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1. INTRODUCTION

Many of the techniques and problems associated with limited area numerical weather
prediction models are common to those of other atmospheric modelling efforts. In
this study attention is confined to those aspects that are distinctive to limited

area prediction models.

These latter models occupy a niche in the forecaster's fepertoire between the global/
hemispheric models and the extrapolation procedures based upon an accurate local
knowledge of the current state of the atmosphere. The global domain models are de-
signed to give relatively general forecasts for periods from about 24 hrs ohwards
and - the extrapolation techniques attempt to give detailed site-specific forecasts

for 1 - 6 hrs ahead. Thus limited area models should at least seek to provide in-
formation for the intermediate forecasting time range. However their judicious use

outside of this time range is also possible.

It follows, from the forecast time range, that synoptic and éubsynoptic phenomena
with space and time scales of 20 - 2000 km and 2 hrs - 2 days respectively (the
meso-0: and meso-P scales as defined by Orlanski, 1975) are features that should be
represented in some detail in these models. Now meso-0 and -B phenomena (e.g. fronts,
jet streaks, orographic effects, surface convergence zones) possess some salient
physical features: - an intimate link with the larger scale circulétion, strong age-
ostrophic but quasi-balanced flow components, and (embedded within them) finer sca-

le weather producing features.

The adequate representation of these distinctively mesoscale properties mark out

the aesired requirements of limited area models viz. fine mesh spatial resolution
with corresponding (if possible) initial data sets, and large scale forcing via time
dependent lateral boundary cbnditions. It is numerical features associated with the

modelling of these aspects that are considered in the succeeding sections.

In sections 2 and 3 a critical examination is undertaken of the available techni-
ques for the treatment of the model lateral and upper boundaries. In principle the

boundary treatments should ensure the effective representatioh of the forcing by the
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larger scale circulation on the flow in the model domain, and that the model genera-

ted local flow is not adversely affected by the presence of the boundaries.

Issues related to the initialization and initial data sets for sub-synoptic scale
flow are discussed in section 4. Initialization techniques for use with global mo-
dels are now well developed and successful. For limited area models the initializa-
tion requirements are of cent;al importance. However, the nature and scale of the
flow, the presence of the lateral boundaries and the diverse form of the available

data place different constraints upon the problem.

The material is developed from a theoretical standpoint to emphasize the underlying
concepts and problems,rather than giving a presentation of some of the wide range
of modelling results. In the final section brief comments are made on the possible

future role of limited area models.

2. TREATMENT OF THE LATERAL BOUNDARIES

Lateral boundary formulations fall into two categories, the co-called "one-way" and
"two-way" interaction methods (Phillips and Shukla,.- 1973). In the "one-way method"
a history tape of the flow variables in a boundary region of the fine mesh domain

is obtained from a prior coarser mesh, larger domain model integration. Then in the
integration of the limited area model it feeds parasitically on the coarser mesh

data (i.e. feedb;ck into the coarser mesh model is excluded). For the "two-way me-
thod"thé finer mesh model is embedded within the larger model area with a marginal
overlap of the two domains. The models are integrated as one unit with a full cou-

‘pling in theinterface region.

Thus, for prediction purposes the limited area model is envisaged to be dynamical-
ly driven by, or linked to, a larger domain via the lateral boundary conditions. Now
the data derived from an integration with a coarser grid over a larger domain will
contain features that differ from the fields derived from the finer-mesh limited
area model. These features will be assaciated with both numerical effects (e.qg.
phase speed differences, and flow field structure near the limit of the resolution

" of the coarser grid) and physical effects (e.g. the hopefully better defined initial
data for. the limited domain, the development of sub-synoptic features during the

model integration).
Acknowledging these differences the lateral boundary treatment should serve a two-

fold purpose. It should be capable of transmitting smoothly into and out of the limi-

ted domain the large scale flow resolved by, and implicit in, the external specified
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boundary data. It should also adequately represent the outgoing inertia-gravity
waves and fine-mesh-scale meteorological flow that might be inherent in the initial

data of the limited domain or generated in situ during the time integration.

2.1. One Way Interaction Method

a) Background Considerations

For the one-way method the above defined role of the laterél boundaries expressed
tersely requires the limited-area initial-boundary value problem to be well-posed.
In essence, the flow field in the limited domain should be unique and depend con-
tinuously upon the initial and boundary data. This places constraints upon the
"smoothness" of the interior flow field (e.g. Serrin, 1957). Also only boundary data
corresponding to the transfer of information into the domain should be specified at

the boundary (e.g. Charney, 1962).

The hydraulic jump phenomenon of the non-linear shallow—watef—sYstem (Stoker, 1957;
Williams and Hori, 1970) demonstrate that this meteorological prototype system is not
necessarily well-posed for all initial conditions even in the absence of lateral
boundaries. For limited area models it has been shown that for the barotropic vorti-
city equation an infinite vorticity grédient can be advected in from the boundary

if the vorticity at a boundary point of tangetial flow is not compatible with both
the neighbouring inflow and outflow values (Bennet and Kloeden, 1976). Also, from
consideration of a linear system consisting of hydrostatic perturbations of an uni-
form flow field in a bounded atmosphere, it has been argued that a purely local
formulation of boundary conditions, i.e. fields not decomposed into their separate
eigen~structures, will not constitute a well posed problem (Oliger and Sundstrom,
1978). For a non-rotating system, this last result follows from noting‘that the
phase and group velocities of the two buoyancy waves associated with each vertical

eigenfunction solution: (i.e. the natural mode$) is given by

) 9
fU ¢ (51{)2} (1)

where W is the mean flow speed, and H, the separation constant (o; equivalent
depth), assumes different values for each eigensolution (see e.g. Davies, 1983).

It follows that the direction of energy transport (and hence the lateral boundary
condition ) depends on whether ll[li(gl{r% Thus the boundary specificaiton is eigen-
function dependent. It is worth-while considering the generality of this last re-
sult. The addition of rotation introduces the meteorological mode, which advects
with the flow, and the phase and group velocities (‘LP!UG? of the inertia-gravity

waves are given by "
) 3
up = UE (9) 2 (1 + e8) 7
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where £ = j5/<bJﬂ) and 1E is the horizontal wave number. Thus the previous conclu-
sions ar substantially unmodified for E/ﬁ <<].

