WNANVHOWIWN 1VDINHD4L

l am
4

80

A multi tasking numerical
weather prediction model

J.K. Gibson

Research Department

October 1983

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1. INTRODUCTION

One of the limiting factors in the operational production of weather
forecasts using numerical prediction models is the time taken for the
computer code to execute. Recent experience would suggest that a global
prediction model is desirable for medium range weather forecasts for a period
of 3 to 10 days. Current research work at ECMWF indicates that greater
accuracy of prediction is possible using models of higher resolution, and
using more sophisticated computational techniques. Since the current
operational forecast fully utilises the computer resources and time
available, further improvement is only possible given more powerful hardware
and better techniques. To this end, ECMWF have agreed to purchase a Cray
X-MP/22 computer together with a 128 M byte solid state storage device (SSD).
This computer configuration is capable of allowing a single job to make
simultaneous use of two central processing units. This paper describes ﬁhe
preparation and development of a preliminary multi-tasking version of ECMWF's
numerical prediction model, designed to make use of the dual-processing

facilities of the Cray X-MP.

2. TERMINOLOGY

2.1 Task

A task is a set of computer instructions which must be processed in
sequential order. Within the context of this paper, a task consists of one
or more subroutines, and constitutes an entity which can be scheduled for
independent, or quasi-independent execution on a physical CPU along with
other tasks. This definition of a task is consistent with the concept of

"library tasks" used in some publications.

Each task has a unique identity. It may share data areas with other tasks.
Quasi-independent execution implies that external communication and

synchronisation with other tasks may be required.

2.2 Parallelism

Parallelism is the ability to process two or more software entities at the
same tiﬁe. Rigsbee (1983) has defined levels of parallelism of software

- processes as follows:-

LEVEL 1 Jobs; independent jobs, - each has a CPU.

LEVEL 2 Job steps; related parts of the same job.

LEVEL 3 Routines.

LEVEL 4 TLoops éf blocks.

LEVEL 5 Statements.

2.3 Multi-Tasking

Multi-tasking is a mode of operation such that processor resources are shared
among multiple quasi-independent tasks. It is usually (but not necessarily)
associated with a multiprocessing environment (i.e. where more than one CPU
is availablé). It enables parallelism to be exploited at level 3, and may be

compared to multiprogramming, which exploits parallelism at level 1.

3. THE CRAY X-MP/22

3.1 Hardware Features

The Cray X-MP series of computers contain central processing units based on

16 gate array integrated circuits. The clock cycle time is 2.5 nanoseconds,
and the memory bank cycle time is 38 nanoseconds. A Cray X~-MP/22 contains

2 million 64 bit words of memory, and 2 CPU's. Four parallel memory access

ports are available to each processor, giving a memory bandwid;h eight times
as large as the usable bandwidth of a Cray—1. Hardware improvements coupled
with this higher bandwidth enable better instruction chaining than possible

on a Cray-1, while larger instruction buffers reduce the frequency at which

instructions are fetched from memory. A CPU intercommunication section
contains 3 clusters of shared registers, together with a shared real time

clock.

The input/output support for ECMWF's Cray X-MP will consist of a 128 M byte
solid state storage device (SSD), and 16 discs coupled via an input/output
subsystem comprised of two processors linked by 8 M bytes of buffer memory.
The SSD is connected to the Cray X-MP by a 1250 M byte/séc channel; it is
thus capablé of supporting input/output at such speed as to render thé need

for simultaneous input/output and overlapped CPU processing redundant.

3.2 Software Features

The Cray operating system (COS) supports a concept where tasks are scheduled
in a manner similar to that normally used for job steps. Multi-tasking is
supported by means of a set of library routines. These enable tasks to be
initiated, locks to be set, events to be posted, tests to be made, and

synchronisation to be achieved.

4. MULTI-TASKING USING THE CRAY X-MP

4.1 The Purpose of Multi-~-Tasking

Multi-tasking only makes sense if the resulting multiple tasks can be
processed at higher'speed than the corresponding sequence of single tasks.
The benefit of multi-tasking may be expressed in terms of a speed-~up factor:-

T(single tasking)

T(multi-tasking)

where T(single tasking) = time taken in single tasking mode

T(multi-tasking) time taken in multi-tasking mode.

