WNANVHOWIWN 1VDINHD4L

3

/3

A simple memory manager

J.K. Gibson

Operations Department

July 1983

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1. INTRODUCTION

Compu;gr_prpgrammes sgch as,numericgl weather prediction models often require.
large areas of main memory. Indeed, many such programmes cannot execute
without the aid of an input/output system, with large areas of memory being
continually refreshed from data held in on-line gcratch space ox}backing
store. To use the available memory efficiently, it is often necessary to re-:
use specific areas of memory for différent purposes, over-writing one set of
variables by apother. Such practises are potentially dangerous, and must be
organised with cére.,»Memory,maPS‘must be produced, consulted, and upda£ed as

modifications are introduced.

Memory references to large, shared, areas of data become even more complex if
a language .of the FORTRAN type is used.. Often it is necessary to resort to
addressing displacements within:a single;. globally accessible array. .Although -
displacement variables can be given meaningful names, the dimensional
structure and direct relevance of well chosen array names and declarations are

lost.

The ideas contained in the following paper were conceived in an attempt to
provide a software solution to the memory management problem. They have been
successfully implemented into the ECMWF operational weather prediction model
using Cray Foxtran, and could be adapted to any computer language which allows

the use of based variables.

2., BASIC AIMS
The basic aims of a simple memory manager of the type under discussion are:

a) to enable the user to ALLOCATE arrays for use as WORK SPACE
or LONG TERM STORAGE.

b) to enable LONG TERM STORAGE arrays to be LOCATED, and used.

¢) to enable WORK SPACE or LONG TERM STORAGE arrays to be
returned when no.longer required. : s .

LONG TERM STORAGE is defined ag array space required to be accessed by more
than one routine. WORK SPACE is defined as array .space required only within a

single routine. -

3. MECHANISM FOR ADDRESSING STORAGE

The memory manager is deéigned to supply pointers to based variables. In
consequence, it is only suitable for use in association with languages which
support such features (e.g. PL1, Cray Fortran, etc.) The concept of based
variables is gradually becoming accepted as an important feature of high level
computer languages, and will probably be included in fhe next ANSI Fortran
standard. Simply stated,. it enables the user to define a POINTER variable in
association with an array or structure. The assignment of a valid memory
address to the POINTER variable then defines the location of the corresponding
array or structure in memory. Thus, in Cray Fortran,

DIMENSION - A(1000)

POINTER (IB, B(1000))

IB=LOC(A)

has the effect of making array B equivalent to array A.

4. INTERFACE TO THE USER

Various implementations of the ideas contained in this paper will provide
varying interfaces to the user. A sufficient interface, for the purpose of
illustrating the following sections, would consist of five routines:

INILOC (KLENGTH)

ALLOC (KPOINT, KXSPACE, KNAME, KCODE)

ALLOCB (XPOINT, KSPACE, KNAME, KCODE).

LOCATE (KPOINT, KSPACE, KNAME, KCODE)

UNLOC (KNAME, KCODE)
where

KLENGTH is the numbe; éf words’of memory. to bé managed.

KPOINT is used to return a POINTER value to the user.

KSPACE is the array size in words.

KNAME _ is the array name (LONG TERM STORAGE) oxr the name
of the user routine (WORK SPACE)
KCODE is.a code number in the range 1 to 98

(LONG TERM STORAGE) or 99 (WORK SPACE).

INTLOC is used to initialise the memory manager, and is. called once only. .
ALIOC is used to allocate array space. Arrays are identified by the memoxy
manager by means of a name, KNAME, and a code, KCODE. It is thus.possible to
have several arrays with the same name, provided a different code is

associated with each. This device has been found particﬁlarly useful where-,
different spatial representations of a variable. are required to be stored e
similtaneously. Thus, for instance, a code of 3 could be assigned to all
variables. in giid point space. A single name could be used for a variable
stored in both grid point and spectral space, the memory manager being qapable:
of distinguishing the required array space aceording to the supplied value of
the code. If work space -is required, ALLOC is called using the name of the

calling routine as KNAME, and a.code of 99,..

ALLOCB is used to allocate array space within the managed memory area in such . -
a way that repeated calls to ALLOCB will result in a set of arrays occupying a

contiguous area of memory.

LOCATE is used to locate an array previously allocated by ALLOC or ALLOCB.
Only LONG TERM arrays may be located. WORK SPACE is only allocated, as it is

only addressable from the allocating routine.