On the other hand, the inclusion of vertical shear, without fotation, élleViates the
above problem. The natural modes of the system are again split ‘into two types. One
half posess horizontal phase kand group) velocities greater than the maximum basic
flow velocity, and for the other half the corresponding velocities will be less than
the minimum velocity'of the basic flow (see e.g. Wiin-Nielsen, 1965). This result,
coupled with the expectation of the low basic wind speeds near the ground, indica-
tes that a good a priori estimate can be made of the nature and number of variables

that are needed to be specified at the lateral bounderies of this simple system.
b) Examination of particular schemes

There are a wide range of lateral boundary treatments {- of the same order as the
number of limited area models!). To produce a mere catalogue of these schemes would
not be particularly helpful. Instead an avowed critical examinatién is undertaken
here of the general properties of these schemes. The treatment follows closely‘

that of Davies (1983). Attention is given to the manner in which the schemes attempt
to. circumvent the overspecification problem, and also to the degree to which the
solutions in the interior_region are adversely effected by the boundary formulation.
In particular the possibility is explored that inherent adverse computational effects
can occur even if the continuous system iswell-posed and its solution exhibits the

required properties.

The schemes usually adopted fall in two categories - viz. boundary zone schemes

that modify the flow field in a marginal zone near the boundary,énd pseudo-radiation
schemes that act only at the boundary itself. The formulation and behaviour of a
selection of these schemes in the context of the linear advection equation

_5_711. Ca“'

DE + > ° o (2)

will be considered. The flow system is assumed to occupy the limited domain

O¢x g L . Fore> o, the characteristic form of (2) indicates that it should
be solved with u specified at x = 0, and the u field determined internally at x = L.
This equation can be interpreted as an indicator of the behaviour of the meteoro-
logical flow component advected along by the mean flow C’"t[ or as representing the
propagation of gravity waves with a propagation velocity € = =z (3}{) l(e g. Davies,

1976) . We now consider the various schemes in turn.
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Diffusive Damping Scheme

A marginal zone of large diffusion fdr,the prognostic variable u is introduced in
the vicinity of the lateral boundarles (e.g. Benwell et al 1971; Burrldge, 1975;

Me51nger, 1977) . Thus Eqg. (2) is’ replaced by

Su . e Bu £ »Ju RO SR 3
o ¥ cfé_;;_. £ Dae) )

where - ¥=Y{x) assumes appreciable-values only'Within marginal zones of width
Q(«L} “located at X= 0+,L__. An additional boundary condition on u at X = L can
now be legitimately prescribed for.this new system, because the viscous term has

increased the spatial order of the differential equation.

Sharp shear -zones and thermal gradients might be induced by the diffusion zone. Such
" azone could be the seat of physical or computational instability. Here we consi-

der some more ‘basic effects.

Consider the effect of forcing a periodic disturbance of frequency @ at one end
of a diffusive zone of constanty . The solutions in such.a zone take the form of
two waves, propagating in opposite:directions along the x-axis, and decreasing

in amplitude in their direction of travel. To be effective, the scheme should allow

i) the transmission of an incoming wave at x = 0 without appreciable change of phase

or amplitude, and

ii) damp the reflected wave at x = L so that it does not have appreciablé amplituF

de on re-entering the inner domain at x = L -3.

It can be shown that the criteria are met if

a (f/;t’) 2 Re’é | , @

and RE >> 1

where ;l= 2:7(tyko) is the forced wavelength of wave sdlutions of (2) and
Re:‘é’_(CQ/\)) is a boundary zone.Rey‘nolds number.:

Thus provided R is sufficiently large the above criterial can be met. (This is

not true if in the shallow-water eéuivalént of system (2) only one prognostic va-

riable, say the velocity, is subject to boundary diffusion. Such schemes are in-

appropriate (Israeli and Orszag, 1981; Davies, 1983)). In practise the finite-

difference representation of (3) will 1ntroduce constralnts upon the width of the

boundary zone Q, and hence on’ R

To demonstrate the possible humerical'effect'we consider ‘the same problem (i.e. for-

cing of a boundary zone) but now for the leapfrog cum Dufort-Frankel finite-diffe-
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rence representation of (3) i.e.

n#? n~} . » Fy N n P14 -
uj = uj - c([y,_) - Uj-,) -M (Uj.p, > uj-) - uj - “3 ) (5)
where of = C[At)/{b&c) and AT a »[dr)/[d:u-)l | (6)

Proceeding as before we find that to satisfy the desirable condition at inflow
requires %= fmu) ¢ 1 et to avoid spurious spatial growth

and AT (f/st) £ 5["0'9 ‘)‘ for a boundary zone £+ s(dx)
to produce less than 5 % damping of the incoming wave. This finite-difference ana-
logue of inequality (4) is far more stringent. With s = 2, 3, 4, 5 the rhs of this
last inequality takes the values 0.44, 0.55, 0.64, 0.7.

Thus in relation to criterion (i) we conclude from these inequalities that the
diffusive boundary scheme is effective only if the wavelength of the basic system(ji)
is considerbly longer than 6@, where § is the width of the diffusion zone. If

this inequality is not satisfied, then the incoming flow field will be degraded by
the zone and can suffer a significant amplitude reduction and minor phase modifi-
cation. This short-coming will curtail the time-span for which the regional NWP
model output is useful. In particular the transmission of comparatively smaller
scale Syﬁoptic disturbances into the limited-area forecast domain could be adverse-

ly affected.

To consider the effects of outflow we introduce a system illustrated in Fig. 1

which will also be used later.

l//
i

. ' -
Incident wave #£0

of = !
unit amplitude '|

Reflected!
< wave i

amplitude + - / e

x=j(ax)

Fig. 1. Schematic depiction of the numerical flow system under consi-
deration. A boundary zone is located in domain j =1, s. In
domain j € 0 an incident wave of unit amplitude impinges upon
poundary zone from = °2 , and a reflected wave also exists.
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An incident wave of given frequency, ®, impinges from -9 , upon a boundary zone
j =[y2, s].The amplitude of the reflected wave in the viscous free region j £ 0 will
be a measure of the effectiveness of the zone. The results for various boundary

widths is shown in Fig. 2.
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Fig. 2. A plot of the reflection (r) as a function of V= ZV/CAX.» in
the limit of w¥= wdsg/c 4« | for diffusion zones of diffe-
rent widths with boundaries located at s = 2, 3, 4.

