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Abstract
The stability and phase error per timestep of the amplitude response of
physical, computational and exact modes have been investigated in the presence
of friction, different diffusion schemes and various strengths of the Asselin
(1972) time filter and propagation of the fluid, using a grid-point
representation of the one-dimensional non-rotating linearized shallbw water

equations.

The analysis is similar to that by Schlesinger, Uccelini and Johnson (1983)
(referred hereafter as SUJ) except for the inclusion of friction. Without
filtering the effect of friction on modes is to damp them in comparison with
the frictionless case. For diffusion and friction alone the effect of time
filtering on the physical modes is almost negligible, while it is sufficient.
to suppress the computational mode. 1In this case, a heavy filter (xf~1.0) is

as desirable as in the case of frictionless motion considered by SUJ.

In the case of diffusion, propagation and friction, the Asselin filter affects
both the physical and computational modes, and the damping rate though the

wave spectrum is not uniform.

For frictionless motion the damping rate of computational (physical) modes is
smaller (larger) at intermediate wavelengths (as>found by SUJ). In the
presence of friction this property of Asselip filtering is enhanced, so that
the computational mode is either larger than the physical one, or even
unstable depending upon the strength of propagation, friction and time

filtering.



For time filtering greater or equal to 0.5, the physical mode is found to be
damped extensively in the presence of friction and strong propagation, so that
the optimum value of Asselin filter 0.5 suggested by SUJ (frictionless case)

does not seem to be optimal in this case.

An optimal Asselin filter parameter which counterpoints the combined results
of both strong propagation and friction is found to be close to 0.3 for the

Crank Nicholson diffusion scheme and for diffusion of the form V”( ), V8( ).

In this case there is no optimal parameter for the Lagged diffusion scheme.

Finally, although the computational mode of the Dufort-Frankel diffusion

scheme is always larger than the physical one in some range of wavenumbers, an

optimal value is close to 0.5.



1. INTRODUCTION

High frequency computational noise may appear in numerical models, either due
to difficulties in finding initial conditions representative of the large
scale atmospheric motions, or due to separation of solutions of alternative
time steps when the leapfrog scheme is used (an example is demonstrated in
Iilly, 1965). In the past, suppression of this noise was achieved by using
certain finite-difference approximations for time which had a built-in damping

property (Kurihara 1965).

quert (1966) introduced a continuous time filter which was slightly modified
and more comprehensively studied by Asselin (1972). Schlesinger, Uccelini aﬁd
Johnson (1983, referred to as SUJ) used a one-dimensional linear analysis of
the shallow-water wave equations on a non-rotating plane to investigate the
effects of the Asselin time filter on both the stability and phase error of
the leapfrog advection scheme using different diffusion schemes, and they
found some optimal values of time filter depending upon the propagation of the
f£luid. These studies of the time filter did not take into account the effect

of the Asselin time filter on stability in the presence of friction.

The purpose of this paper is to give some insight into the behaviour of the
‘modulus of the amplification factor I1¢l| of physical, computational and exact
modes, in the presence of friction for the one-dimensional linearized shallow

water equations.

In Sect.2 a modified amplitude response of Asselin time filter is introduced

when the friction is incorporated into the equations.



Sect. 3 contains a description of the one-dimensionnal linearized
shallow-water wave equations in the presence of friction, the diffusion
schemes and the modulus of amplification factors of physical, computational
and exact solutions. In Sect.4 the results are presented. Finally in Sect.5

there are some concluding remarks.

2. AMPLITUDE RESPONSE OF THE ASSELIN TIME FILTER IN THE
PRESENCE OF FRICTION

Consider a time series of the form

iwnA
Fn = el nat y N =0,1,2,00c0s (1)

where w is a complex constant and n is a time level.

The Asselin time filter for the time series (1) is defined (Asselin 1972) by:

o= o+ %-xf #7124 Py (2)

where the overbars denote filtered values and x_ is the filtering

£

coefficient.

