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ABSTRACT

Four aspects of the ECMWF multi-variate optimum interpolation analysis system

were examined:

(a) the geostrophic and non-divergence constraints;
(b) spectral responses;

(c) the analysis of tropical divergence and

(d) the analysis of tropical large-scale flow.

A particularly general form of the prediction error correlation model was used
which relaxed the conventional non-divergence constraint. A hierarchy of
increasingly complex and realistic experiments was performed constrained only
by the assumption of two-dimensionality. Many interesting results were
obtained, of which two are of particular importance. A slightly divergent
generalization of the prediction error correlation model is advantageous in
the tropics. Present day observing systems (even to FGGE standards) are

incapable of providing acceptable analyses of the large-scale tropical flow.



1. INTRODUCTION

Multi-variate statistical objective analysis, originally develéped by
Gandin(1963), has gradually become the most widely-used method of
meteorological objective analysis. This analysis method, which we will
usually refer to as optimum interpolation (OI) has a sturdy statistical

framework which is flexible enough to accammodate many generalizations.

The ECMWF has developed a powerful and mature form of the OI algorithm
(Lorenc, 1981) which has been used operationally with considerable success.
The ECMWF OI philosophy (if not the actual code) is particularly useful for

experimentation and generalization.

Objective analysis in general and OI in particular is poor in good
pedagogical material as compared with other branches of numerical weather
prediction. This has meant that the field is poorly understood by the non-
‘'specialist and communication between modellers and analysis specialists has
been inhibited. It is one of the intentions of the present work to produce
didactic material on OI which will be readily understood by the
non-specialist. There are also many empirically derived properties of OI
which do not appear in the literature, and yet are useful and reasonable even
though they lack a theoretical basis. We will attempt to provide a

foundation for some of these empirical facts.

The present work will concentrate on three aspects of OI.
- multi-variate relationships.
- analysis of divergent tropical flows.

- analysis of tropical large-~scale flow.



We will take a largely non-statistical approach to these problenms, even
though we are examining a statistically-derived objective analysis procedure.
Most of our experiments will be jdealized in some aspect or another, but the
experiments will become progressively more realistic toward the end of the
work. All experiments will be performed within a strictly horizontal

framework; problems in the vertical will not be examined.

In Sect. 2 we will sketch the development of the OIL formalism following
Lorenc (1981). The prediction error covariance model adopted will be
particularly general, with a number of novel free parameters. One of these
free parameters will be used to control the level of divergence in the

analysis. We will attempt to determine realistic values of these parameters.

In Sect. 3 we will examine the geostrophic and non-divergence relationships
and their effects on O0I. We will use a variety of idealized situations and

techniques to examine these multi-variate relationships.

In Sect. 4 we will determine the two-dimensional scale response of the
multi=-box ECMWF analysis system. We will also examine the response of the OI

procedure to large-scale spherical Rossby and Kelvin waves.

In Sect. 5 we will perform some realistic analyses of tropical divergent
flows using FGGE data. The more general divergent prediction error

covariance model developed in Sect. 2 will be tested on these situations.

In Sect. 6 we will examine the problem of analyzing the large-scale tropical
flow using artificial data with a realistic spectrum and the FGGE observation
network. We will test both the ECMWF OI technique and a least-square

technique especially designed for the analysis of the long-waves.



2, BASIC THEORY

In this section will be developed the basic theory for the experiments to be
described in later sections. The emphasis will be on those aspects of the
theory which are important in the three questions we wish to investigate -
namely multi-variate analysis, planetary=-scale analysis and analysis of

divergent flows.

The first sub-section will briefly establish the formal optimal interpolation

theory and notation following Lorenc (1981).

The second sub=-section will describe at some length the statistical
covariance models to be used in later experiments. In some respects, these
covariance models are more general than those used previously and they have
more free parameters. The properties of these covariance models under
variation of the free parameters will be investigated. In addition, some

attempt has been made to determine realistic values of these parameters.

2.1 NHotation amd basic method

For the sake of completeness and in order to establish a consistent notation
we will repeat here the basic optimal interpolation theory following the
development of Lorenc (1981). 1In particular, the dimensionless form of the

equations will be especially useful.

Thus B; is any observed datum selected for the analysis and Ak any analyzed
value within the analysis volume. Following Lorenc (1981) we assume

predicted (first=guess) values Pi and Pk and true values T. 4 Tko
i

Deviations from the true values are denoted by lower case letters

a=aA-T, b=B-T, p=P - T 0




All analyzed, observed or predicted values'-Have associated error estimates

E defined by
B2 = <a2>% , P = <p2>12 , g° = <b2>% (2)
where angle brackets indicate an ensemble average.

In the non-dimensional form of the equations variables are divided by the

appropriate prediction error estimates EF . Thus

e'a = a/EP q = (B-p)/EP e = g%/EP
e’ = b/EP r = (A-P)/EP
7 = p/EP e® = g°/8P

The analyzed deviation from the prediction is given by a linear combination

of N observed deviations

N
r, = Z W x @ (4)

which can be re-written in matrix notation as

were w = [, ] anaq- [q].

Squaring (4) and taking the ensemble average gives

a, g _ - T T
(Ek) =1 2 Wk hk + Wk M Wk

where hk = < T T >,



- . o o
= <
and M L ﬂi nj >+ Ei < Bi Bj > Ej j .

and we have assumed that the correlation between prediction error and
observation error < ﬂiysj > = 0. Superscript "T" indicates matrix

transpose.

