PNEW(I,J)
CONTINUE

CALL EVPOST(IV12)
CALL EVWAIT(IV6)
CALL EVCLEAR(IV6)
GO TO 90

RETURN

END
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APPENDIX F

The following program is an implementation of the "truncated" Stockham FFT for
multiple sequences on the CRAY X-MP 2

SUBROUTINE MSTOCK(IS,LI,LJ,C,WORK)

THE STOCKHAM AUTOSORT FFT FOR MULTIPLE TRANSFORMS
MULTIPROCESSOR VERSION FOR THE CRAY-XMP-2

DEFINE M=2**LI AND N=2**LJ THEN M TRANSFORMS OF LENGTH N
ARE COMPUTED. THE TRANSFORMS ARE COMPUTED IN THE DIRECTION
OF THE SECOND INDEX OF THE TWO DIMENSIONAL ARRAY C.

THE FIRST DIMENSION OF THE ARRAY C MUST BE EQUAL TO M.
THAT IS, THE SEQUENCES MUST BE STORED CONSECUTIVELY.

is
Is

[l

-1 FORWARD TRANSFORM
1 BACKWARD TRANSFORM

QOO0

COMPLEX C(1),WORK(1)
DIMENSION IVT(2),ITASK(2)
EXTERNAL TASK
ITASK(1) = 2
CALL EVASGN(IVT(1))
CALL EVASGN{IVT(2))
CALL TSKSTART(ITASK,TASK,IS,LI,LJ,C,WORK,IVT)
N = 2%*(LJ+LT)
L01 =0
DO 100 1=1,LJ
LS=2%*(L~-1)
NS = N/(LS+LS)
L01 = 1-L01
IF(L01 .EQ. 0) GO TO 102
CALL STOCKH(IS,LS,NS,C,WORK)
GO TO 103
102 CALL STOCKH(IS,LS,NS,WORK,C)
103 CALL EVPOST(IVT(1))
CALL EVWAIT(IVT(2))
CALL EVCLEAR(IVT(2))
100 CONTINUE
IF(LO1 .EQ. 0) RETURN
Do 101 I=1,N
C(I) = WORK(I)
101 CONTINUE
RETURN
END
SUBROUTINE STOCKH(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK,WYK,C(NS,2,LS),CH(NS,LS,2)
BANGLE = FLOAT(IS)*4.*ATAN(1.)/FLOAT(LS)
OMEGA = CMPLX(COS(ANGLE),SIN(ANGLE))

NS2 = NS/2
Do 200 J=1,NS2
OMEGK = 1.

DO 200 I=1,LS
WYK = OMEGK*C(J,2,I)
CH(J,I,1) = C(J,1,I)+WYK
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CH(JIIIZ) = C(J,1,I)-WYK
OMEGK = OMEGA*OMEGK
200 CONTINUE
RETURN
END
SUBROUTINE TASK(IS,LI,LJ,C,WORK,IVT)
COMPLEX C(1),WORK(1)
DIMENSION IVT(1)
N = 2%%({[J+LT)
L0171 =0
DO 100 L=1,LJ
LS=2%**(1-1)
"NS = N/(LS+LS)
L01 = 1-L01
IF(LO1 .EQ. 0) GO TO 102
CALL STOCKG(IS,LS,NS,C,WORK)
GO TO 103
102 CALL STOCKG(IS,LS,NS,WORK,C)
103 CALL EVPOST(IVT(2))
CALL EVWAIT(IVT(1))
CALL EVCLEAR{IVT(1))
100 CONTINUE
RETURN
END
SUBROUTINE STOCKG(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK,WYK,C(NS,2,LS),CH(NS,LS,2)

ANGLE = FLOAT(IS)*4.*ATAN(1.)/FLOAT{LS)
OMEGA = CMPLX(COS(ANGLE) ,SIN(ANGLE))
NS2P1 = NS/2+1

DO 200 J=NS2P1,NS

OMEGK = 1.

DO 200 I=1,LS
WYK = OMEGK*C(J,2,I)
CH(J,I,1) = c(J,1,I)+WYK
CH(J,I,2) = C(J,1,I)-WYK
OMEGK = OMEGA*OMEGK

200 CONTINUE
RETURN
END
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