The response of the filter R' is defined by (Asselin 1972) as
+ -2

2 + x.(9-2)

20 - x

6 = eimAt (3)

- n
F' = R'F R' = ¢

£
As a simple representation of friction we include a Newtonian drag:
F
% = iwF - AF ' (4)
where A is the frictional damping rate, which is taken as 0.0002 sec~!. 1In

this case the amplitude response R is given by:

2 + xf(¢B-2)
R=4¢ 20 - x_A (5)
£
t t+At
[ At -[ Aat
where A = et-At and B = e t
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If A is constant in the time interval [t—-At,t+At], then A and B may be

approximated by:

A" A
A =e and B = e (6)

*

where A AAt is a dimensionless frictional damping rate.

I

The effects of friction upon the stability and phase error are investigated

* *
here using A = 0.0 and A = 0.06 for the frictional damping rate.

*
In the case of no friction A =0, from Egn.(6) we obtain A=B=1, so that Eqgn.(5)
is identical to Eqn.(3). From Egn.(5) it can be seen that the amplification
factor and the phase shift produced by the filter are a function of the

friction as well.

3. ONE DIMENSIONAL LINEARIZED SHALLOW WATER WAVE
EQUATIONS IN THE PRESENCE OF FRICTION

Consider the one-dimensional linearized shallow water wave equations on a

non-rotating plane with the friction, where for simplicity v' is assumed to be

zero
du' _ _ - du' + .U-ZD My _ _oh' + F (7a)
3t 9x * a5 9 3x u
P
u
oh' _ oh' ,M-2_ 9 h! du'
% U F + i D axu H ox + Fh (7b)

where D is the diffusion coefficient,
u is the eastwards wind component,
h is the free surface height,

U and H are the eastwards velocity and the height of the
of the basic state, which are constant,

hl
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H is the order of linear dissipation

-Au' and

|
1l

=Ah'.
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Following an analysis similar to SUJ, Eqn.(7) has a wave type solution of the

form

>

u' u
= ~ ei(kx+mt) (8)
h' h

where u, h are complex constants; k is the wavenumber (real) and w is a

complex frequency.

From Eqn.(7) using Egn.(8) the following frequency relation may be obtained:

-k (U£C) + i(X"DH\) (9)

(gH)* ‘ (10)

w

where C

Equation (9) shows that the wave propagates in both directions with speed

k(Uftc) relative to basic flow.

Equations (7a) and (7b) are approximated by the following finite difference

equations:

nt1-"1 UAt n n -2 DAt n+1 At . n n -1
I = S BEED B yehTt E wd™ - EE L - D )-2000)0

j j Ax j=-1 "3-1 Axu Ax j+1 j=1

(11a)

n+1—n_1 UAt, n n u=-2 DAt n+1 HAt n n _n-1

I = - 22F - : 28t - 22t - - A
hy- Ay Ay (Bypq7hy )t o 2 wh e (U3pq = Uyoq)"2(AAE)R,

(11b)

where primes have been dropped from u and h,

x = 3Ax (3=0,%1,...), t" = nAt (n=0,1,2...),



n n
Ej = E(x,t ) for any dependent variable E, and WP? symbolizes, as in SUJ, any

of the diffusion operators. The time derivatives are approximated by a
leapfrog scheme using filtered values at time step n-1. In order to compare
the results with SUJ the diffusion is formulated as in SUJ (i.e.
Dufort-Frankel, Lagged and Crank-Nicholson schemes, referred hereafter as DF,

+1
I and CN respectively). Additionally, diffusion of the forms qun and

n+1

V8E (referred hereafter as d4; d8) are investigated.

Egn.(11) have a wave-type solution of the form

]

u _ u ¢n eik(ij) (12)

=

h

(ST BTN

A numerical solution of (11) is stable if '¢'<1. Using the same symbols as in

SUJ Eqn.{11) may be written in matrix form as follows:

— —_ — — — —

0 2iG*sing u 0

. N = (13)
2iH2sino o) h 0 '
* UAt HAt ght DAf
= — * = — x = * = — =
where U A H Ax ! G Ax ! D Ax ! g KAx,
-1 : . M2~ . |
A* = AAt, 0 = ¢-R + 2iU*sing - 2i D*w + 2A*R¢

and ; is a scheme-dependent multiplier applying to the diffusion w.
The existence of nontrivial solutions leads to relation

(AR¢2 + BBt¢ + cct)(an¢? + BB~ + CC™) = 0O (14)
where AA = 2a, BBt, BB~ = - xfaA + xfBB +2y and cct, ccT = 28—2xf8-foY.