The "optimum" weights can be derived from (6) simply by minimizing with

respect to each W, in turn, which gives

Wk = M hk
T -1 -
and re = hk M a

and the the estimated analysis error is

2.2 Error statistics

As in Lorenc {1981) we must define the prediction and observation errors Ep

and EO and the prediction error and observation error correlations <ﬂi ﬂj>

and <Bi Bj>. EP and EC will be defined to be constant in any analysis box.

<ﬂiﬂj> and <BiBj> are normally functions of position and variable. In all

the work to be described we will assume uncorrelated observational error =

that is <B,B.> = £% .. where 6,. is the Kronecker delta function. Thus <B,B.>
113 01 13 1]

appears only as a positive augnentation of the main diagonal of the M

matrix of equation (6).



As pointed out by Lorenc (1981) one of the most important aspects of the
éptimum interpolation formalism (particularly when using the box method
employed at ECMWF) is the choice of model for the prediction error

correlation < ™ nj >. Consequently, we shall devote some effort to the
devélopment of such a model. The present procedure can be considered a
generalization of that developed by Lorenc (1981) =~ although the further

developments discussed here are implicit in Lorenc (1979).

We will derive the following non-dimensional prediction error correlations

(bearing in mind that we are primarily concerned with the horizontal problem)

<y, u,> <v, v.> <y, v.> <u, z.> <v, > <z, >
4 5 ’ i 3 r 4 3 12 1 3 ’ Vl Z] ’ Zl ZJ

where u and v are the wind components and z is the geopotential height. -As
in Lorenc (1981) we will use the scalar correlations of velocity

potential( X ) and streamfunction ( ¥ ). We will assumekthat the scalar
correlations are homogeneous and isotropic. Thus we define 6 scalar

correlations and characteristic scales as follows:

2
< > = E F - b
1 IPZ " (rlz) "
<X X > = E2 G (z,.) - b
2 X 12 X
<y oy > = < >=E_E_ H(r,.,) - b
wl 2 Xl l'}z X v 12 Xy
< Z > = < 7 >=F E T - b
1 lpz wl 2 z Y (x5 zy
< 7 > = < 72 >=E E J - b
1 X2 X1 ) z By (r12) zx
<Z Z > = E2 K( ) - b
1 2 - -4 rlz 4

where F,G,H,I,J, and X are assumed to be non-dimensional correlations and

<w1 ¢2> ’ <Xl X2> etc. are assumed to be dimensional. ¥, is the



dimensional scalar distance between arbitrary points 1 and 2.

= - 2 - 2
r (x x2) + lyy y2)

12 1

where X,, X%, and Y1 Yy are the cartesian coordinates of the points.

Using Helmholtz's Theorem

we can derive the following dimensional prediction error covariances

*2EEB, 0 CH(x,) ]

2
<vy vy = Eyb [P @] + s T [e )]
-2EE, @ [a(x ;)]
2 .
< V1 u2> = < u1V2> = Ew &] I:F (rl2) :' (10)

<z, u> = - <uyoz,> = EzElp g LI (rlz)—|
- 1
EE § L9 (r;y ]

<z V> = - <V, 2> = _EzEtpH |_I(r12)]



where

A = : % T + (x1 - x2)2 1 g% % é%A]
e = : (¥-¥,) (x,-%,) % é% % é% }
A= i (yl-yz) (xl-X2)2] T Sa} ch EdE

1]
i

i

o
Kl
N

N

Xl
1

and where for simplicity we set i p= -

We now make the following assumptions.

*

K=F, I=yuF, H=AF, J=AF

where U, A ,and A* are dimensionless constants. g is the same
constant defined by Lorenc (1981) - see his equation 36, which relates the
streamfunction-geopotential correlation to the streamfunction=-streamfunction
correlation. Thus, where the geostrophic relationship is assumed to aéply,
4  will be large ( =1 north of 30 degrees north and = -1 south of 30
degrees south) but will be assumed to be approximately zero in the tropics.
A and A* are similar dimensionless constants concerned with the velocity

potential=streamfunction and velocity potential- height correlations.

(11)



We will assume the following relationships between the characteristic scales

and relate G to F by

br
G=F (==
&)
X
If we now non-dimensionalize r by b, we can write non-dimensional
prediction error correlations

*

<u1u2> = (1-v) T (F) + vA (G) + 2¥v—vZ A 0 (F)
*

<v1v2> = (1-v) A (F) + VI (G) - 2/v-vZ A 0 (F)
*

wv,> = (1-v) © (F) - vO (G) + Vv—vZ A A (F)
* *

<z,u,> = Yi—v 4 E (F) - /v A T (F) (12)
* *

<z,v,> = - Vivu I (F) - N A & (F)
x

<2122> = P

where v is a non-dimensional constant which is the ratio of the prediction

error variance in the divergent wind component (Eé ) to the prediction error

X
variance of the total wind(E% }« Thus
) 2
v BY / Ev
X
2= - + % - 82 + 82
b b2 Y X (13)

where (*) indicates non-dimensional prediction error correlations which have



been normalized by EV or Ez.

We will assume for most purposes the standard Gaussian functional form for F.

Thus

F=c¢e (14)
Fie
By inserting this expression into equation (12) and using equation (11) we
can derive the final expressions for the prediction error correlations as in
Lorenc (1981). We retain the generality of allowing bX + b in order to
permit different scales of divergent flow to be analyzed. For example, it

may be desirable to have bX > Db in order to suppress erroneous

small-scale divergent circulations.