UNLOC releases previously allocated space. Released space may be're—allocatéd
by subsequent calls to ALLOC or ALLOCB. LONG TERM arrays are released singly,
whereas a single call to UNLOC releases all areas of WORK SPACE corresponding

to KNAME.

5. MANAGEMENT METHOD

5.1 Management tables

Management information is maintained in stack-like tabular form. For each
allocated area, table entries record:

a) the name (KNAME)

b) the address (KPOINT)

c) the code (KCODE) (long term only)

d) the length (KSPACE)
Two sets of tables are maintained - one for LONG TERM space, the other for
WORK SPACE. A stack-pointer is associated with each table, indicating the

number of valid entries in each table at any time.

5.2 Allocation strategy ~ Work Space-

Work space is always allocated from the next 'area‘of available ‘space to that
of the last table entry. No attempt is made to re-use released areas
corresponding to entries within the table. - As routines requiring work space
are rarely deeply nested, this simple strategy is both sufficient and

efficient.

5.3 Allocation strategy - Long Term Space

Efficient use of memory dictates that long term storage must re-use released
areas without resulting in memory ffagmentation. A simple but effective
strateqy is:

a) re-use areas only if they are exactly the correct size.

b) do not combine adjacent released areas into larger areas.

¢) 1if no suitable area can be re-used (i.e. no exact fit) then

add a new table entry and allocate from the residual area of
available space. :

The key to the, suecess of this strategy lies within the repetitive nature of
most numerical computations, and.the.resolution dependence of many array
lengths. In consequence, the sizes of array spaces requested are far -from

random, and often similar.

5.4 Release_strategy -,Wprk Space and Long Term Space . ..

When space is released, the "name" entries in the tables are replaced.by
blanks. If the space corresponding to the last table entry is released, the
stack—pointer.is decremented and the appropriate length added to the available

space.

6. ALGORITHMS

6.1 General

The following algorithms were devised specifically for a gray;1‘qomputer with
vector capabilities and a 64 bit word length. Characters are_stqred 8 per
word, using 8 bits per character (ASCII). Names are assumed to be 1eftﬁ?
justifged,‘up to 7 characters invlength. HDespite thesermachine dependent
features, some of the following algorithms. are -suited to other.

configurations.

6.2 Matching a single table entry

A specialised routine, MATCH, was written in Cray assembler language (CAL) to
examine table entries 64 at a time using the vector facilities of the Cray-1
thus:

a) store value to be matched in a scaler register. |,

b) 1load 64 values from table into a vector register.

¢) store vector difference in. vector register.

d) - set mask to omes for zero vector elements.

e} update counter and table address.

£). return to b) is mask is Zero. : L . I

g) count leading éeros in non-zero mask and update counter.

n) return value of counter (zero if no match found).

5.

This provideé a means of’locatihg'the entry in a table matching 'a* given value.

The subscript of the first matching entry is returned.

6.3 Matching two table entries simultaneocusly

The routine MATCH described above was extended to match two table entries to
two given values simultaneously. The resulting routine, MATCH2, uses the°

following algotithm.

af sEore value to be matched in Table 1 in scaler redgister 1 °'(S1)
b} store value to be matched in Table‘2 in scaler register 2 (S2)
¢c) load 64 values from Table 1 into vector register 1 (V1)

d) obtain vector differnce S1-V1 in vector register 2 (Vv2)

e) set mask to ones for V2 zero elements (VMO

£) wupdate.counter, Table 1 address, and Table 2 address

g) store VM in.scaler register 3 (53)

h) reﬁurn ﬁoAc) if s3 ié zZero

i) loéd‘64 corresponding valﬁes from Table 2 into vector register 3 (V3)
j) obtain vector diféefénde S2-V3 in vector reéister‘4 (va)

k) set mask to ones for V4 zero elements (VM)

1) store VM in scaler register 4 (S4)

m) return to ¢) if S4 is zero

‘ﬁ) obtain logical‘product of 53 and S4 in scaler fegister 5 (s5)
o) return to c) if S5 is zéio

p) count leading zeros in S5 and update counter

g) return value of counter

This requires the second table to be consulted pnly for segments where
matching values have been found in Tablé 1. Where no matching values exist in
Table 1, a zero value is returned; in such cases Table 2 is not examined, and
the only additional cost is that incurred in'updating Table -2's address in f)

above.

