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Summary: We report performance measurements made on the 2-CPU Cray X-MP
at ECMWE, Reading. Vector (SIMD) performance on one CPU is interpreted by

the two parameters (rm, n,), and we find for dyadic operations using
! 2

FORTRAN r = 70 Mflop/s, n; = 53 flop. All vector triadic operations
oo 7 .

produce r = 107 Mflop/s, ny = 45 flop; and a triadic operation with two
vectors and one scalar gives r = 148 Mflop/s and n% = 60 flop. MIMD
performance using both CPUs on one job is interpreted with the two
parameters (rw, s%), where s% is the amount of arithmetic that could have
been done during the time taken to synchronize the two CPUs. We find, for
dyadic operations using the TSKSTART and TSKWAIT synchronization primitives
that r =130 Mflop/s and sy = 5700 flop. This means that a job must
contain more than ~6000 floating-point operations if it is to run at more
than 50% of the maximum performance when split between both CPUs by this
method. Less expensive synchronization methods using LOCKS and EVENTS
reduce s% to 4000 flop and 2000 flop respectively. A simplified form of
LOCK synchronization written in CAL code further reduces Sy to 220 flop.
This is probably the minimum possible value for synchronization overhead

on the Cray X-MP,

1. INTRODUCTION

It has been recognised for years (Calahan, 1977; Hockney, 1977; Calahan
and Ames, 1979) that the single parameter Mflop/s (megaflops) is inadequate
to measure the performance of a vector computer, because it takes no account
of the vector startup overhead. Nevertheless there has been a reluctance

to use a second parameter to overcome this deficiency, and manufacturers

116



still do not publish a two-parameter description of the performance of
their vector pipelines, even though some (notably Cray, Inc.) could do so
to their competitive advantage. The two-parameter (rm, n%) description
introduced by Hockney and Jesshope (1981) and Hockney (1983) is based on
measuring the importance of the startup overhead in terms of how much
useful arithmetic (in fact n% floating-point operations) could have been
done during the time of the overhead. In a similar spirit this description
has been extended (Hockney, 1985) to MIMD computing by measuring fhe»
overhead qf synchronizing multiple instruéfion streams in terms of s%:

the amount of useful arithmetic that could have been during the time taken
for synchronization. The three parameters s Ty and s, are defined
mathematically in Section 2, and measurements of their values on the

2-CPU Cray X-MP at ECMWF are reported in Section 3.

2. THE PARAMETERS (r_, n%, s%)

An SIMD computer is one in which a single instruction initiates many
identical operations on multiple data items, in short one in which vector
instructions are included. The most successful SIMD computers execute a
vector instruction by pipelining the successive elements of the vectors
(usually one per clock period) through a high-performance multi-stage
pipeline. The Cray X-MP is an example of such a computer with a six-stage
floating=-point adder and a seven-stage floating-point multiplier. The
performance of a vector pipeline can be characterized by measuring the

time to execute a single vector instruction, t, as a function of the length

of the vector, n, and fitting the results to the linear relationship
_ -1
t = r,(n + n%) (1)

where:
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r - is the asymptotic (i.e. maximum) performance in millions of

floating~point operations per second (Mflop/s),

n, - the half-performance length, is the vector length necessary to

achieve half the asymptotic performance.

Expressing Eqn. (1) as a startup time in microseconds, to, and a time per

result, 1, we have

t =t + oDt _ (2)

-1

where t_ = n;/r and T =71
—2- Lol [ee]

0
Comparing Eqns. (1) and (2) one sees that ny is the number of floating-
point operations which could have been done in the time of a vector
startup. The parameter n% therefore measures the importance, in terms of
lost floating-point operations, of vector startup to‘the user. Not
surprisingly one finds that, within the approximations of this timing
model, ny is the parameter that determines the best choice of vector
algorithﬁ on a particular computer (see Hockney, 1983, 1984). When the
vector length equals ny then the two terms in Eqn. (l) are equal, and half
the time is being used to perform useful arithmetic (first term) and half
the time is being lost in vector startups (second term). In this case the

average performance is obviously only 50% of the maximum.