Fig. 1 is a plot of the prediction error correlations for the case
v=A=A*=0, bX=b, u=1 which is the appropriate parameter setting for the
present (1983) ECMWF operational scheme in the Northern Hemisphere
extra-tropics. This diagram can be strictly compared with Fig. 3 of
Schlatter (1975) and is included here only for convenience. The abscissa is
-3 <x <3 and the ordinate is -3 <y < 3 in units of b. Thus the

zero line in the v - v correlation falls at x = *1 and the minimum at

X = * /§ .

For some purposes we have also used another function for F - 3 special case

of the second order autoregressive function, which we will refer to as the

Markov function.

F=(1+ || e—lr, (15)

We note that the Markov function, like the Gaussian function, satisfies the

10
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1 Prediction error correlations for the Gaussian model v

Fig.
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u=1.

7

=A=A*=0

2 Prediction error correlations for the Markov model v

Fig.
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necessary continuity conditions at r = 0 as discussed by Julian and Thiebaux
*
(1975), In Fig. 2 we plot the case v=A=A =0, u=1, bX=b for the

Markov funtion in the same format as Fig. 1.

In comparing Figs. 1 and 2 we see that the Markov function has a much more
spread-out <z-z> correlation , but much more concentrated <u-u> and <v-v>
correlations. In addition, the negative lobes of the <u-u> and <v-v>
correlations are much weaker and the <u-v> ,<u-z> , and <v-z> correlations
are also weaker. As we shall see later, there are both advantages and
disadvantages of the Markov function as compared to the Gaussian function.

We have introduced the Markov model in order to check the sensitivity of
various aspects of the analysis procedure to the prediction error correlation

model adopted.

For the remainder of this section, we shall be concerned with examining the
correlations given by the standard GCaussian model under different settings of

the parameters M, V, A and AF.

Fig. 3a shows the <u-u> correlation for the case A=\*=0, bX=br v=.5.

The <y-v> correlation is identical and the <u-v> and <v-u> correlations are
identically zero. In this case, the divergent and rotational components of
the prediction error are egqual in magnitude and thus the <yp-u> and <v-v>
correlations are isotropic, as pointed out by Lorenc (1979). An intermediate
case for the <u-u> correlations is shown in Fig. 3b with A=A*=0,

bX=b,v = .25 . The <v-v> correlation is the same except

rotated by 90 degrees. Thus, the effect of varying v is expansion or

contraction along the X or Y axes.

In Figs .4 and 5, we examine the effect of varying A+« In PFig. 4a and b
we show the <u-u> and <y-y> correlations for the case Vv = .5,

A= -1, A* = 0, k)X = Db. In Figs. 5a and b we show the <u-u> and

13
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Fig. 3 Prediction error correlations (u-u) for the Gaussian model

.5; right v=.25.

Left v

A=A*=0.

Fig. 4 Prediction error correlations for the Gaussian model

Left (u-u); right (v-v).

=1.

0.5,A*=0, X

V=

Fig. 5 Same as Fig. 4 except A=-1.
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<y—-y> correlations for the case v= .5, A = -1, A* =0, b, =b. We see that
the effect of correlated divergent and rotational wind prediction error is a

rotation of the <u-u>and <y-v> correlations.

We note that the <u-us> and < v-v>rotate together in the same direction and,
in fact, the <v—u> and <u-v> correlatiomns (not shown) also rotate in the same
direction. Experiments performed with varying )\* (not shown) also indicate
a rotation of ‘the <&—-u> and <z-Vv>correlations. We see from Figs. 4 and 5
that A < O corresponds to a clockwise rotation while A > O
corresponds to a counter~clockwise rotation. We can calculate the rotation
angle as follows. We take the <u-u> equation (12) and insert the Gaussian
correlation function ( 14 ). We then re-write the expression in

cylindrical polar coordinates.

9 .
<u1 u2> = [(1—\)) (1-r sinze) + \)(1—1:2 cosze)
+2/\)—\)2 )\rzsinecosej F (16)
where © = tan [ (yl_YZ) / (xl—xz) ]

Differentiating equation (16 ) with respect to g and setting the result to
zero gives the angle of the maximum of <ulu2> as a function of v and A.

For convenience defining Vv = gin? o we find

8 = .5 tan_:l [)\tan 2a |
max -

These rotational angles are plotted in Fig. 6 as a function of A and o

{or v ).

15
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Fig. 6 Rotation angle (degrees) of the (u-u) prediction
error correlation of the Gaussian model as a
function of v (abscissa) and A (ordinate).

sk
10F 035 v
H 005
15F
7
g \ Ho10
[=] 20
s 0°30
s 4015
28 \
025 4020
30 \ 4025
0-20
35 - 015
4036
[ »
00 —o02 —o4 —06 —0-8 S0

A

Fig, 7 Maximum (u-v) correlation of the Gaussian model
as a function of V (abscissa) and A (ordinate).
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Also of interest is the correlation between u and v as a function of A
and v. TIn a similar fashion to eguation (16) we can re-write the <u-v>

correlation (12).

wv,> = [ (I-2y) sin 6 cos 8 + A A2 I}sinze —cosze}J r? F

(17

where 0,F are defined above. Differentiating this expression with respect

to r we find X = V2 . Thus, by inserting 6 and r into
max max max

equation ( 17) we find the maximum <u-v > correlation as a function of A and

V . These results are shown in Fig. 7. The maximum value of the

-1
correlation for any value of A or a is e = ,3678.