A value of S in excess of 1.0 will only be achieved if there is sufficient
parallelism to utilise more than one CPU to perform the computations at a
faster rate than could be achei#ed by a single processor, allowing for extra

overheads necessarily incurred by the multi-tasking control mechanism.

It is only possible to realise the full benefit of multi-tasking when the
multi-tasking job has sole command of the computer. Multi-tasking should
only be used for time critical jobs which are likely to execute on the

computer either in isolation, or at high priority.

4.2 Suitable Problems for Mﬁlti-masking

For a problem to bé a suitable candidate for‘multi-tasking, certain basic
requirements are important. First, the problem must be divisible into a set
of tasks which will form a balanced load over the number of CPU's available.
Secondly, tasks must be of sufficient length to justify the overheads of
multi-tasking. Data required to be stored by tasks should be mutually
distinct, and tasks should not alter data requiréd as input to possibly
simaltaneous tasks. Computational independence and storage independence are
problems which require careful and detailed attention. They are treated at
length in the computer literature, and Rigsbee (1983) details aspects which
are of particular relevence to multi-tasking on a Cray X-MP. For the purpose
of this paper it is sufficient to state that routines comprising tasks should
be capable of being re-~entrant, should have no side effects, and should not
re-define their inputs. Where critical regions exist, such as the updating of
a global value within several tasks, such regions should be locked. Locking
is a mechanism which restricts the execution of such critical regions to one
such region at a time. The length and number of critical regions should be
minimised to minimise overheads. All‘critical regions must be identified,

otherwise results will be unpredictable.

5. THE ECMWF T63 SPECTRAL MODEL

5.1 The Single Tasked Version

A full description of the ECMWF spectral model will be contained in the
forthcoming Model Manual. The system adopted for source code organisation is
described in Gibson (1982), and algorithms used for memory management are
listed in Gibson (1983). The following brief overview indicates, in

simplified form, the general structure of the code.

The single tasked version was designed with multi-tasking in view; but
without knoﬁledge of the multi-tasking interface. 1In consequence, the
principle specifications for the design were
a) modularity, with tree-like calling structures.
b} data separation, using a well managed system for addressing
memory.

c) input/output functions separately coded in a separate library.

5.2 Organisation of the Computation

Figure 1 illustrates the partitidning of control for the two scan version of
the model within the time stepping system. The forcast is advanced by a time
interval of 20 minutes each time step. Thus 720 such steps are required to
complete a ten day forecast. Two input/output scans are required, each
involving a complete pass over a group of work files. Scan 2 (N2SC2) writes
symmetric and antisymmetric Fourier components to work files, while scan 1
(NNSC1) reads these components, reads additional grid point values, performs
computations in Fourier and grid point space, writes new grid point values,
and alters spectral values utilizing increments computed in Fourier and grid
point space. Between these data scanning routines the spectral computations

which govern the dynamics of the model are completed.

‘ START ’

NNSC1

:

SPECTRAL
ROUTINES

| A

N25C2

NSTEP =
NSTEP+1

Fig. 1 ECMWF F/C - STEP CONTROL

N2sc2

0

A

LTIVO
LTID : Inverse
LTITP o.o--o.co--.ouuoc-c{Legendre
LTIQ Transforms
LTIU

NROW =

NROW+1

RETURN

Fig. 2 ECMWF F/C - SCAN 2

SET SCAN
VARIABLES
NROW = 1

FCC2

FFTI
GPC
FFTD

FCC1

Computations
in Fourier Space

FFT's, Grid Point
Computation FFT's

Computations
in Fourier Space

LTDVD
LTDD
LTDTP
LTDQ

Direct Legendre
Transforms

LTDU

NROW =
NROW+1

POST - SCAN
STATS,
ETC.

RETURN’

Fig. 3 ECMWF F/C - SCAN 1

Figure 2 illustrates scan 2 of the model. The computation takes place within
five subroutines, each of which performs an inverse Legendre transform on one

of the model variables.