Using Eqn. (1) we find the average performahce, r, as a function of vector

length to be
r=n/t =r/(1+ n%/n) (3)

which gives the functional form of the approach of the average Mflop/s to
the maximum Mflop/s, r_, quoted by the manufacturer, as the vector length
increases. One should note that Eqn. (3) demonstrates a slow approach to

the asymptotic performance. By definition a vector length of n, is
2
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required to produce an average performance of half the maximum, but also
a vector length of ten times.n% is required to reach 91% of the maximum
performance. Equation (3) also shows how the long tables of average
performance against vector length often published by computer
manufacturers, can be represented much more compactly by quoting
equivalently the values of the two-parameters (rw, n%).

..The values of'roo and n% are likely to depend to some extent on the
software being used (e.g. assembler code or FORTRAN) and the types of
vector operation (e.g. dyadic, triadic, register-to-register or memory-
to-memory). For an accurate description separate pairs of values need to
be measured for these different cases. The timing relation (1) can also
be used to estimate the time, TV, for the vector part of an algorithm;
that is to say the part that is executed using vector instructions. If
the parameters r_ and n% are approximately constant for the code in

question then

Tv = p;l(sv + n%q) (u)

where:

s, ~ is the total amount of useful arithmetic (i.e. floating-point
operations between pairs of numbers) in the vector part of the
algorithm

g - is the number of vector instructions comprising the vector part

of the algorithm.

If the parameters r and n% vary too much to be considered constant over
the whole vector part of the algorithm, then the vector operations must be
grouped so that the parameters are constant within each group. Equation
(4) may then be applied to each group using a different pair of values

(r_, n,) for each group.
2
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The performance of scalar instructions, which initiate only a single
floating-point operation, can similarly be characterized by the two-
parameters (r_, n%), and one finds that usually the value of ny is
sufficiently small that it can be ignored. Hence the time for the scalar

part of an algorithm is given by

T =r s (5)

S, T is the number of floating-point operations between pairs
of numbers in the scalar part of the algorithm

Do ” is the performance in Mflop/s of scalar instructions

Combining Eqns. (4) and (5), we have the time, T, for the complete

algorithm
T=T +T (6)

Usually cone finds that the scalar performance is less than the vector
performance by a factor of about ten, showing the importance of executing
as much of the arithmetic as possible in vector instructions - that is to

say achieving a high level of vectorization.

The critical path through a multi-instruction-stream (i.e. MIMD) program
can be considered as a sequence of work segments, between which program
synchronization must occur. That is to say, all work must be completed

on a segment before the next can begin. Within a segment, however,

several independent tasks exist that may be assigned to different
instruction streams (i.e. executed by different CPUs in the Cray X-MP).

For synchronization to take place correctly it is necessary for the control
program to initiate each instruction stream, and to recognize when all the

instruction streams have finished. The time taken to perform these
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operations is called the synchronization overhead. It is important in
multi-instruction stream programming to be aware of fhis overhead, and to
be able to assess its magnitude quanfitatively. The parameter s% has been
introduced for this purpose (Hockney and Snelling 1984, Hockney 1985), and
measures the synchronization overhead in terms of how many floating-point
operations could have been in the time of thg overhead. Accordingly the

time, t, to execute a work segment on multiple CPUs becomes
t = r—l(s,.+ s,) . - : | (7)
© i % v . . .
where:

s; - is the total number of floating-point operations between pairs

of numbers in the itP work segment

If the critical path through an MIMD algorithm comprises a sequence of g
work segments, each obeying Eqn. (7),'then the total time, T, for an MIMD

algorithm becomes

-1 q
T=zr (s+s5,9) , s= I s, ' : (8)
w 3 el | o
i=1 oo ' .