. *
The next task is to find appropriate values for v . A and A . We shall

*
first consider the problem of determining suitable values for A and A =«

In this work we have naturally been concerned with the correlations of
observations minus prediction as is appropriate for most applications of the
optimal interpolation method. It is of interest, however, to consider the
case of observations minus climatology where physical insight might be of
some benefit. For example, one might hypothesize that in the Northern
Hemisphere there is generally convergence into low pressure (cyclonic flow)
and divergence from high pressure (anti-cyclonic flow). Therefore, in the
Northern Hemisphere one might expect the <w—x>'correlation to be negative
while in the Southern Hemisphere the <j-x> correlation might be positive.
The <z-y> sorrelation one might expect to be negative in both hemispheres.
We emphasize again that.we are considering the case of observations minus

climatology.

If there is, in the atmosphere, any strong correlation between the divergent

and rotational components of the wind, this should show up in independent

17



studies of the wind correlation coefficients (observed minus climatology).
Seaman and Gauntlett (1980) summarize the results of several such studies -~
Buell (1960,1972), Alaka and Elvander'(1972), Ramanathan et al (1973) and
Seaman (1975). Seaman and Gauntlett (1980) argue ,based on these studies,
that there is an anti-clockwise rotation of the <u-u> correlation and a
clock-wise rotation of the <v-v> correlation in the Northern Hemisphere and
the opposite rotation in the Southern Hemisphere. Seaman and Gauntlett's
(1980) observations taken over Rustralia certainly support this argument.
The Northern Hemisphere observations of the other named authors only weakly
support this arguement, however. Thus, for example, Buell's results (taken
over North America) show a substantial anti-clockwise rotation of the <u-u>

component, but virtually no rotation of the <v-v>component.

The analysis of Seaman and Gauntlétt (1980) requires the <U-u> and <v-v>
correlations to rotate in different directions whereas a correlation between
rotational and divergent components (of either sign) requires a rotation in
the same direction. The results of Seaman and Gauntlett (1980) and all
references contained therein does not suggest any particular correlation
between rotational and divergent components of the wind in the atmosphere.
Thus, the plausible hypothesis of a negative correlation between the velocity
potential and the streamfunction (in the Northern Hemisphere) does not seem
to be supported by observation. Whatever correlation there is appears to be

swamped by other effects of inhomogeneity or non-representativeness.

Of course, it is possible that there is a correlation between the
streamfunction and velocity potential for the case of observed minus"
predicted , but at this point it does not seem worth pursuing. Consequently,

in the remainder of this work we shall assume A and A* = 0.

18



The final task is to obtain an appropriate value for V . The correct way to
do this would be to collect statistics of observed minus predicted rotational
and divergent wind components and then calculate v from eguation (13).
Unfortunately, we do not observe the rotational and divergent wind components
separately and it is necessary to do some areal calculation to separate them.
In principle, this can be done using the irregularly-spaced observational
network, but in practice it is much simpler using a regularly-spaced grid.
Consequently, we decided to calculate v using the following approximate

method due to Arpe (1982)*

The analysis minus predicted values of the wind field (analysis increments)
on the standard ECMWF analysis grid were collected for 5 consecutive days (20
analysis periods) from September 15-20, 1982. These were then analyzed into
their rotational and divergent components and the resulting variances
averaged over longitude and time for the area 20 degrees North to 60 degrees
North. From these rotational and divergent variances the following values of

v were obtained.

1000 mb v=.13
500 mb V=.08
ave?age 1000-200 mb v=.10
From these values we have chosen v = .10 as a representative value.

* Xlaus Arpe — 1982 - personal communication.
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3. ASPECTS OF MULTI-VARTATE RELATIONSHIPS

In this section we will be concerned with examining the effects of the two
multi-variate relationships commonly used in optimal interpolation - namely,
the geostrophic relation and the non-divergence condition. Since these two
relationships are unique to meteorology and related disciplines their
application in analysis techniques have not been extensively examined by
interpolation or statistical theorists. Although the multi-variate aspects
of optimal interpolation are undoubtedly amenable to analytic techniques, we
will use a number of simpler, practical technigues which nonetheless yield

interesting results.

In all cases considered in this section, the results are obtained from one or
two-dimensional optimal interpolation schemes applied to a single analysis
box. The number of degrees of freedom is small and the arrays of observation
points are regular. The three-dimensional analysis box can

be considered the fundamental building-block of the ECMWF analysis system and

it is always instructive to consider individual box analyses.

We will consider 3 igeparate techniques for examining single box analyses.

(a) Examination of the analysis weights (Wk in eguation 7).

(b) Examination of the eigen-structure of the prediction error

correlation.

(¢) Examination of the scaie—dependent response of the analysis.

We also use the analysis box technique to investigate potential difficulties

in longwave analysis.

20



3.1 Examination of the analysis weight

We will define a 5x5 two-dimensional observation network as in Fig. 8. The
dependent variables u , v, and z are defined at each of the 25 points of the
grid - which is in fact an Arakawa A-grid (Mesinger and Arakawa-1976). The
grid-distances Ax and Ay are defined to be egual. We use the normalized
form of the analysis equations(1-8). The observation error ratio

2

E% - (EO/EP)- is defined to be equal to .25 and the distances are

defined in terms of b —bx . The prediction error correlation functions
are of the Gaussian form (egquation 14). We will consider the analysis points
to be identical to the observation points.