Appreciable reflection occurs for both small and large ﬂ* values. Small ’9* values

induce insufficient damping of the wave and reflection occurs predominantly off the
- *

boundary d:SA:x. At large V' values the reflective properties of the numerical

scheme gives rise to reflection at the viscous-inviscid interface.

These results indicate the inappropriateness of the difference scheme (5) as a diffu-
sive layer. Other difference representations must be judged on their own merit, but

this example serves to illustrate the potential pitfalls.

Tendency Modification Scheme

In this scheme the tendencies of the model prediction variables are modified in the
marginal zone. The tendencies are assigned a weighted average of'the externally spe-
cifiéd fields and the internally determined fields such that the weighting associa-
ted with the external field varies from one at the boundary to zero at the inner ex-
tremity of the marginal zone (Kessel and Winninghoff, 1972; Perkey and Kreitzberg,
1976; Fritsch and Chappell, 1980; Maddox et al. 1981). In addition to the tendency

modification the variables in the marginal zone are also subjected to a scale-selec-

219



tive spatial filtering procedure.

i

With this scheme £he system represented by (2) is replaced by the equation

29 CQ} - = Dtu—;)
at T 5 ¢ ¥ 5% (7)

A A
Here the W= u-(x-; l:) field is prescribed externally and, if consistent, is itself
A
a solution of (2). It follows that the equation for the "error", W= U -U  takes

the form

2 + r"[af) g}: =~ 0

o (8)

where c* = C/“‘"X) , with X varying from zero in the interior to infinity at
the boundary. The error field is advected along at the modified speed c* and this
reduces to zero at the boundary. Thus the problem of overspecification is again
nominally overcome, but the"error energy", (tﬂ)z , accumulates in the boundary zone.
An incident wave of a given frequency encountering a decrease in c* across the
boundary zone will undergo a concomitant decrease in its local wavelength, Hence
the use of the spatial filter. However, the filter has to be applied to the u field
(not the u' field), and thus it makes this scheme susceptible to the same short-

coming as that outlined earlier for the previous boundary diffusion-zone scheme.

There is also a numerical shortcoming for this scheme. For a leapfrog representa-
tion of (2) the change in the advected speed, c*, changes the "refractive index"
properties of the computational system. This effect can trigger a reflected wave at
the interface of different c* values. For a periodic wave that meets such a phase
speed interface between domains Lj and Ly, the resulting reflection coefficient can
be inferred from Fig. 3. First, from diagram {(a) estimate the change in wave-
length between Ly and Ly, given the period of the incident wave and the change in
o€ due to the c* change. Then with this information the reflection coefficient can
be inferred from diagram (b). Related effects can occur at infloﬁ. Thus the tenden-
cy modification scheme suffers partially from the defects associated with the use
of a spatial diffusion operator in the boundary zone, and from numerical transmis-

sion defects associated with c* changed in the boundaiy zone.

Flow Relaxation Scheme

In this scheme the prognostid variables are subjected to a forcing in the marginal
zone that constrains them to relax towards the externally specified field on a time
scale that again varies with distance from the lateral boundary (Davies, 1976, ;
Kallberg and Gibson, 1977 a,b; Lepas et al. 1977; Gauntlett et al. 1978; Ninomiya
and Tatsumi, 1980; Leslie et al. 1981).
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Fig. 3
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The wavelength (in multiples of Ax) of the wave in Lj or L, is dis-
plaved in (a) as a function of tle Courant number (0) and the period

. of the wave. In (b) the amplitude of the reflected wave (r) is

shown as a function of the incident wavelength in domain Lj and the
fractional change in wavelength (nh_/-,“ ) on transmission to Ly. The
cross-hatched area is the region of parameter space where there is
total reflection of the incident wave.
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For the linear advection case (2) the modified equation for this scheme is

However, Tatsumi (1980), following a suggestion of Hovermale, extended the scheme
to include a diffusion relaxation term, i.e.

ou , cu

~ P dlu- )
3 = - X{u-u) =+ ﬁ[mﬁru u] . (9b)

Here we consider (9a). Now it is the relaxation coefficient, K = K(x) that is non-
N
zero only in the boundary zones, and W is again the externally specified field.

In this case the error equation takes the form

gt':"-r"%‘::-)fu'
Thus as the error field, u‘,-is advected into the boundafy zone its amplitude is
reduced due to the relaxation damping at a net rate determined by the values of C
and K. Note also that at inflow only the departures of the field away from the

specified values are subject to the relaxation effect. Hence again in this scheme

the effect of overspecification is mitigated but now without inducing a deleteri-

ous effect in the inflow =zone.

However, this scheme is also not immune to numerical shortcomings. In this case also
the boundary zone can induce significant spurious reflection. This is illustrated

in Fig. 4 which shows the results for reflection from the system introduced in Fig.l,
but now with K (not ¥ ) constant in the boundary zone. Again small K induces insuf-

ficient damping and large K induces reflection at the interior-boundary zone inter-

face.
\

REFLECTION COEFFICIENT, [T |

RELAXATION PARAMETER K*

Fig. 4 Reflection (r) shown (for w*¢¢. 1) as a function of K*= K{4x)/c for
relaxation zones of constant K* values but of different widths. Plots
shown for boundaries located at s = 2,3,4,5 (i.e. K*non-zero, resp.
at 1,2,3,4 points in the interior).
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Clearly a strategy is required to allow K to vary across the zone in such a way as
to avoid as far as possible both these unacceptable effects. One such strategy
(Davies, 1983) is based 6n the fact that a spatial variation of K allows up to

(s = 1) points of zero reflection along the parameter axis of K¥= K(AX)/C Thus a
scheme can be devised to minimize the reflection within a definable band of inter-
est. The results shown in Fig. 5 are for a K* band with K:‘N/K:‘-Ewi.(l-\ lower bound
for K* can be established from the group velocity of the fastest wave in the model.
An upéer'bound exist in practice since very slow moving waves will not penetrate
sufficiently into the boundary zone during the period of integration to produce

appreciable reflection.)
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Fig. 5 A plot of the reflection (r) forw*«£< 1 as a function of K* for
relaxation zones with boundaries at s = 4 and 5, and with 'tuned’

specified spatial variation for K% _, Iy
-t, -

For this rather stringent system the maximum reflection in the specified range
0.1,.'7 < K*< lf[ is less than 8%, and the reflection coefficient is less than
0.05 over most of that band. The adoption of a semi-implicit scheme would have

the beneficial effect of decreasing the width of the K*¥ band of interests and hence

increase the effectiveness of the zone,
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Pseudo-Radiation Schemes

These schemes differ from those already Considered in that there is no direct modi-
fication of the prognostic-variablesyiﬁ the mafginal zones, but only a direct spe-
cification or calculation of the variables at the lateral boundafy itself. For the
system (2) the characteristic fofm shows that the dynamical gquantity should be
specified only at boundaries of inflow i.e. where ¢ is directed into the domain.