6.4 Hashing names

Even when vector matching routines are available, .searching tables can be
expensive. In consequence it was considered desirable to provide a hashing
technique based on 7 character names. The.algorithm used is:.

a) obtaln exclu81ve OR (XOR) of KNAME w1th KNAME left shlfted 12

b) XOR a) with KNAME left shlfted 24
¢) XOR b) with KNAME left shifted 36
d) XOR ¢) with KNAME left shifted 48

e) return 4) right shifted 56 with ‘zero fill. -

The result is an 8 bit value formed by exclusively OR~ing
a) characters 1, 4, and 7, and

b} the lowest 4 bits of character 2 plus the hlghest 4 bits: of
character 3, and :

c) the lowest 4 bits of character 5 plus the hlghest 4 bits of
character 6.
Using this technique, 90% of the names used in ECMWF's operational numerical

forecast are hashed to unique values in the range 0 to 255,

6.5 Allocation of long term space’

A hash table of length 256 is initiated:with all values equal ‘to 1. The :

algorithm for allocation of long term space is then:

a) hash KNAME, and extract value stored at this entry of hash table
(IPOS)

b) check entries in management tables at position IPOS’against KNAME
and KCODE. If correct entry located, return KPOINT from tables to
user. ’

¢) otherwise use 6.3 above to find table entries matching both KNAME and
KCODE. If matched, return KPOINT from tables to;user, and update hash
table. " ‘

d) if no ex1st1ng entry can be found, use 6 3 above to find table entrles"
with blank name and matching length (KSPACE) . If matched, return .-
KPOINT from tables to user, and update hash table.

e) if no returned space of correct length can be found allocate space
from the residual area, adding a new table entry to the top of the
table stack, and up-dating the hash table.

6.6 Location of long term space

Previously allocated space is located as follows:
a) hash KNAME and extract hash table entry (IPOS)

b) check entry IPOS in management tables against KNAME and KCODE.
If correct, return KPOINT to user.

c) otherwise use 6.3 above to match both KNAME and KODE. Return the
matched entry for KPOINT to the user.

6.7 Release of long term space

Previously allocated space is released as follows:
a) hash KNAME and extract hash table entry, IPOS

b) check entry IPOS management tables. If not correct, match KNAME
and KCODE using 6.3 above.

c) change KNAME in table entry to blank.
d) if IPOS is at the top of the table stack, collapse the stack,

returning space to the residual area, until a non-blank entry aépears
at the top of the stack of names.

6.8 Memory distribution

[
[L :
jlong term)
]
1

I space
]

' work .

:space

t

& residual space >
t

Fig.1 Memory distribution

Fig.1 illustrates one ﬁethod of organising the memory space to be managed.
Long term space is allocated from low order memory, work space from high order
memory, with a moveable partition of résidual space separating the‘two. This
provides the flexibility of allowing all space not allocated for long term

storage to be used as work space, and vice versa.

7. CONCLUDING REMARKS

Memory management software using the above ideas has been found to be both
flexible and efficient. A version used by ECMWF's numerical weather
prediction model uses less than 4% of the CPU time of the code; of this, 1.2%
are traceback overheads to allow comprehensive error facilities to provide

useful information when errors are detected.

Memory management software does hot relieve the user of the task of planning
the use of memory space in a sensible manner. It does provide a means of
using space‘efficiently; and allows the user to use sensible array names and
stryctures. The capability of allocating several areas of storage in-a
contiguous block facilitates the buffering of data for input/output processes.
Flexibility is enhanced because extra variables can bé introduced into the

code without disturbing a rigidly structured memory configuration.

Good diagnostic and trace facilities are important. It has been found that
the provision of switchable trace facilities has been especially useful in
programme development. The ability to call a trace routine to print a map of
the managed space in critical areés assists the user to plan, and often points

to ways in which problems may be overcome.

A final, but important feature wbrthy of comment is the. usefulness of based
variables as a means of reducing programming errors. In an environment where
all POINTER variables are set as a result of calls to memory management
routines the liklihood of using non assigned data, or over-writing previously
assigned data incorrectly, is reduced. If a POINTER variable has not been set
before reference is made to a based variable, a fatal error usually results.
Over-writing in a managed system takes the form of allocating space which
must first have been released. The resulting increased confidence in the

integrity of the code is a considerable benefit.