Signs t and ~ correspond to V* = U* + C* and V* = U*-C* respectively.



The multiplier w and the parameters o, B and Y are defined as follows:

DUFORT-FRANKEL (DF)

w = 2cosG~R¢'1-¢
a =1+ 21" %px
-2
B = 2a*—1+2i" “px
. . LU-2
Y = 2iV¥*sino-4i D*cos0O
LAGGED (L)

; = 2R.d>‘1 (coso-1)
a = 1
L H-2
B =2A*-1-4i D*(coso~-1)

Y = 21 V* sinC

CRANK NICHOLSON (CN)

w = (¢+R¢~1) (coso-1)

a = 1-2i""%p* (coso-1)

B = 2a*-1-2i""?D* (coso-1)
Y = 2isinoVv*

v o)™

w = (2cos (20)-8cos0+6)9

a = 1-2i" "Zprge-l

B = 2iV* sino

v8( ) (as)

W = ¢(2cos(46)-16cos (30)+56c0s (20)-112cos0+70)
o = 1-2:" "Pprg-l5

B = 2A%-1

Y = 2iV*sino

Here V* = U*iC* and the positive sign is associated with the first factor in

Eqn.(14). 8



As in SUJ, if (BB,CC) stand for any of (BBt, cct), (BB, CC™) from Eqn.(14),

we obtain:

¢ = (-BB £ VBB - 4AA.CC)/2AA (15)
where the positive sign corresponds to physical modes and the negative to

computational ones.

The phase error per time step for the physical and computational mode is
defined, as in SUJ and Fromm (1969) by
~cos—! [Re(¢)/\¢']—cv* Im($)>0

Eph =
cos) [Re(9)/0]1-0v* Im($)<0 (16)

Finally the amplitude response per time step of the exact mode is defined by

M
|¢‘ = (P (17)
4. RESULTS

The effects of diffusion schemes, propagation of the fluid, friction, and time

filter on physical, computational and exact modes have been investigated by

considering various combinations of them.

The dimensionless frictional damping rate A* = 0.06 is taken to give a

frictional damping rate of the order A = 0.0002 sec™l.

The propagation is assumed to be moderate (V*¥=0.4) when the mean velocity is
U=50 msec~! and the gravity velocity is 300 msec~l, while for the strong

propagation (V*=0.6) the mean velocity is taken as U=100 msec~l.

In general the friction damps all the modes when it is applied at time step
t-At, and when there is no filtering. 1In this case the modulus of the
amplitude response of each mode is smaller than for the corresponding mode of

the frictionless case.



4.1 Moderate diffusion and no propagation

From Fig.1 it can be seen that the Asselin time filter works very well in {
suppressing the computational mode, in spite of the incorporation of friction.

As in the frictionless case (SUJ) high filter intensities are desirable

(xf~1.) and the behaviour of all diffusion schemes is good. The phase error

is seen to be independent of friction and there are some phase improvements

for high filter intensities.

4.2 Moderate diffusion and moderate propagation

In this case, Fig.2, the Asselin time filter affects not only the
computational mode, but also the physical one; moreover the damping rate
through the wave spectrum is not uniform. At intermediate wavelengths,
damping of the physical mode is a maximum, and damping of the computational
mode is a minimum. This behaviour of heavy Asselin filtering is enhanced
further when friction is incorporated into the model, so that the higher the
propagation, friction and filtering the more pronounced is this property.
Therefore, there is an upper limit to the ideal strength of the filter which
is a function of the propagation of the fluid, friction and to some extent the

diffusion; this upper limit is less than the limit for frictionless motion.

For all diffusion schemes an optimum value of xf is found to be in the range

(0.3, 0.5).
There are some pseudo-improvement of phase error, mainly at intermediate

wavelengths, due to the fact that the physial and computational modes are

damped differently as the filter strength increases.