In Eqn. (8) we have implicitly assumed that it is possible to schedule the
work, s, between the multiple instruction streams in such a way that each
stream has the same amount of work to do. This would be perfect
scheduling, or load balancing. If this is not possible then the effect of

imperfect scheduling can be included into Eqn. (8) by introducing the

average efficiency, EP’ as defined by Kuck (1978).
T = v N(s/E_ + s,q) | (9)
© P 3 |
As with the case of the vector parameter n%, Egqn. (6) shows that wheh
s = Sy half the time is spent on useful arithmetic and half on

synchronization overhead, resulting in an average performance of half the

maximum, r_. Thus sy is a yardstick that can be used to judge whether a
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work segment is large enough to be worth dividing between multiple CPUs.

As with the vector case, the work in a segment must exceed ten times s, in
' z

order to achieve more than 91% of the maximum performance. In the next

section we describe some simple benchmarks that have been used to measure

values for the three parameters r , n, and s, on the ECMWF 2-CPU Cray X-MP,
) i : bt 2 2

3.  MEASUREMENTS

3.1 Values of (r_, n%) for one CPU

Figure 1 gives the program used to measure r_and ny on one CPU of the
Cray X-MP. Initially the overhead of making the timing measurement is
obtained‘by measuring the time T# for two successive calls to the timing
routine SECOND; This overhead is éubsequently subtracted from all
measurements. The vector length, N, is varied in steps of two, up to a
maximum of 400, and for each Veétor length NREPEAT = 100 trials are made,
The minimum time, TMIN, maximum time, TMAX, and average time
(TSUM/NREPEAT) of the 100 trials are recorded. The DO-1# loop is replaced
by a vector instruction when compiled, and is the subject of the timing,
statement 10 being changed for the different types of loops considered
below. Values of (rm, n%) are obtained by fitting the best straight line
through the values of TMIN &ersus N as is shown in Fig. 2. The asymptotic
performance, L is the inverse slope of this line, and the half-performance
length, s is the negative intercept of the line with the vector-length
axis. In the case of triadic operations TMIN is divided by two, so that
the time axis correctly records the time per vector operation. In a
multi-user operating system it is necessary tc make multiple trials at
each vector length and take the least time, in order to minimize inter-
ference from othef jobs. One hundred trials appears sufficient for this
purpose, as the resulting values in Fig. 2, except for a few rogue points,
are quite well clustered along the timing line. The results obtained are

122



PROGRAM MULT

PARAMETER (NMAX = 4¢@)

PARAMETER (NMAXA = NMAX, NMAXB = NMAX, NMAXC = NMAX)
PARAMETER (NREPEAT = 1¢¢)

DIMENSION B(NMAXB), C(NMAXC), A(NMAXA)

DATA B/NMAX*1.4/, C/NMAX*1.8/

DATA S/1.¢/

CALL SECOND(T1)
CALL SECOND(T?2)
Tg = T2-T1

DO 28 N = 2, NMAX,?2
TMIN = 1¢¢09p8

TMAX = -1000000
TSUM = @

noton

DO 111 JR = 1, NREPEAT
~ CALL SECOND(T1)
CDIRg IVDEP
DO 1¢ I = 1, N
14 A(I) = B(I)*C(I)
CALL SECOND(T2)

10

T = T2-T1-T¢

TMIN = MIN(TMIN,T)
TMAX = MAX(TMAX,T) |
TSUM = TSUM + T . !

111 CONTINUE

WRITE (6,1¢@) N, TMIN, TMAX, TSUM/NREPEAT
20 CONTINUE
1¢¢  FORMAT (' N: ', I, 3F15.8)

STOP

END

Fig. 1 The program used to measure (r , n;) on a single CPU of the
= T3
Cray X-MP. The statement 1¢ is changed for the different

cases.
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Fig. 2 Measurement of r and n, on one CPU of the Cray X-MP. Time, t,
2

as a function of vector length, n, for a single vector operation.
The asymptotic performance, r_, is the inverse slope of the best

fit line, and the half-performance length, n,, is the negative
2

intercept of the line with the n-axis. (a) dyadic operations
A = B*C, (b) all vector triadic operation A = D*B + C,

(c) Cyber 205 triad A = s*B + C.
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given in Table I.