In the context of the barotropic vorticity equation this demands that the vorticity
to be specified at inflow and determined intérnally at outflow. Shapiro and Q'Brien
(1970) adopted this strategy using an upstream adveétion scheme at the boundary.
This method was adopted for a P.E. model by Williamson and Browning (1974) with the
modification that all prognostic variables are specified at inflow and advected with
the flow field at outflow. This procedure might be appropriate if the flow field of
the P.E. model is well-balanced without appreciable inertia-gravity wave effects.

A similar procedure allowing for some relaxation toward the external field at the

boundary itself, has been used recently by Kurihara and Bender (1983).

An alternative approach was originally broposed by Orlanski (1976), and there have
been many subsequent yariants,e.g. Miyakoda aﬁd Rosati (1977), Klemp and Lilly (1978)
Klemp and Wilhelmson (1978), Clérk(l979), Camerlengo and O'Brien (1980), Miller and
Thorpe (1981), Ross and Orlanski (1980). This approach is based on the (generally
unverifiable) assumption that all prognostic variables of the set of primitive equa-
tions satisfy individually a relationship similar to (2) at the boundary. If at a
given instant a boundary pseudo—advection velocitx,say ci¥=1_ is directed into the
domain then the associated prognostic boundary variable is specified externally,
whereas the same variable is evaluated internally using a equation of the form of
(2) if the flow velocity c*, _ is directed out of the limited domain. The required
pseudo-advection velocity is either specified externally by invoking some 2 priori
knowledge of the flow system, or evaluated by sampling the system in the vicinity

of the boundary. In the latter case some finite-difference approximation of the

relationship
2u Iu '
o = - S
Cocs 1 (36 5 / , SRS

‘ e s L~ (A%

A detailed study of the reflection and transmission properties of this approach for
a buoyancy wave system has been given by Klemp and Lilly (1978). They show that
overspecification at the boundary,specification of the correct number of variables
but with inaccurate values,and errors in the estimate of c%* _; ,all contribute

to partial reflection of outward propagating waves. The first two sources of error
arise if a vertical decomposition of the fields is not undertaken. The schemes of
Pearson (1974), Klemp and Lilly (1978), Klemp and Wilhelmson (1978) seek to use

a priori knowledge of the physical system to ameliorate these effects. Better esti-
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mates of c*x=L, based on (11),can be derived with higher order finite-difference

schemes. Miller and Thorpe (1981) present a hierarchy of such schemes.

A rigorous and useful method of extending the pseudo-radiation boundary scheme to
more complicated system than (2) is not readily apparent. The rationale for the
approach adopted by Orlanski derives from a dictum attributable to Sommerfeld. He
noted that if wave-energy is radiating away from localized sources then in the far-
field the specification of the phase relationship between the flow variables should
ensure an outward directed flux of energy (see for instance Sommerfield, 1949,

pp. 132). The rigorous application of this requirement to only slightly mofe com-
plex lateral boundary flow problems (Bennett, 1976, Beland and Warn, 1975) indica-
tes that this pristine approach demands an inordinate computer storage of boundary
data. Engquist and Majda (1977) proposed an attractive method for obtaining appro-
ximate 'local' boundary conditions that circumvents this storage requirement. For

a two-dimensional wave equation their method generates a sequence of higher order

boundary formulation.

The pseudo-radiation scheme (11) is the lowest order accurate scheme in this sequen-
ce. In this case the reflection is proportional to the angle of departure of the wa-

ve propagation away from normal incidence.

This follows from noting that the radiation-condition applies strictly to energy
outflow at normal incidence. Thus in line with Sommerfield's reasoning the vali-~
dity and hence the usefulness of a 'radiation-type' boundary scheme must be in
doubt if there are energy sources (e.g. diabatic heating, frictional effects) or
phase perturbing effects (e.g. orograth) in the vicinity of the boundary. Lilly
{1981) has shown that the pseudo-radiation scheme can nevertheless handle non-pro-
pagating, temporally growing perturbations of a simple flow system. Here we indi-
cate one kind of error than can ensue when using the pseudo-radiation scheme in an

inappropriate flow situation.

Consider the following slight generalization of (2) to include a constant forcing

term (-F), i.e.

ou , cPu . _p

pr dae (12)

On rewriting (12) in the compact form,
& cJ){u+FC‘)
- - — =
(’Br Poc o
we deduce that an appropriate formalism at the boundaries is to specify (u+FE)
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at x = 0 and to evaluate (u+F&) at x = L. However, we shall now show that this is
not necessarily the outcome obtained when using the pseudo-radiation boundary

scheme.

The general solution of (13)is of the form,

[u+Fr) = FLX) wheve X = de-cl
It‘followé that at the boundary the value of cﬁn:L. of (ll) is given by

S oo (R,

asd

In the usual method of implementing the pseudo-radiation scheme, the value of u at the
% = L boundary will be either specified or evaluated depending upon whether

C-% (fi/f;) . Overspecification will result if the lower inequality prevails, and
with a‘numerical scheme for (11) this will result in at least transitory reflection.
Again numerical problems can ensue if the upper inequality prevails with c*x=d_
such that C*23t/253£>" . This computational problem is clearly divorced from the

true physical problem and hence is another potential shortcoming of this approach.

2.2. Two Way Interaction Method

The two-way interaction method is conceptually more attractive if somewhat more
cumbersome to implement. It appears in principle to avoid the problem of well-po-
sedness that arises in the one-way method. Nevertheless the unavoidable numerical
differences between the models present problems. For instance phase speed differen-
ces due to grid length differences in the models can induce deleterious effect=e.q.
amplitude changes can occur on transmission of a wave across the interface, or
partial reflection can take place as discussed earlier. In effect although the well-
posedness issue does not arise in connection with the differential system, neverthe-
less it occurs in conjunction with the difference equations. (An attractive approach
for interpolating the data between the two meshes that seeks to preserve amplitude

and phase using an amplitude restoration device is that of Shapiro (1978)).