Figure 3 illustrates scan 1 of the model. This involvés‘computations in
Fourier space; a transformation to grid point space using fast Fourier
transférms; extensive grid point computations for the time filter, the
dynamics and physics, and part of the semi-implicit time-stepping of the
model; reverse Fourier transforms; further computation in Fourier space, and
finally direct Legendre transforms from Fourier to spectral space. At the

end of the scan statistics are computed and printed.

5.3 Addressing Variables

The code for the forecast model is written in FORTRAN. In general, the 1977
ANSI standard is followed closely, but Cray FORTRAN extensions are used to
manage memory and address variables. The Cray POINTER statement allows
dynamic addressing of array space by basing arrays concerned on addresses
contained in associated POINTER variables. Use of this concept enabled a
memory man;gement package to be produced which

a) facilitates the naming of variables, and the splitting of buffers
into array space.

b) supports a system of array recognition based on two attributes - a
name and a code number. Arrays are located or allocated by
supplying both a name and a code. Subsequent references within a
subroutine are then by name only, in the normal FORTRAN manner.
This system supports the ability to maintain several distinct data
areas, each addressed by a common name, but distinguished by their
different code numbers.

c) allows arrays to be allocated when required, and released when no
longer needed. This uses the available space to maximum effect

without the need to resolve complicated data mappings.

d) enables groups of arrays to be allocated contiguous space, to build
buffer areas.
The call sequence for the most used routines of the memory manager illustrate

these points:-

CALL, ALLOCA(IPT,ILEN,'NAME',ICODE)
CALL ALLOCB(IPT,ILEN, 'NAME',6ICODE)
CALL LOCATE(IPT,'NAME',ICODE)

CALL UNLOC('NAME',ICODE)

where
ALLOCA allocates space for an array.
ALLOCB allocates space for an array such that successive calls to
ALLOCB allocate contiguous space.
LOCATE locates a previously allocated array.
UNLOC releases space previously allocated.
and
IPT is a POINTER variable in which is returned an address.
TILEN is the array length required.
'NAME{ is the array name.
ICODE is the code number used to gualify the array name.

5.4 Input/Output

If all of the intermediate results of the forecast model were to be retained
in memory, a computer with 8 megawords of memory would be required. For
horizontal resolutions higher than T63 a four-fold increase in memory would

be required for a doubling of the resolution. In consequence, it is
necessary to store intermediate values on work files, and to transfer data to

and from memory as required using an input/output scheme.

Two types of work files are used - one containing symmetric and antisymmetric

Fourier coefficients for variables associated with the dynamics of the model,
the other containing grid point values used in the time-stepping and the

10

physics of the model. Since one set of symmetric and antisymmetric Fourier
coefficients yields two latitude rows of grid point values (a northern
hemisphere ?ow, and a southern hemisphere row), a record structure based on
latitude rows results in 96 grid point records and 48 Fourier coefficient

records.

Scan 2 of the forecast time stepping procedure writes the 48 Fourier

coefficient records.

In scan 1, each of these records is read in turn. First, a northern
hemisphere row of grid points is processed. The corresponding record is read
from the grid point work file; computations in grid point space are
completed, then new values are written back to the grid point work file.
Next, the corresponding southern hemisphere row is processed. Thus scan 1
requires 48 records of Fourier coefficients to be read, 96 grid point records
to be read, and 96 grid point records to be written. This is carried out in
a loop over the grid point records, Fourier coefficients being read on the

first and each alternate pass through the loop.

For ease of restartability, and to allow the fastest available disc
input/output scheme {(which involves sequential rather than random
input/output), two copies are maintained of each work file. Data is read
from one file, and written back to the second file; at the end of a complete
scan of a file, the file functions are swapped - the output file becomes the

input file, and vice-versa.

Buffers for the data records are created within buffer defining routines,
using the mechanisms described in 5.3 above. Two buffers are defined for
each input/output process to enable asynchronous input/output requests to

overlap the computational processes.