We will calculate the analysis weights Wk = M_1 hk (equation 7) for this
system. There are (3X25)2 such weights. To reduce the amount of
information we will consider the weights given to each of the u,v,z at each
of the 25 points in the analysis of us v Zg at the central point (marked
¢ in Fig. 8). We can further reduce the guantity of information by
exploiting the symmetries of the problem. Thus, we will consider the vou
and ZC— z weights along the diagonal line 1 and the vc—-v and v z
weights along line 2. We will examine the analysis weights as a function of
r , Vv (equations 12 and 13) and observation density ( Ax/ b Yo

In Fig. 9 we show the z-z, v-v and v-2 weights as a function of . Im

this case v-=0 and Ax/b = .5 Thus, for example, the observations along
the x axis would be at ~1e,-s5, 0.,+.5,+1. In Fig. 9a we show the z-z
weights along line 1 of Fig. 8 and in Fig. 9b and c respectively the v-v

and V-Z weights along line 2. The values H=1 (solid line), 1 =-9 (dashed
line), = -5(dash-dot line) and u=0 (dot-dot line) are shown. ({The

U= +5 line has been omitted in ¥~V case). We can regard the p=1 and

‘U= 0 curves as marking the completely geostrophic and canpletely
uncorrelated limits. It is evident that the variation of the weights as a

function of p is highly non-linear. Thus, at #=-9 the weights have

21
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Fig. 8 5x5 two-dimensional observation network used in
section 3.1. ‘¢’ defimes the central point and
u,v,z are defined at each of the 25 points. Dashed
lines 1 and 2 define the two cuts through the’

network.
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already moved half-way between the geostrophic and uncorrelated limits and by

§ =5 the weights are virtually the same as the uncorrelated weights.

In Fig. 10 we plot the v-v and v-u weights as a function of v in the same
format as Fig. 9. 1In this case W=0 and A x /b =-5. The values
v=0 ({solid line), v = -1 (dashed line), v= -2 (dash-dot line) and v= *5
(. dot-dot-dot line) are shown. We can regard v =0 as the non-divergent
limit and v = *5 as the uncorrelated (u-v) limit. Again, the variation of
the weights as a function of V is far from linear and as V is increased

slightly above zero, the weights move rapidly toward the uncorrelated limit.

The analysis is linearly dependent upon the observations (equation 4). ' It
does not appear to be linearly dependent upon the correlations ¥ and v.
This might be surmised from equation (7) which involves inversion of
matrix(M ), which is itself linearly dependent upon M and Vv . These results
appear to be largely independent (in a qualitative sense) of E(?; , A x/b

or the number of observation points.

Similar results (not shown) were obtained for the variation of ) and )\* of

equation (12). The variation of the analysis weights as a function of A and
*

A was non-linear between the completely correlated and campletely

uncorrelated limits.

Thus, in all cases where U, v,A and A* are varied the analysis weights are
substantially the same as in the uncorrelated limit unless the correlation is assumed
to be large. For the Gaussian model, it is tempting to conclude that unless the
correlation is large, one might as well assume that the correlation is zero.

The results from this section influenced our earlier decision to ignore the

<y~x> and <¥-z> prediction error correlations.
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It should be noted, however, with respect to H that the case considered here
has both wind and height input observations. In the case where there are
only height observations, or only wind observations, | appears only in the
vector h}Tc of equation (7), not in M—-1 , and thus the analysis weights
would be ‘linear in p. Thus, in this special case, even a small value of u
might bé ex‘pected to be of some use in creating analyzed values of the

non~observed variable.

We complete this section with plots of the analysis weights z-z, v-v: and
v- 7 as a function of Ax/Db for the casepy =1 ,v= 0. These plots are
chown in Figs. 11a,b,c as a function of x. The cases Ax / b=.1 (solid

line), Ax/b= -5 (dashed line), Ax/b = 1. (dash-dot line) and Ax /b =2.

(dot—dot line) are shown. The limiting weight for z - z and
v - v cases at Ax/b = = is  (1+e?) _1= -8 and the limit at
. o
-1
Ax /Db =0 ig (5 x 5) = -04. The easiest way to understand Fig. 11

is +to assume that the observation analysis network is fixed and that b is
varied. It is also possible to imagine that b is fixed and the. observation
density is varied. Note, that in this latter case the results are somewhat
meaningless at low observation density (Ax /b >>1) because there is no
consideration of the analysis that would normally be produced in ‘between the

widely-scattered observation pointse.

3.2 Eigenstructure of the prediction error correlation.

A useful technigue for investigating the OI procedure is the eigenvector
decanposition of the prediction error correlation as described by
Hollingsworth (1984). We will use this technique to examine the effect of

the geostrophic and non-divergent constraints.

The eigenvector decomposition can be briefly described as follows. The
relationship between the analysis increments and the observation increments

is described by the scalar equation (7).
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where T, is the analyzed deviation from the prediction at the arbitrary
point and g 1is the column vector of observation deviations at the
observation points 1 < i < I | 1ot ug examine the analysis increments at

the I observation points and re-write equation (7) as follows.

r=7p (p+E) L q

(18)

where ¥ is the column vector of analyzed deviations from the prediction

1<i<1i , P

is the prediction error correlation <'rri m.> and- E  is the

. . o o}
diagonal matrix of Ei e,

We will further specify that the sg s(.) are all equal to g2 . We are
examining the analysis increments at the observation points and thus the
-1

matrix P (P+E) can be defined as a response matrix.

Consider the eigenstructure of the matrix P which is of order I .