Table I -~ Measured values of r and n; on a single CPU of a Cray X-MP for
o 7

memory-to-memory operations. Cray-l values are in parentheses.

Operation: L n% to
Statement 10 Mflop/s flop us
A(T) ?yg?;i*C(I) 70 53 0.75
(Cray-1 values) (22) (18) (0.82)

All vector Triad
ACI) = D(I)*B(I) + C(I) 107 45 0.42
Cyber 205 Triad
A(I) = s*B(I) + C(I) 148 60 0.40
Scalar code
. 5 .
A(I) = B(I)*C(I) H 0.80

The first three cases irn Table I are measurements of vector instructions.
The dyadic case uses only a single vector pipeline with all vectors stored
in main memory, and is to be compared with values of r = 22 Mflop/s and

n, = 18 flop previously obtained on the Cray-1 (Hockney and Jesshope,

=

1981). We find a three fold increase in r due, primarily to the
o

provision of three memory ports on the Cray X-MP compared with one on the

Cray-1. The startup time in microseconds, t, = n;/r , has not changed
7 o]

0
significantly between the two machines: the extra complexity of memory
access on the X-MP being compensated by a reduction in clock period.
However the importance of this overhead, which is what n% measures, is
three times greater on the X-MP, because three times as much arithmetic
could have been done during this time, as compared to the Cray-1. The

maximum rate at which one floating-point pipeline can deliver results is

one result per clock period of 9.5 ns, that is to say 105 Mflop/s. The
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measured value of r_ = 70 Mflop/s is less than this because of the time
taken to refill the vector registers from main memory. Because the vector
registers hold 64 elements, this is an overhead that is incurred every

64 elements, and is just visible in Fig. 2.

The second two cases are measurements for triadic vector operations, which
involve the chaining of two vector instructions, and the simultaneous use
of both the floating—point multiply and add pipelines. At best we can
expect a doubling of r_ which is achieved if one of the arguments is a
scalar, but is not achieved in the all vector case. The value of n17 is
not materially altered in the triad cases, however the startup time in

microseconds is halved because a single startup of 0.8us is shared

between two instructions.

For comparison purposes, we have run the dyad benchmark with instructions
to the compiler to use only scalar instructions, and obtain r_ = 5 Mflop/s

and n; = 4 flop. The startup time t, remains at 0.8us but this is now of
2

0

negligible importance because the arithmetic performance is about twenty

times slower than when a vector instruction is used. This is made clear

by the fact that n; is reduced to a negligible value compared to any vector
2

lengths that are likely to be used, thus substantiating the statement in

Section 2 that n; = 0 for scalar code.
2

3.2 Values of (r_, s;) for two CPUs
2

Four methods of synchronizing the operation of the two CPUs of a Cray X-MP
on a single job have been considered, and the programs used are given in
Figs. 3 to 6. They are the use of the TSKSTART and TSKWAIT primitives
which we refer to as the TASKS method; the use of the LOCKON and LOCKOFF
primitives which we refer to as the LOCKS method; the use of the EVPOST

and EVWAIT primitives which we refer to as the EVENTS method; and finally
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PROGRAM MULTI

COMMON/GLOBAL/A(ug@), B(u4gp), C(upd)
DIMENSION IDT(2)

EXTERNAL DOALL

DATA B/u4@@*1.¢/, C/u4p@g*1.8/

NMAX = 4g@
IDT(1) = 2

T1
T2
9

9.5E-9%RTC(DUM)
9.5E-9%RTC(DUM)
T2-T1

DO 2¢ N = 2, NMAX, 2
T1 = 9.5E-9%RTC(DUM)
NHALF = N/2,

NH1 = NHALF + 1

CALL TSKSTART (IDT,DOALL, NH1, N)
CALL DOALL (1, NHALF)
CALL TSKWAIT (IDT)