The two-way strategy has been used to good effect in studies of hurricanes (Harri-
son,1973; Jones, 1977; Kurihara and Bender, 1980). In these models the grid system
is movable and the storm is kept within the fine mesh. This circumstance reduces the
effect of the previously mentioned limitation. This device, of a movable grid system
is rendered less effective in mid-latitudes because of the spatial Variability of

synoptic and sub-synoptic flow.
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2.3. Evaluation of Schemes

There have been comparatively few published systematic evaluations of boundary treat-
ments in a forecasting context. There are however many examples of single synoptic
case successes. A thorough study to establish a justifiable case for these models

would include many of the ingredients in the following schematic:

Atmosphere
A ™.
! ™
S/ Fl . F2 F3
/ - 5
/ Fine Mesh Limited "\
/ : Area Model

. B+R B

VoY \ \/

§ Coarser Mesh - 7 Fine Mesh
; Global Model R Global Model

where the interlink comparisons indicate the following,
Fl, F2, F3 are the actual forecast errors

R is a model-model measure of resolution errors

B is a model-model measure of the boundary treatment

B + R is a model-model measure of the'boundary resolution errors.

The recent study of Baumhefner and Perkey (1982) involved such a set-up, and they
tested the tendency modification scheme (PK) and the Williamsen~Browning (WB)
(1974) variant of the pseudo-radiation scheme. They report that for the particular

models used by them

(a) B#0. The errors generated are attributable to the boundary diffusion scheme
and the interpolation required to a staggered fine mesh grid.

(b) The B and R model-model components were comparable.

(c) Fl and F2 can be comparable, but the ratio F1/F2 is highly case dependent.

¢d) The B+R errors are associated both &ith the development of rapid transients
and a major component that propagates into the domain at 20~30° longitude
per day and is 'related to a loss of amplitude in synoptic features as they
enter the domain'. These errors increase with an increase in the diffusion

specification (c.f. our earlier comments).
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(e) The WB and PK scheme behaviour is qualitatively similar but the WB scheme can
suffer from an instability problem in the vicinity of tangential flow at the
bqundary.[Orlanski (private communication) has also deduced that Fl and F2

are comparable. He attributes this result directly to the boundary resolution erroré]-

3. THE UPPER BOUNDARY

The issue of the upper boundary has been a long term enigma for numerical modellers.

The upper atmosphere acts both as an absorber and reflector of energy propagated
from lower altitudes. In principle, the formulation of atmospheric numerical models
should be in accord with this fact. Thus'an upper boundary condition applied at some
finite height should allow for the possible transmission of energy through that le-
vel. This energy would correspond to that which in the real atmosphere would be ab-

sorbed at altitudes above the top of the model.

An upper boundary condition that réquires the verﬁical velocity (w) or a pseudo-
vertical velocity (wor ¢ ) to be set to zero at some finite height, pressure, or
pseudo-pressure level will effect a perfect reflection of wave energy at that le-
vel. Again, due to truncation effects, Setting(d or & to zero at the model's level

of zero pressure will also induce reflection.

Atmospheric wave theory results indicate that both planetary scale Rossby waves

and meso-scale inertia-buoyancy waves can propagate energy vertically. To the pre-
sent, limited area forecast models have not usually allowed for an 'open' upper
boundéry. If the vertical propagation of ineftia—buoyancy waves is invariably inhi-
bited in the’atmosphere by the shear of the mean flow, and/or non-linear effects;
theh such a boundary condition may‘indeed be superfluous.Simple theoretical models
tend to indicate that the energy and momentum redistribution achieved by vertical

propagating waves can be significant.

Specialized meso-scale models disigned to study particular phenomena (e.g. strong
lee-side winds) have incorporated an upper boundary treatment. For instance a tech-
nigue analogous to the diffusive boundary zone and the relaxation scheme were em-
ployed by Houghton and Jones (1968) and Klemp and Lilly (1878) . The latter autho;s
suggest‘that due to computational feflection it is desirable to have of the order
of eight model layers in the‘damping zone. This computational regquirement indicates

that such a scheme would be unacceptable for most forecasting models.

This predicament provides the motivation for seeking a radiation type boundary con=-
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dition. The strict application of such a condition in a time dependent problem'
requires knowledge of the time-history of the flow structure across the entire do-
main (Beland and Warn, 1975, Bennetf,1976). It is therefore too cumbersome for
implementation in most forecast moéelé, and moreover its validity for the nonlinear

atmospheric situation is in doubt

The application of the Orlanski (1976) technique is another possibility, although
its usefulness in this context has been questioned by Mason and Sykes (1978). They:
state that this scheme's treatment of obliquely incident waves is ineffective and

that it produces a false vertical momentum transport in evanescent wave situations.

Here we outline one further approach. Hydrostatic wave perturbations of an anela-

stic, incompressible system in uniform motion take the form

w= exf{ifi-x-rvfy-wl‘)} [ A exp(-inzg) + B'PXf["hi)J/ | (14)
where(» satisfies the dispersion relation

(w-uR) = f A A" (15)

and the two terms in (14) correspond respectively to upward and downward energy
transmitting waves,The downward propagating mode will not be excited at a horizon-

tal boundary if
w' - inw’
'g% g orAnw » (16)

To proceed further note that energy propagation is related to the correlation of
w' and p'. Thus it is appropriate (Davies, 1980) to seek a boundary condition for

w' as a function of the density scaled‘pressure perturbation, i.e.
whe S 1/
Now from the linearised perturbation equation
{i‘i*ui‘?\c) f’%(r’/f) s =N (17)
Hence for (f;g5) also of the form of (14) we have for a given wave mode
w's f (0-URINSW} (F/3)
and using (15) this can be written as

| " L
w'= { Lfa s N&+t%)] /Ni} (F/3) (18)
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This relationship was recently exploited by Klemp and .Durran (1963). In effect
they determined the pressure field along the boundary by first performing a
Fourier Transform of the vertical velocity, then used (18) with £ = 0 and finally
made a reverse transform to get the required field. They also proposed the use of
this simplified form of (18) for rotational and nonhydrostatic systems, and pre-
sented the results of some test case studies that supported this suggestion. This
technique is comparatively easy to incorporate in a model and the additional

computational effort is modest. Bougeault (1983) adopted a similar approach.