Suppose
P, is an eigenvector of matrix P .
PPy = My opy
1 ‘2
P (P+E = — =
( ) pl }\2 - 82 Pl YZ Pg (19)

Thus YZ describes the response of the eigenvector Py to the OI analysis

procedures defined by P (P + E)—l. P is a symmetric real matrix so

all the eigenvalues )‘1 are real. All the elements of P on the main

diagonal are equal to 1 so that
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In general, if 0 < ;2 << Al then Yl > 1. If
0 < XZ < <¢g? ' then v, 0. Usually, P would be
positive definite so that Xg , for all & would be positive. Thus, Al
large corresponds to a well-resolved structure whereas lz small corresponds

to a structure which is damped by the analysis procedure.

We will now apply this technique to a simple one-dimensional observation
network of heights and winds in order to examine the effect of the
geostrophic constraint. The observation network has 5 points lying on the x
axis - 3 heights and 2 v winds with the wind and height points interleaved.
The points are equi-spaced( Ax } and the characteristic scale of the
prediction error correlation is defined to be b. The system has 5

eigenvectors. We will consider the case Ax/b= .5 , v =20 .

In Fig. 12 we show the 5 eigenvectors for the case yu =0 (top row) and
u=1 (bottom row). The 3 height values are connected by solid lines and
the 2 wind points by dashed lines. 1In the case & = 0 the height and wind
eigenvectors separate out .and we have ordered them by decreasing scale as Zqr
Zy and z3 for the height eigenvectors and W, and W, for the wind

modes. For the case B = 1 the corresponding eigenvectors Gl ' G2 , and G3
are geostrophic and the A1 and A2 (again ordered by decreasing scale) are

anti-geostrophic. (We define an anti-geostrophic eigenvector when the wind
and height gradient‘have the opposite sense to that defined by the
geostrophic relationship.) We see that G1 is a combination of Zl and W2 ’

Z and

G is a combination of W1 and Z2 . G3.is a combination of W2, 1

2

Z3 etc.
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Fig. 13
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The eigenvalues for the eigenvectors of Fig. 12 as a function
A - anti-geostrophic. Superscript

of Y. G indicates geostrophic,

G indicates Gaussian while superscript M indicates Markov.
The abscissa is U and the ordinate is the value of the
Note the break in the ordinate at .1 with a loga-

eigenvalue.
rithmic scale below.
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We show in Fig. 13 the eigenvalues lz for these 5 eigenvectors as pu is
varied. During this process Gl degenerates into Z1 ,G2 into Wh etc. We
plot the eigenvalues for two prediction error correlation models (Gaussian -
. solid curves and Markov -~ dashed curves). The Gaussian eigenvalues are
indicated with a superscript G and the Markov eigenvalues by a superscript M.
There is a break in the ordinate at A = - 1 with a linear relationship

above and a logarithmic relationship below.

Considering first the Gaussian case, we notice that the geostrophic

eigenvalues for the modes GG . GG , and Gg

1 5 are much larger than the

anti-geostrophic at M =1 . Thus, the anti~geostrophic eigenvectors will
generally be damped by the analysis procedure as we might expect. At u = 0

the eigenvalues are ordered principally by scale, with the larger scales

being more effectively analyzed.

At § = ! the anti-geostrophic eigenvalues are extremely small, but increase
very rapidly as u is decreased, effectively asymptoting at 4 = *8. This
result is consistent with the results of the last section which showed that

most of the variation in the analysis weights occurred between 1 < u <8,

Considering the large-scale geostrophic modes Gf and Gg we see that the
eigenvalues increase as U is increased. This implies that a given

geopotential structure will be better analyzed if (1) u=l and (2) there

are supporting wind observations which are geostrophically consistent.

Experiments with the Markov model (dashed lines) indicate guite different
results. In particular, for j = 1, the anti~geostrophic modes have much
larger eigenvalues than for the Gaussian model, indicating that these
eigenstructures are not as effectively suppressed. This is not surprising

considering the relatively weak <u-z> and <y-z> correlations shown in

Fig. 2.
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One question that might be raised by the results plotted in Fig. 13 is: why
are the eigenvalues for the anti—geo;trophic mode A1 and A2 not equal to

zero at H=17? After all, we can write equation (7) as

where the Wk have been determined by the OI pr&cedure, and the hi (at

u =1) are in exact analytical geostrophic balance. Thus, the resulting
analysis (within an analysis box) should be in exact geostrophic balance and
there should be no anti- geostrophic flow. The answer to this apparent
discrepancy lies in the fact that in eguation (18) we have produced the
analysis on a discrete set of points. (This discrete set of analysis points
happens to coincide with the observation points, but this is not relevent to
the present argument). Because the geostrophic relationship impliéd by both
Gaussian and Markov models is analytic, it is not consistent with any
discretization procedure applied on the analysis grid. We can demonstrate
this simply by replacing the Gaussian model with its discrete finite

difference analogue using second order finite differencing.

The <2zZ-V> correlation becomes

—-Sdz sinh OX -.5x2
e S48 = e (20)

and the <v-v> correlation becomes

2
2 -+ 5x
Y [ sinh a? cosh® X = cosh a? sinh2 O‘X] e

where a = Ax/ o
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s ¢ * 0 the operators degenerate to the normal analytical form.

)
<z-v 2 = _yx o 7O%

. 2
< v-v > = (1 - xz) e 5x

If we find the eigenstructure using the prediction error correlations of
equation (20) we find that there are only 3 non-zero eigenvalues, those

corresponding to the 3 geostrophic eigenmodes Gl' G2 , and G3 .