T2 = 9,5E-9%RTC(DUM)

T = T2-T1-T¢
WRITE (6, 1¢8) N, T
2¢ CONTINUE

1¢¢ FORMAT (' N: ', Iu, 4X, 'TIME IN SECONDS:' F16.12)
STOP
END

SUBROUTINE DOALL (N1, N2)
COMMON /GLOBAL/A(u@3), B(ug@), C(u4gp)

DO 1¢ I = N1, N2
19 A(I) = B(I)*C(I)

RETURN

END

Fig. 3 Program for measuring r and s; when a job is split between
© 2
the two CPUs of the Cray X-MP, using the TASKS method of

synchronization.
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the use of a simplified LOCKS method written in CAL code. In all cases
the programs were run on the computer in stand-alone mode, and timing was
performed using the real-time clock function RTC(DUM). In this way we
ensure that the second physical CPU is assigned to the second logical CPU
in the programs, and that we are measuring the wall-clock time for the

complete job.

In the TASKS method (Fig. 3), after calling the timer (RTC) at the start
of the measurement (TI), the second CPU is given a copy of the subroutine
DCALL by the TSKSTART statement, and begins to execute it. The first
CPU, which is performing the control program MULTI, then executes another
copy of the subroutine DOALL in the CALL DOALL statement. The TSKWAIT
statement ensures that both CPUs have finished their share of the work
before the timer is called again to record the end of the measurement
(TQ); The parameters to DOALL are used to ensure that the two CPUs do
different elemental operations (N/2 each) from the total of N operations.
In this method the overhead of starting a new task occurs at every FORK
into a work segment that is divided between the two CPUs, and is
therefore included in the measured time. By choosing an element-by-
element vector multiply for even vector lengths, as the work to be done
in a work segment, we ensure that the workload of N/2 floating-point
operations can be equally balanced between the two CPUs, so that the
efficiency of scheduling EP = 1. Hence the measured time, t, can be

compared with the standard form of Eqn. (7)

£ = I(s + Sq) (10a)
© 2

or t=t,+ s/r, (10b)

0
where s = N of the program in Fig. 3, is the total amount of work split
between the two CPUs,

and t

0~ s;/r_ is the synchronization overhead time in seconds
z
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Table II - Measured values of r_and S3 when dyadic memory-to-memory

Note:

Greater precision would suggest spurious accuracy.

synchronization overhead in microseconds.

operations are split between two CPUs on the Cray X-MP22,.
The overhead is separately measured using TASKS, LOCKS,
EVENTS and CAL code for synchronization. ty = s%/roo is the
Equivalent values
for a single PEM Denelcor HEP1 computer are given in

parentheses (Hockney and Snelling, 1984; Hockney 1985).

- .1
r, s% tO L to
METHOD Mflop/s flop us k/s
TASKS 130 5700 45 22
(HEP1) (1.7) (820) | (u90) (2)
LOCKS 140 4000 28 36
EVENTS 140 2000 14 71
(HEP1) (1.7) (230) (140) (7
simplified
LOCKS 110 220 2 500
CAL code '
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The measured time fits the formula
t = 45 + 3.2 s/400 us (11)

which leads to the values of r  and s; given in Table II.
2

We also show in Table II the result of exactly the same measurements
performed on a single PEM, | Denelcor HEP1 (Hockﬁey and Snelling 1984,
Hockney 1985). The comparisoﬁ raises some important iésues concerning
overheads and their interpretation. One sees that; although the overhead
time in seconds, ty» on the Cray X-MP is only about one tenth that of the
Denelcor HEP1l, the value of s% of the Cray X-MP is almost fen times more
than that of the HEP1l.  So which is the.'"best" machine from the overhead

point of view? If we interpret "best" to mean least execution time, then

no single parameter - nelther fo

alone nor 51 alone - can answer this
question. It is necessary to know two ﬁarameters, either the pair

(r, s%) or the pair (r_, to); “Furthermore Eqné.-(lo) shdw that the
answer may depend on the amoun{ of work,:s, that is'spiit befween the

CPUs, which is often referred to as the grain of the MIMD calculation.