10



4.3 Moderate diffusion and strong propagation

The friction causes a deterioration in the effect of time filtering on the
modes so that not only does tﬂe damping rate through the wave spectrum become
even more non-uniform, but also the physical mode is damped extensively at
intermediate wavelengths as the filter strength increases. From Fig.3 it can
be seen that for xf=0.5 in the presence of friction, the physical mode has
been damped extensively within the intermediate wavelengths, while in the
frictionless case (SUJ) it has not. Therefore the filter strength xf=0.5

suggested by SUJ is not an optimal one in this case.

Thus in the presence of friction, strong propagation and moderate diffusion an

optimum value of x_ is close to 0.3 for d8, d4 and CN diffusion schemes. For

£
the I. diffusion scheme there is no optimum value, while an optimum value for

DF close to 0.5 - although in this case the computational mode is greater than

the physical one in some range of wavelengths.

4.4 Inclusion of friction at time step N

In Fig.4 are the results when the friction was incorporated into the linear
model at time step n (case 2) rather than n-1, in the presence of strong

propagation and moderate diffusion.

A comparison of Fig.4 with Fig.3 (case 1) reveals that:

a. In case 2 and in the presence of friction, the computational mode is
unstable for X, = 0. The Asselin filter works very well in suppressing

the instability and for small filter intensities the scheme becomes

stable.



b. For xf = 0.3 or 0.5 the physical modes are almost identical in these
two cases, while the computational mode is better suppressed in
case 1.

C. For xf = 0.75 the damping of the physical modes at intermediate
wavelengths becomes more unrealistic in case 1, while the damping of

the computational modes is almost identical.
Although in numerical models the physics is usually applied at time step n-1,
it appears possible from these results that it can be applied at time step n

together with time filtering.

5. GENERAL RESULTS

Without friction and filtering the modulus of computational and physical
modes, for all diffusion schemes, are identical and close to unity, either

throughout or in some range of the wave spectrum.

Without filtering and when the friction is applied at time step t-At; the
effects of friction on modes is to damp them. For a light filter (xf< 0.12)
the computational mode is damped, but it is still almost of the same order of
magnitude as the physical one. As the filter strength increases the effect of

friction on modes depends on the propagation of the fluid.

Without propagation and in the presence of friction the damping rate of the
computational mode is non uniform throughout the wave spectrum, and the
computational mode is damped progressively. In this case higher values of
filtering are required for all diffusion schemes, as in the frictionless

case {(8SUJ).

12



In the presence of propagation and as the filter strength increases, the
friction leadé to a deterioration of the effect of the Asselin filtering on
modes, and makes the computational mode more unstable and the physical one
more stable in the range of intermediate wavelengths. Thus the physical mode
departs from the exact one, while the computétional mode becomes dominant or
of the same order of magnitude as the physical one, and may even become
unstable. An optimal Asselin filter parameter which counterpoints the
combined results of both strong propagation and friction is found to be close

to 0.3.

Finally, when the friction (and perhaps, by implication, more generally the
physics) is applied at time step n, a stable scheme may be feasible using some

higher values of filter intensity.
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Explanation of the Figures

All the figures consist of plots of the amplification factor |¢! per time step
and phase error (Eph) as a function of normalised wave number (0=kAx). The
abbreviation for the diffusion scheme is shown in the bottom left corner of

each plot.

In each individual picture there are two plots for each mode, these

* . *
corresponding to the cases of no friction (A =0.0) and friction (A =0.06).

In figures where the amplification factor is plotted, the dashed lines show
the computational, the solid the physical and the dotted the exact mode.

*
Usually the computational mode for A =0.06 is labelled.
The hatched regions show areas where the modes are unstable.

The phase error is shown for the physical (solid line) and the computational
mode (dotted lines). The y-axes of phase error has values from -3 to +3 rad
At=l. Ccolumns from left to right corresponds to five different values of

Asselin filter (x_ = 0.0, 0.3, 0.5, 0.75 and 1.0).

£
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Moderate diffusion and moderate propagation
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Fig. 2 As in Fig. 1, except that the propagation is moderate.
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Moderate diffusion and strong propagation
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Fig. 3 As in Fig. 1, except that the propagation is strong.
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