The results of Fig. 13 spotlight a fundamental conflict in multi-variate

optimal interpolation. If we desire to suppress ageostrophic flow then some
of the eigenvalues of equation (19) must be small and positive. At the same
time, there is difficulty in inverting the matrix P + E if there is a great
range in the eigenvalues of P . It is for the latter reason that E has to

be occasionally augnented to make P + E more diagonally dominant.

We will next use the eigenvector decomposition technique to investigate the
non-divergence constraint. In this case, it is appropriate to work in
two-dimensions (although +the one-dimensional case can be analyzed, the
results do not bear much resemblance to the much mdre important
two-dimensional case.) We define an observation network consisting of an
equilateral triangle of 3 points with an observation spacing Ax . At each
of the 3 points there are u and v components of the wind. We will set

U =0, so that 2z does not enter into the problem. The characteristic scale

of the prediction error correlation is defined to be b.

We show in Fig. 14 the 6 eigenvectors of the system for Ax/b = .5.
Eigenvectors 1 and 2 define the u and v means, 3 and 4 represent deformation

structures, 5 is a rotational eigenvector and 6 is a divergent mode.
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Eigenvectors 5 and 6 are invariant under variation of v and Ax/b , the
other 4 eigenvectors are not. Consequently, we will concentrate our

attention on the invariant eigenvectors 5 and 6.

We show in Fig. 15 the eigenvalues AS and )‘6 (rotational and divergent
eigenvalues) for the Gaussian model as a function of Ax/b(abscissa)

and v (ordinate). Isopleths of constant A are plotted generally with a
contour interval of (.,2. For very small values of A logarithmic contours are

drawn.

At very small Ax/b both XS and )‘6 are small because for this very close
observation spacing (or large b) the mean eigenvalues (1 and 2) are dominant.
Recall that the sum of the eigenvalues is invariant. At very large values
of Ax/b all eigenvalues tend to 1. The results at large Ax/b  become

difficult to interpret for the reasons given at the end of the previous

section.
In general >\6 is much smaller than }\5 at v = 0 , but they becane equal at
v = *5 ., The largest variation in )\6 is between v=0 and v ="1 , which

is consistent with the results of the last section concerning the variation

of the analysis weights with Vo,

In Fig. 16 we plot the results for the Markov model in the same format as
Fig. 15. The relative lack of sensitivity of the Markov model to variation

of Ax/b and V is evident.

We complete this section with a brief examination of a more complex case. We
consider the two-dimensional array consisting of 9 geopotential observations
and 4 wind observations on an Arakawa B-grid (Mesinger and Arakawa, 1976).

The u and v wind components are collocated at positions eguidistant from the
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4 nearest geopotential points. There are 9 + 2 x 4 = 17 degrees of freedam
and thus 17 eigenvectors. We will consider a Gaussian model with bX =Db and

Ax/Db .5 « We show 3 examples v ;(L p=1. - Fig. 17,. v=0., p=0. - wig. 18

and v = -1, p=0 - Fig. 19.

We show the 17 eigenvectors starting at the upper left hand corner and
proceeding downward and to the right by decreasing eigenvalue. Above each
eigenvector is shown the corresponding eigenvalue. All eigenvectors (except
thg(first) have been normalized so that the absolute value of the largest
wind or height value is egual to one. The height contours are .2 with
negative values dashed and positive values solid. The winds are indicated by

arrovws.

There are multiple eigenvalues in all three figures which correspond to a
two-fold symmetry. Single eigenvalues have 4-fold symmetry. We consider
first the effect of the geostrophic constraint (Figs. 17 and 18). Several
of the features noted earlier in this section are also apparent here. The
combination of eigenvalues 1 and 6 from Fig. 18 to produce eigenvalue 1 of
Pig. 17 increases the eigenvalue and this is true of other large—scale
modes. With u=1_there are only 6 eigenvectors (Fig. 18) which have large

eigenvalues, the rest are effectively damped.

Comparing Figs. 18 and 19 we see how the eigenvalue of the divergent mode
(number 10 in Fig. 18) increases by 2 orders of magnitude as Vv is increased
to .1,

3.3 Scale decomposition of the analysis error with simple
explamation of large-scale deficiencies

one of the aims of the present work is to examine the scale response of the
OI method. 1In this section a technique developed by Seanan (1977) will be
used to investigate the scale response of a siﬁple one—diménsional box

analysis. The scale response of the two-dimensional multi-bax f-plane case

will be examined in Sect. 4 using a different technigue.
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Seaman's (1977) technique can be explained as follows. The expected analysis
error in a single box analysis at an analysis point k can be calculated using

equation (6).

a, o _ . _ T T
(&:k) =1 2thk+WkMWk
which is the more general form of eqﬁation (8). ( 2 ) 2 will be a minimum

k

if the Wk are chosen according to eguation (7). Suppose, however, that we

*
have a sub-population 9 of the parent population g of observed minus

forecast values. We suppose further that the means and variances of the
sub-population are the same as those of the parent population

* * .
E =E ,E =E etc. This sub-population is assumed to have a different

P p. o ©
spectral dj.stribution than that of the parent population. We will assume the
same prediction error correlation models for the two populations, but the
characteristic scale of the sub-population will not equal the
characteristic scale ot tﬁe parent population. Seaman (1977)‘ shows that
the expected analysis error in this case is given by
* %
L oW MW (1)

Yy =1-2 W_h

T
k
*

where W, are derived by equation {7) for the parent population and the hk

*
and M are derived by eguation (6) for the sub-population.