In analogy with Egn. (3) for vector calculations, one has from Egn. (10a)

r=s/t=r/(1+ s%/s) - (12)
for the average performance, r, as a function of grain size, s. Taking
the limit of large grain size (s/s% >> 1), we have r - r_. Thus r is
the parameter that characterizes the performance of large-grain MIMD
programs. However, in the limit of small grain-size (s/s% << 1), we
have the performance

r = rws/s% = ms (13)

where 1, = t_l =r /s

0 0 , is called the specific performance. Thus 7., rather
© 3

09
than r_, characterizes the performance of small-grain MIMD programs.

Using the numbers in Table II, one finds that both the small and large-

grain performance of the Cray X-MP is greater than that of the HEP1.
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In this case, what then is the point of the parameter S1» which suggests
that in some sense the HEP1 is better, not worse, than the Cray X-MP at
synchronization? The point is that, for any given grain size, the HEP1
makes more efficient use of the available computing capability: that is
to say, given s, the fraction of the maximum Mflop/s that is actually
achieved is always higher on the HEP1 than on the Cray X-MP. This
follows from Egn. (12), because S; is smaller on the HEP1, and therefore
s/s% is always larger. Put another way, if the HEP1 were implemented in
the same technology as the Cray X-MP, that is to say if it had the same
clock period, its r would become equal to that of the Cray X-MP, but its
value of sy would remain unchanged at about one tenth of that of the

Cray X-MP. Thus one may say that sy is a characterization of the
computer architecture (in the general sense of including the efficiency
of the synchronization softwarej, whereas r_ is a characteristic of the
technology in which the architecture is implemented. In this sense the
(rw, s%) characterization of a computer nicely separates architecture
from technology. This separation is also evident from the fact s; does
not contain any physical units, whereas r contains inverse seconds in its

units,

The conclusion from the comparison is that the HEP1 is architecturally
better at synchronization than the Cray X-MP, however the latter is
better in absolute terms because of its faster circuitry. The Denelcor
HEP2 is said to be architecturally similar to the HEP1, but implemented
in high-speed technology. This machine could therefore prove also to be

better than the Cray X-MP at synchronization in absolute terms.

In other cases of comparison one may find that one computer has the better
small-grain performance and the other the better large-grain performance.

It is worth noting that since the vector length equation (1) for n, is
2
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identical in form to the grain size equation (7) for Sg vector length n
in SIMD programs and grain size s in MIMD programs are analogous
quantities. Hence the previous statement about MIMD performance is
analogous to saying of two SIMD computers that one has the better short-
vector performance whilst the other has the better long-vector

performance.

The second virtue of the 81 parameter for measuring the synchronization
overhead, is that it is the yardstick by which a programmer may judge
the grain at which to multi-task a program. If we regard 50% of the
asymptotic performance rate, r_, as the minimum acceptable efficiency, then
we know that the grain.size s must exceed the s% of the computer before
multi-tasking is worthwhile. Thus the figures in Table II tell us that
the HEP1 is suitable for multi-tasking problems with about ten times
finer grain than is the Cray X-MP. Furthermore, s% is measured in units
of floating-point operations, to’which a numerical analyst devising an
algorithm can directly relate, because he knows the number of such
operations in different parts of his algorithm. If however the overhead

is measured in physical units, e.g.by t, in microseconds, then these are

0
not the units in which the complexity of an algorithm is most naturally

expressed or known.