11

6. THE PRELIMINARY MULTI-TASKING T63 SPECTRAL MODEL
6.1 Introdﬁcﬁion |
The purposé of developing a preliminary multi-tasking version of the T63
spectral model was to examine the feasibility of multi-tasking, and to gain
experience in multi-tasking with a view to continued development towards an
efficient model.’ It was decided to approach the problem using a limited
subset.of the software features gvailable, viz starting tasks, waiting for
tasks to complete, and setting locks. This approach avoided constructs which
would be difficult to test in a single'processor environment, and reauced the
planning excercise to

a) defining groups oﬁlroutines that could excecute in parallel.

b) locating éfitical regions in such routines what would require locks

to be set.

6.2 Organisation of the Computation

The first, obvious target for multi-tasking was the section in scan 1 dealing
with the grid point computations. Provided sufficient grid point values
could be retained in memory, it would be possible to compute a northern

hemisphere 'row and a southern hemisphere row in parallel.

A second target concerned computations in Fourier space. In general these
could be split inﬁo symmetric and antisymmetric parts, depending on the
nature of the coefficiénts being updéted. An exception to this broad
division was‘found in the code relating to the updating of the symmetric and
antisymmetric coefficients by contributions from northérn and southern
hemisphere grid point computations in routine SYM1 (qalled by FCC1 from
scan 1). Splitting the computation into symmetric and antisymmetric parts
was not simple, as both northern and southern rows make contributions to

each. In consequence, the method chosen was to separate the real and

12

imaginary parts of the computations, since most variables were from the

complex domain.

Figure 4 illustrates the modified structure for scan 2. The computation of
the symmetric coefficients has been separated from that of the antisymmetric

coefficients. Both computations may then be performed in parallel.

Figure 5 illustrates‘the modified structure of scan 1. It is augmented by
Figure 6, which illustrates the divisiog into tasks of FCC1. First, fhe
initial computations to produce Fourier coefficients for northern and
southern hemisphere latitude rows have been split into parallel tasks. Next,
the grid point computations have also been split. FCC1 calls two routines,
each of which can be regarded as suitable for parallel execution, but a
synchronisation is required between them. Finally, the Legendre

transformations may be executed in parallel.

6.3 Addressing Variables

The memory management package described in 5.3 above was modified to
a) enable arrays for local storage to be allocated from task dependent
stacks.
b) include calls to set locks around critical regions where tables are
updated.
This enables local work space arrays to be allocated to routines comprising
tasks from different areas of memoxry for identical routines called within
different tasks. Such routines use standard FORTRAN references to the

arrays, once they are allocated.
All grid point arrays referenced in tasks where grid point computation is

taking place for two rows in parallel are allocated memory manager codes

which are modified by the task number. The root task is always task 0, while

13

LU

N2sc2

I/0

Y

LTIVO
LTID
LTITP
LTIQ
LTIU

LTIVO
LTID
LTITP
LTIQ
LTIU

NROW =
NROW+1

RETURN

Fig. 4 ECMWF F/C ~ SCAN 2

14

Inverse
Legendre
Transforms

NNSC1i

NROW =
NROW+2

SET SCAN
VARIABLES
NROW = 1
1/0
>
\ 4 l
FCC2 FCC2
| < [
¥ > |
FFTI FFTI
GPC GPC
FFTD FFTD
< |
4
FCC1
>
v |
LTDVO LTDVO
LTDD LTDD
LTDTP LTDTP
LTDQ LTDQ
LTDU LTDU
-4

POST SCAN,
STATS,
ETC.

RETURN

Fig. 5 ECMWF F/C - SCAN 1

15

Computations
in Fourier Space

FFT's, Grid Point
Computation FFT's

Computations
in Fourier Space

Direct Legendre
Transforms

‘ FCC1 ’

g
s12 , SI2
' ——{Cmputatim
f — . — in Fourier Space
sMm1 VSYM1
<&

RETURN

Fig. 6 ECMWF F/C - FCC 1

16

the spun—-off task is task 1. If IGPTYPE is the code number usually given to
grid point arrays, then a modified value‘of (IGPTYPE + task number) ensures

that each task addresses appropriate grid point values.