Note in passing that (17) itself constitutes a boundary prediction equation. An
alternative possibility to obtain a local condition is to recognize, in the spirit
of Enquist and Majda (1977), that
H 2 L 2y -
S+ L) (PF) « - #et07)
¢ Qf
for every individual (k, 1) wave component. Then an approximation for (18), with

£ = 0, is the relation : )
, , %' - ) -
wa [=0 )] WL (P33

It is to be stressed that these essentially impedance matching technigues are based
on linear, hydrostatic Boussineg flow systems and there is an implicit assumption

that the disturbances to the mean state are spatially periodic at the upper boundary.

4. INITIAL DATA AND INITIALIZATION

Mesoscale forecast models operate in the time range, outlined earlier, between that
of global forecast suites and local extrapolation techniques. Thus to be effective
their initialization procedures should ideally ensﬁre that the model forecast is
not hampered by spurious imbalances even in the first few hours of the forecast.
Indeed it is only if this objective is achieved that these models can become viable

tools for very short range (- 6 hrs) forecasts.

The various types of initialization schemes are outlined by Haltiner and Williams
(1980) , and we shall refer here only to aspécts that relate specifically to meso-
scale forecast-models. Static initialization procedures determine’ the wind field
from the mass field,or vice versa. For atmospheric circulation phenogena with length
scales (L) greater than the Rossby radius of deformation, L'R= (9]{)ﬁ/f’ geostro-
phic adjustment studies indicate that the wind field adjusts to the mass field.

Thus in this case it is appropriate to specify the mass field. For L 4 Ly the
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reverse 1is true. On the mesoscale theyspeed of internal gravity_waves‘is’Such that
L £ Lg. Thus in their mesoscale model Anthes and Keyser (1979) employ wind informa-
tion to deduce the mass field. Again on the mesoscalelthe_diabatic effect can be

a significant factor in the forcing terms of the W equation. Hence Tarbell et al.
(1981)>incorporate this effect’into their initialization‘scheme.'It is useful to
note the limitations of the geostrophic adjustment arguments. For instance the de-
finiction of Ly itself should be modified in.regions of strong baroclinicity and/or
horizontal shear(Van Tuyl and Young, 1982) Again for sofe mesoscaledconvective or
strongly forced/d1551pated systems the concept itself may be 1nappropr1ate. The ad—f
justment studies of Paegle (1978)and Carpenter and Lowther (1982) " is suggestlve in

this respect.

Application of the normal mode - methods for. llmlted areas is hindered by the non—
spatial periodicity of the spatlal domaln. Parrish (1980) and Wergen (1981) produ—
ced useful results using sophlstlcated models by merely assuming per10d1c1ty for the
mode expansion. Briere (1982) performed a normal mode expansion of field variables,
{¢ q) (p. that represent the dev1at10n of the flow away from the flelds {%
that are equal to the total f1eld {gh} on the- boundary and satisfy Laplaces equa- -
tion in the interior. Herzog and Meyer (1983) perform a mode expansion that yields -

boundary forcing terms that also require a suitable initialization.

The inoreased importance of diabatic and~orographic.effects in the mesoscale suggest
that their role should be incorporated into the initialization procedure. (Briere.
detected evidence of unbalanced mountain related wave activity in his results.)
Orography may be the location of genuine large amplitude inertia-buoyancy wave ac-
tivity i.e. there is a local forcing of these modes and this may hlnder the requl-
red convergence propertles of the two well—establlshed non-llnear normal mode

initialization procedures of Machenhauer (1977) and Baer and Tribbia (1977).

The related 'Bounded-Derivative' method (see e.g. Kasahara, 1982) has recentlyfbeen
applied to an open boundary shallow water system (Browning and Kreiss, 1982).Again the
boundaries introduce further constraints i.e. the boundary data must also be on the

so-called " slow manifold". Note also that boundary zone treatments of the. lateral
boundaries should'also be catered for in the initialization procedure.

Another factor to be considered in‘relation to the-initialization is the new range
of observational data that forms the base for the short-range extrapolationvfore—
casting procedures. In principle it is also available for the mesoscale forecast
model (Kreitzberg, 1979). This data set can include

- satellite derived cloud images, in various spectral bands, at short time inter-
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vals and with spatial resolution of the order of 10 km, or so.

- a network of conventional grbund based radar proyiding a composite fine resolu-
tion coverage of the areal distribution of precipitation is an almost quasi-con-
tinuous mode.

- a network of automatic surface stations with perhaps a mescr-ﬁ scale spatial den-

sity, and providing data at frequent time interval (~~ 10 min.).

The data volume per hour from such a system exceeds by two orders of magnitude that
for global scale forecast systems (Beran and Méddonald, 1982) . The exploration of
the problem of integrating the various types of data in a consistent way to provide

a "state of the atmosphere" picture has hardly began.

An attractive idea is to employ a mesoscale:forecast model running in a 4-dimensio-
nal data-assimilation mode as a vehicle to achieve this consistent compdsite pic-
ture. Complex features of ﬁhis érocedure can be conceived {(e.g. the use of the sur-
face rainfall measurements and radar data to supply the free-atmosphere latent heat
input). However the feasibility of such a scheme reﬁains to be examined since little
me355cale modelling work has been unde:takén in this field. The 4—dimensional assimi~
lation échemes using modified forms of repeated data insertion (Hoke and Anthes,
1976; Davies and Turner, 1977) are readily implemented. However they should be
accompanied by suitable objective analysis scheme and alsb care must be exercised in
the choice of the relaxation coefficients to optimize the rate of the dynamical ad-

justment.

5. FINAL REMARKS

Mesoscale limited area forecastymddels are usunally viewed as potentially useful
tools for the forecast time span of 6 - 24 hdurs. A range of numerical techniques
now exist to treat the distinctive problems of such models. Thus definitive tests
of their capabilities could be undertaken for an even broader forecasting timespan.
In addition the possibility should be expiored that the'models, operating in a 4-
dimensional data assimilation mode, could be used as véhicles to consistently blend
the various new data forms. The results of Danard (1977) and Danard and Thompson
(1983) using a simple one-level model in a sémi-diagnastic mode ;o deduce surface
winds in complex terrain is at least a pointer to the potential of mesoscale models

as a diagnostic tool.