The next least expensive method of synchronization proves to be the LdCKS
method, the code for which is shown in Fig. 4. In this case we observe
(Table II) an sy = 4000 flop about 2/3 of the value found for the TASKS
method. The code for synchronization using the EVENTS method is given

in Fig. 5, and we find this to be half as expensive as the LOCKS method
with Sy = 2000 flop. In order to determine the least overhead possible,
a simplified form of the LOCKS method has been programmed in CAL by

John Larson of Cray Research Inc. and his code is given in Fig. 6. The
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PROGRAM MULTI ,
COMMON/GLOBAL/A(u4@8), B(u@g@), C(ugp)
COMMON IVT1, IVT2

DIMENSION IDT(2)

EXTERNAL DOALL

DATA B/ug@g@g®1.8, C/upp*1.8/

NMAX = 4@¢
IDT(1) = 2

CALL LOCKASGN(IVT1)
CALL LOCKASGN(IVT2)
CALL LOCKON(IVT1)
CALL LOCKON(IVT2)

T1 = 9,5E-9%RTC(DUM)
T2 = 9,5E-9%RTC(DUM)
T = T2-T1

CALL TSKSTART (IDT, DOALL)
DO 2¢ N = 2, NMAX, 2

T1 = 9,5E~9*RTC(DUM)

NHALF = N/2

CALL LOCKOFF(IVT1)

DO 1¢ I = 1, NHALF
1¢  A(I) = B(I)*C(I)

CALL LOCKON(IVT2)
T2 = 9,5E-9%RTC(DUM)
T = T2-T1-T@
WRITE (6,1¢@) N, T
2¢ CONTINUE
1¢$ TFORMAT(' N: ', Iu, u4X, 'TIME IN SECONDS:', F16.12)

STOP
END

Fig, 4(a) Program for measuring r_ and sy when a job is split between

the two CPUs of the Cray X-MP, using the LOCKS method of

synchronization. Above code executed in CPUL.
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SUBROUTINE DOALL
COMMON/GLOBAL/A(L4@@), B(ugp), C(4gp)
COMMON. IVT1, IVT2 :
NMAX = 4¢¢

DO 2¢ N =2, NMAX, 2
NHL = N/2 + 1

CALL LOCKON(IVT1)

DO 1¢ I = NH1, N
1¢  A(I) = B(I)*C(I)

CALL LOCKOFF(IVT2)
2¢ CONTINUE

RETURN
END

Fig. 4(b) The subroutine DOALL used with Fig. u4(a), and executed

in CPU2.
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PROGRAM MULTI

COMMON/GLOBAL/A(49@), B(u@@d), C(u@@)
COMMON IVT1, IVT2

DIMENSION IDT(2)

EXTERNAL DOALL

DATA B/u4@@*1.84/, C/u4pg*1.0/

NMAX = L@@
IDT(1) = 2

CALL EVASGN(IVT1)
CALL EVASGN(IVT?2)

T1 = 9.5E-9%RTC({DUM)

T2 = 9.5E-9%RTC(DUM)

T = T2-T1

CALL TSKSTART (IDT, DOALL)

DO 2¢ N = 2, NMAX, 2
T1 = 9.5E-9%RTC(DUM)
NHALF = N/2

DO 14 I = 1, NHALF
18 A(I) = B(I)*C(I)

CALL EVPOST(IVT1)
CALL EVWAIT(IVT2)
CALL EVCLEAR(IVT2)
T2 = 9.5E-9%RTC(DUM)
T = T2-T1-T¢
WRITE (6, 1¢f4) N, T
2¢ CONTINUE
1¢¢ FORMAT (' N: ', Iu, 4X, '"TIME IN SECONDS:', F16.12)

STOP
END

Fig. 5(a) Program for measuring r and s; when a job is split
s z
between the two CPUs of the Cray X~MP, using the EVENTS

method of synchronization. Above code 1s executed in CPU1.
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SUBROUTINE DOALL

COMMON /GLOBAL/A(L4@8), B(u4gg), C(u4@gB)
COMMON IVT1, IVT2

NMAX = 4@

DO 2¢ N = 2, NMAX, 2
NH1 = N/2 + 1

DO 1¢ I = NH1,N
1¢  A(I) = B(I)®*C(I)