It was necessary to check carefully for critical regions in the code. This
was done by writing a cross-reference program to scan the source code. The
Cray FORTRAN compiler, CFT, will‘produce an annotated cross-reference at the
end of each routine indicating where variables are refefenced, and which
references involve storing re—-defined values. By noting the calls to LOCKON
and LOCKOFF within the source statement listings, it was possible to'process
these tables and construct new tables. If standard FORTRAN was used, only
variables in COMMON blocks would be global, and these would be the only
varigbles requiring attention. The POINTER extension of CFT enables
additional variables to be global in scope, thus it was necessary to make
provision for the inclusion of such additional variables, and to treat them
in the same way as COMMON block variables. Due to the separation of
variables brought about by the memory management strategy, only a few such
additional variables were likely to be critical. The output from the
cross~reference program indicates which potentially critical variables
{COMMON block variaﬁles plus named additional variable) are stored, which are
referenced, and in each case whether a lock is set. A table indicating the
scope of all locks is also produced. This software tool proved invaluable in

identifying sources of error during later development work.

6.4 Input/Output

To enable two rows of grid point values to be processed in parallel, two grid
point records are read or written at a time. This would normally involve a
doubling of the buffer space allocated to the grid point records. However,
since the Cray X-MP target environment includes the provision of a solid

state storage device, the input/output scheme was modified to support a

17

single buffered, synchronous, random access moderof operation. This results
in a requirement for the same space for grid point buffers as the upmodified
version, while savings in space required for Fourigr coefficient buffers
offsets the requirement for additional grid point arrays elsewhere in the

code.

6.5 Results

The modified.cpde was first tested exhaustively in single tasking mode on a
Cray-1. It was then transported to Cray Research Incorporated, Mendotta
Heights, Minneapolis and run on a Cray X-MP/22. Successful runs of a 10 day
weather forecast were obtained in both single tasking and multi-tasking

modes. Figure 7 indicates the timings obtained.

CLOCK TIME CPU TIME
SINGLE TASKING 2.00 HR 1.83 HR
MULTI-TASKING 1.25 HR 2.25 HR
SPEED UP . 1.61 0.82

Figure 7 Multi-Tasking Results

Results from the multi-tasking version of the model were obtained which
agreed with those obtained in single tasking mode, once all of the critical

regions had been identified and locked.

7. CONCLUSIONS
7.1 Feasibility
The speed-up factor of 1.61, coupled with the ability to compute acceptable

results indicate that multi-tasking is feasible for this application.

7.2 Efficiency

Only small areas of code were identified as critical and required locks to be

set. Despite their small size, they were found to be extremely important in

18

obtaining correct results. Thus the main multi-tasking overhead consisted of
calls to the task start and task wait roﬁtines.. Scan 1 contained 48 x 5 calls
to each of these routines per timestep, while scan 2 contained 48 calls. A 10
day forecast required 720 timesteps to be completed, giving a total of 207360
calls to each routine. Reduction of this overhead would increase efficiency

and provide additional benefits from multi-tasking.

7.3 Continued Development

The pfeliminary multi-tasking version was deliberately split into more tasks
than was necessary. This was done to aid development, and to enable sections
of the code to be switched back to single tasking mode if necessary during
initial multi-tasking tests on the Cray X-MP. With relatively little effort
the 5 task start - task wait sequences in scan 1 could be reduced to 2. This
would lead to a saving of half of the multi-tasking overhead, improving the
speed-up factor to 1.8. One of the spectral routines takes sufficient time
to benefit from splitting into two tasks. There are indications from ECMWF's
factory trial tests that splitting the input/output over two tasks could be
beneficial. Tests will be done to explore the possibility of synchronisation
by posting events, which could prove less expensive than completing one task
then setting off another. Finally, Cray Research have a good record for
increasing the efficiency of their software over the course of time, and their
multi-tasking software is relatively new. Taking all of these factors into
account, it is anticipated that a final speed-~up approaching 1.9 can be

achieved.

19

References

Gibson, J.K.- 1982: The DOCTOR system - a Documentary Oriented Programming
System. ECMWF Tech.Memo. No.52, pp.17.

Gibson, J.X. 1983: A Simple Memory Manager. ECMWF Tech.Memo.No.73, pp.9.

Rigsbee, P. 1983: Multi tasking User's Guide. Cray Research Incorporated.
(Pre-release version supplied by personal communication).

20