232



REFERENCES

Anthes, R.A. and D. Keyser, 1979: Tests of a fine mesh model over Europe and the
United States. Mon. Wea. Rev., 107, 963 - 984,

Baer, F. and J. J. Tribbia, 1977: On complete filtering of gravity modes through
nonlinear initialization. Mon. Wea. - Rev., 105, 1536 - 1539,

Baumhefner, D.P. and D.J. Perkey, 1982: Evaluation of lateral boundary errors in
“a limited-domain model. Tellus, 34, 409 - 428.

Beland, M. and T. Warn, 1975: The radiation condition for transient Rossby waves,
J. Atmos. Sci., 32, 1873-1880.

Bennett, A.F., 1976: Open boundary conditions for dlsper51ve waves. J. Atmos.Sci.
33, 176 182,

Bennett, A.F. and P.E. Kloeden, 1978: Boundary conditions for limited area fore-
casts. J. Atmos.Sci., 35, 990-996.

Benwell, G.R.R., A.J. Gadd, J.F. Keers, M.S. Timpson and P.W. White, 1971:
The Bushby-Timpson 10-level model on a fine mesh. Met Office Scientific Paper
No. 32, H.M.S.0. London, 59 pp.

Beran, D.W. and A.E. Machnald, 1982: Designing a very-short-range forecasting sy-
stem. Nowcasting. London. Academic Press 17-24. pp. 256.

Briere, S. 1982: Nonlinear normal mode initializationef a limited area model.
Mon. Wea. Rev. 110, 1166 - 1186.

Browning, G. and H.-O. Kreiss, 1982: Initialization of the shallow water equations
with open boundaries by the bounded derivative method. Tellus, 34, 332-351.

Bougeault, P., 1983: A non-reflective upper boundary condition for limited-height
hydrostatic models. Mon.Wea.Rev., 111, 420-429.

Burridge, D.M., 1975: A split semi~implicit reformulation of the Bushby-Timpson
10-level model. Quart. J. Roy. Meteor. Soc., 101, 777+ 792,

Camerlengo, A.L. and J.J. O'Brien, 1980: Open boundary conditions in rotating
fluids. J. Comput. Phys., 35, 12-35.

Carpenter, K.M. and L.R. Lowther, 1982: An experiment on the initial conditions for
a mesoscale forecast. Quart. J.R. Met. Soc., 108, 643-660.

Charney, J.G., 1962: Integration of the primitive and balance equations. Proc. In-
tern. Symp. Numerical Weather Prediciton Tokyo, 131-152.

Clark, T.L., 1979: Numerical simulations with a three-dimensional cloud model:
Lateral ‘boundary condition experiments and multicellular severe storm simu-
lations. J. Atmos;Sci., 36, 2191-2215.

Danard, M.B., 1977: A simple model for mesoscale effects of toppgraphy on surface
winds. Mon. Wea. Rev., 105, 572-581.

Danard, and B. Thompson, 1983: Modelling winds in Lancaster Sound and Northwestern
Baffin Bay. Atmos.Ocean, 21, 69-81.

233



Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction mo-
dels. Quart J. R. Met. Soc., 102, 405-418.

Davies, 1980: An absorbing upper boundary condition for atmospheric models. Met.
Office (M.O. 11) Technical report No. 142. pp 1ll.

Davies, 1983: Limitations of some common lateral boundary schemes used in regional
NWP models. Mon. Wea. Rev., 111, 1002-1012.

Davies, and R.E. Turner, 1977: Updating prediction models by dynamical relaxation:
an examination of the technique. Quart. J.R. Met. Soc., 103, 225-246.

Engquist, B. and A. Majda, 1977: Absorbing boundary conditions for the numerical
simulation of waves. Math. Comp., 31, 629-651.

Fritsch, J.M. and C.F. Chappell, 1980: Numerical prediction of convectively driven
mesoscale pressure systems: Part II. Mesoscale model. J. Atmos. Sci., 37,
1734-1762.

Gaunflett, D.J., L.M. Leslie, J.L. McGregor and D.R. Hincksman, 1978: A limited
area nested numerical weather prediction model: Formulation and preliminary
results. Quart. J. R. Met. Soc., 104, 103-117.

Haltiner, G.J. and R.T. Williams, 1980: Numerical Prediction and Dynamic Meteorolog-
gy. New York, John Wiley pp 477.

Harrison, Jr., E.J. 1973: Three-dimensional numerical simulations of tropical sy-
stems utilizing nested finite grids. J. Atmos. Sci., 30, 1528-1543.

Herzog, H.J. and A, Meyer, 1983: A conception of normal mode expansion procedure
applied to a limited-area model. Part II. Linear aspects Z. Meteor., 33, 2-5.

Hoke, J.E. and R.A. Anthes, 1976: The initialization of numerical models by a dyna-
mic-initialization technique. Mon. Wea. Rev., 104, 1551 - 1556.

Houghton, D.D. and W. Jones, 1969: A numerical model for linearised gravity and acou-
stic waves. J. Comput. Phys., 3, 339-357.

Israeli, M. and S.A. Orszag, 1981: Approxiamation of radiation boundary conditions.
J. Comput.Phys., 41, 115 -135.

Jones, R.W., 1977: A nested grid for a three-dimensional model of a cyclone. J.
Atmos. Sci., 34, 1528-1553.

Kallberg, P.W. and J.K. Gibson, 1977a: Lateral boundary conditions for a limited
area version of ECMWF model. WGNE Progress Report No. 14, 103-105. WMO
Secretariat, CH-1211, Geneva 20, Switzerland.

Kallberg, P.W. and J.K. Gibson 1977b: Multi level limited area forecasts using
boundary zone relaxation. NGNE Progress Report No.l5, 48-51. Ibid.

Kasahara, A. 1982: Nonlinear normal mode initialization and the bounded derivative
method. Rev. Geophys. Space Phys., 20, 385-398.

Kessel, P.G. and F. J. Winninghoff, 1972: The Fleet Numerical Weather Centre opera-
tional primitive equation model. Mon. Wea. Rev., 100, 360-373.

Klemp, J.B. and D.K. Lilly, 1978: Numerical simulation of hydrostatic mountain wa-
ves. J. Atmos. Sci., 35, 78-107.