CALL EVPOST(IVT2)

CALL- EVWAIT(IVT1)

CALL EVCLEAR(IVT1)
2¢ CONTINUE

RETURN
END

Fig. 5(b) The Subroutine DOALL used with Fig. (5a), and executed

in CPU2.
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PROGRAM MULTI
COMMON/GLOBAL/A(4@88), B(ug@), C(upd)
COMMON IVT1, IVT2

DIMENSION IDT(2)

EXTERNAL DOALL

DATA B/u@@g%1.¢/, C/u@pg*1.0/

'9, 5E-9%RTC(DUM)
9.5E-9*RTC(DUM)

T = T2-T1

CALL TSKSTART(IDT, DOALL)

—
N
Hn

DO 2¢ N = 2, NMAX, 2
T1 = 9.5E-9%RTC(DUM)
NHALF = N/2
CALL POST1

DO 1¢ I = 1, NHALF
16 A(I) = B(I)*C(I)

CALL WAIT2 o . |
T2 = 9,5E-9%RTC(DUM)
T = T2-T1-T¢
WRITE(6, 16¢) N, T
2¢ CONTINUE
1¢¢ FORMAT (' N: ', I4, uX, 'TIME IN SECONDS:', F16.12)

STOP
END

Fig. 6(a) Program for measuring r_ and sy when a job is split
between the two CPUs of the Cray X-MP, using CAL code

for synchronization.
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SUBROUTINE DOALL
COMMON/GLOBAL/A(4@@), B(ugg), C(u4¢gp)
COMMON IVT1, IVT2

NMAX

4@

CALL WAIT1

DO 1 I = NH1, N
19 A(I) = B(I)*C(I)

CALL POST2

2¢ CONTINUE

RETURN

END

IDENT CALIB

ENTRY INIT, POST1, POST2, WAIT1, WAIT2

INIT =
Al
SBY
J
POST1 =
Al
SB@
J
WAIT2 =
Ap
JAN
J
WAIT1 =
Ag
JAZ
J
POST2 =
Al
SB@
J
END

Fig. 6(b)

«”

an,
v

.
£

The Subroutine DOALL and the CAL

g
Al

B@@

simplified LOCKS

synchronization routines used with Fig. 6(a). Code kindly

supplied by John Larson (Cray Research Inc.).
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overhead is thereby reduced by a factor of ten to sy = 220 flop. An
examination of the CAL code in Fig. 6(b) shows that there is no wasted
time, and it is unlikely that synchronization can be achieved on the

Cray X-MP with less overhead. However, it must be said that in tﬂe CAL
code, one CPU waits for the other to finish by continually testing one of
the synchronization registers. This prevents the waiting CPU from doing

any other work during this time, and hence this code would hardly be

acceptable as a general method of synchronization.

b. CONCLUSIONS

Measurements have been reported of the vector startup overhead on a single
CPU of the Cray X-MP, and the overhead of splitting a job between the two
CPUs of a Cray X-MP. Interpreted in terms of the parameters (r., n%) we
conclude that the Cray X-MP is about three times faster than the Cray-1 in
asymptotic performance r_, however this has the effect of similarly
increasing the half-performance length, n%. One of the principle
differences between the Cray-1 and the Cyber 205 is the fact that their ‘
values of n% differed by about a factor of ten (being ~10 to 20 and ~100

to 200 respectively). Now that we find the Cray X-MP with ny ~50 it has
become more like the Cyber 205 from the vector length point of view. Other
differences, like the need for contiguous vectors on the Cyber 205, of

course, remain.

Measurements of job splitting between two CPUs interpreted in terms of the
parameters (rm, s%) show that the cost of job synchronization in terms of
lost floating-point operations is about ten times more expensive on the
Cray X-MP than on the Denelcor HEP1l. This means that the grain size of
jobs split between two CPUs needs to be about ten times larger on the
Cray X—MP.than on the HEP1 in order to achieve the same fraction of the
maximum performance.
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