234



Klemp, J. B. and R.B. Wilhelmson, 1978: The simulation of three dimensional convecti-
ve storm dynamics. J, Atmos. Sci., 35, 1070~1096.

Klemp,J. B. and D. R. Durran, 1983: An upper boundary condition permitting internal
gravity wave radiation in numerical mesoscale models Mon. Wea. Rev., 111,
430-444,

Kreitzberg, C.W. 1976: Interactive applications of satellite observations and meso-
scale numerical models. Bull. Amer. Met. Soc., 57, 679-685.

Kreitzberg C.W., 1979: Observing, analyzing and modelling mesoscale weather pheno-
mena. Rev. Geophys. Space Phys., 17, 1852-1871.

Kurihara, Y. and M.A. Bender, 1980: Use of a movable nested-mesh model for tracking
a small vortex. Mon. Wea. Rev., 108, 1792-1809.

Kurihara, Y. 1983: A numerical scheme to treat the open lateral boundary of a limi-
ted area model. Mon. Wea. Rev. 111, 445 - 454,

Lepas, J., D. Rousseau, J. Coiffier, H.L. Pham, 1977: Preliminary tests with a
semi-implicit, ten layer, primitive equation model using the sigma coordina-
te, WGNE Progress Report No. 15, 44-46., WMO Secretariat, CH-1211, Geneva 20
Switzerland.

Leslie, L.M., G.A, Miles and D.J. Gauntlett, 1981: The impact of FGGE data covera-
ge and improved numerical techniques in numerical weather prediction in the
Australian region. Quart. J. Roy. Meteor. Soc., 107, 629-642.

Lilly, D.K., 1981l: Wave-permeable lateral boundary conditions for convective cloud
and storm simulations. J. Atmos. Sci., 38, 1313-1316.

Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow-water
model with applications to normal mode initialization. Contrlb Atmos. Phys.
50, 253-271.

Maddox, R.A., D.J. Perkey and J.M. Fritsch, 1981: Evolution of upper tropospheric
features during the development of a mesoscale convective complex. J. Atmos.
Sci., 38, 1664-1674.

Mason, P.J. and R. J. Sykes, 1978: On the interaction of topography and Ekman
boundary layer pumping in a stratified atmosphere. Quart J.R. Met, Soc.,
104, 475-490.

Mesinger, F., 1977: Forward-backward scheme aﬁd its use in a limited area model.
Beit. Phys. Atmos., 50, 200-210.

Miller, M.J. and A.J. Thorpe, 1981: Radiation conditions for the lateral bounda-
ries of limited-area numerical models. Quart. J. Roy. Meteor. Soc., 107,
615~628.

Miyakoda, K. end A. Rbsati, 1977:‘0ne—way nested grid models: The interface con-
ditions and the numerical accuracy. Mon. Wea. Rev., 105, 1092-1107.

Ninomiya, K. and Y., Tatsumi, 1980: Front with heavy rainfall in the Asian subtro-
pical humid region in a 6-level, 77 km mesh, primitive eguation model.
J. Met. Soc. Japan, 58, 172-186.

Oliger, J. and A. Sundstrém, 1978: Theoretical and practical aspects of some ini-
tial boundary value problems in £luid dynamics. SIAM J. Appl. Math., 35,
- 449-446,

235



Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes
Bull. Amer. Met. Soc., 56, 527-530. »

Orlanski, I, 1976: A simple boundary condition for unbounded hyperbolic flows.
J. Comp. Phys., 21, 251-269.

Paegle, J. 1978: The transient mass=flow adjustment of heated atmospheric circu-
lations. J. Atmos. Sci., 35, 1678-1688.

Parrish, D.F., 1980: Normal mode initialization of limited area models. GAPP/WCRP
NEP Report No. 1,(3.13)wWMO Secretariat._

Pearson, R.A., 1974: Consistent boundary conditions for numefical models of systems
that admit dispersive waves. J. Atmos. Sci., 31, 1481-1489.

Perkey, D. J. and C.W. Kreitzberg, 1976: A time-dependent lateral boundary scheme
for limited area primitive equation models. Mon. Wea. Rev., 104, 744-755.

Phillips, N.A. and J. Shukla, 1973: On the strategy of comining coarse and fine
grid meshes in numerical weather prediction. J. Appl. Meteor., 12, 763-770.

Ross, B.B. and I. Orlanski, 1982: The evolution of an observed cold front. Part I:
Numerical simulation. J. Atmos.. Sci., 39, 296-327.

Serrin, J. 1959: On the unigueness of compressible fluid motions. Arch. Rat. Mech.
Anal., 3, 271-288. :

Sshapiro, M.A. and J.J. O'Brien, 1970: Boundary conditions for fine-mesh limited
area forecasts. J. Appl. Meteor.,9, 345-349.

Shapiro, R., 1978: Interpolation of data between uniform grids of differing lengths.
Mon. Wea. Rev., 106, 738-745.

Sommerfeld, A., 1949: Partial Differential Equations: Lectures in Theoretical Phy-
sics, Vol 6. Academic Press, 335 pp.

Stoker, J.J., 1957: Water Waves, New York, Interscience, pp 567.

Tarbell, T.C., Warner T.T. and R.,A. Anthes: 1981: An example of initialization of
the divergent wind component in a mesoscale numerical weather prediction mo-
del. Mon. Wea. Rev., 109, 77-95.

Tatsumi, Y., 1980: Comparison of the time-dependent lateral boundary conditions pro-
posed by Davies and Hovermale.
WGNE ProgressReport No. 21. WMO Secretariat, CH-1211 Geneva 20, Switzerland.

Van Tuyl, A.H. and J.A. Young, 1982: Numerical simulation of nonlinear jet streak
adjustment. Mon. Wea. Rev., 110, 2038-2054.

Wiin-Nielsen, A., 1965: On the propagation of gravity waves in a hydrostatic, com-
pressible fluid with vertical wind shear. Tellus, 17, 306-320.

Williams, R.T. and A.M. Hori, 1970: Formation of hydraulic jumps in a rotating
system. J. Geophys. Res., 75, 2813-2821.

Williamson, D.L. and G.L. Btowning, 1974: Formulation of the lateral boundary con-
ditions for the NCAR limited-area model. J. Appl. Met., 12, 763-770.

236