We will use this technigue to examine the expected analysis error for a
population of observed minus forecast increments which is different from that
assumed j_n the specified prediction error correlations. 1In particular, we
shal]T be interested in the case where the population éf observed minus

forecast increments has a larger scale than that assumed.
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a*
We have calculated(Ek )2 for a simple one-dimensional analysis box as a

function of observation density and sub-population characteristic scale. We
assume the characteristic scale b of the parent population to be 600 km and
define sub-population scales ranging from 300 km to 20,000 km. We fix these
numbers for the sake of concreteness, but they can all be scaled by b. We
define a 7 point one-dimensional observation network with equal spacing Ax .
z and v are collocated at every point of the observation network. We then
vary the observation spacing between Ax =200 km and Ax=4000 km. We
calculate the expected analysis error(ei*)Z at each point k of the
observation network. We assume the same observation error as in section a =
Eg = .25, We assume a Gaussian prediction error correlation model with

v=0ana u-=1.

In Fig. 20 we show the expected analysis error averaged over the 7

points of the observational network as a function of sub- population
characteristic scale (abscissa) and network spacing(ordinate). Four cases
are shown. The left hand column is the calculation of z and v analyses fram
geopotential observations only; the right hand column is the calculation of z
and v analyses from wind (v) observations only; CEE*LZ > 1, indicates a

worthless analysis.

The optimal interpolation method produces a minimum in analysis error
integrated over all scales and for many realizations provided that the
spectral distribution of the observed minus predicted is the same as that
assumed in the correlation model. The OI method will not necessarily produce
a minimum analysis error in any particular scale, although one would expect a
relative minimum in scales of approximately b. In particular, scales which
are much larger or much smaller than b would not necessarily be individually
optimally analyzed. Julian and Thiebaux (1975) have argued that there are
implied specﬁral windows in the prediction error correlation function caused

by the minimum and maximimum observation spacing with which the correlations
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are calculated. Moreover, the planetary scale motion is daninated by the
stationary component of the flow and exhibits a marked anisotropy and
non-hanogeneity (Boer and Shepherd, 1983) which violates the assumptions

implicit in Sect. 2.

The problems at small scale, particularly for large observation spacing, are
evident in all panels of Fig. 20. This result is as expected, and it is
clearly desirable to damp very small scale structures from the analysis in

any case.

The large expected analysis error at large-scales (sub-population
characteristic scales larger than 2000 km) are not as well-known and we will

devote the rest of the sub-section trying to understand them.

Considering first the calculation of geopotential analyses from geopotential
observations (z from z), we notice that the large~scale analyses are quite
good, but with a tendency to deteriorate at large observation spacing. The
calculation of wind analyses from wind only observations (v from v) show a
substantially different long-wave problem. Here, there are relatively
greater long-wave errors than in the z from z case, with a stfong relative

maximum error (more than 100%) at an observational spacing ( Ax ) equal to 2b.

The v from z and z from v plots show different patterns again with very large
long-wave errors with a weak minimum at observational spacing at AX egqual to
2b. We will examine the reasons for these long wave errors using a very
simple one-dimensional box model. Here, we will assume that we have 9
observations of wind{(v) and height (z) collocated and separated by an
observational spacing AX . We will then produce a very high resolution
analysis (virtually continuous) from these observations using a one box 0TI

method. We assume a Gaussian prediction error correlation model (p=1 and
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Fig. 21 Continuocus analyses producéd from a 9 - point one-dimensional uniform

observation network. The ‘“truth’ is indicated by the heavy solid
line. The analyses are shown for different values of observation
spacing A x - viz A x = .5b, b, 2b and 4b. The ordinate is amplitude
and the abscissa is x in units of b. Four cases are shown arranged
in the same order as in Fig. 20. This case assumes a Gaussian model

with =1 and v=o.
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v = () and an observational error eg = .25 « We will display the
resulting analyses between -b and +b. We will do 4 different cases -‘z from
z, z from v, v from z, and v from v with different observational spacings
Ax =,5b, Ax=b, Ax =2b,and Ax =4b. Wé stress again that these are
(virtually) continuous analyses and not simply projections back on the '
observation points. We will use a very large-scale observation field. Thus
for the geopotential only observations we assume z=1 everywhere; the
appropriate geostrophic winds (u =1) in this case would be v=0 everywhere.
For wind only observations we assume v=1 everywhere; the appropriate
geostrophic height inh this case would be z = 1 + x. (We have added an
arbitrary constant of integration in this case).

We show in Fig. 21 the resulting analyses in the 4 cases. The solid thick

lines indicate the true solutions; the lighter solid lines show the resulting
analyses for Ax =,5b, Ax=b, Ax =2b, and Ax =4b., Edge effects have been
minimized in these plots because the observational points go far beyond the
edge of the plots - thus, for example, for Ax =.5b the most distant

obgervations are 2b and for AX =4b the most distant observations are at 16b.

We will examine first the cases with geopotential only observations. The z
from z case shows a reasonably good analysis except at A% =4b in which case
the analysis goes to (1 + eg)_i= .8 at the observation point (x=0) and falls
off in between. (At the large Ax limit each analysis is produced with one

observation and reflects the shape of the structure functions in between

observations).

Looking at the resulting geostrophic wind (v from z in lower left hand panel)
we see that x = 4b results in a large spurious positive v for positive x and a
large spurious negative v for negative v. 1In two-dimensions this would be

expressed as a spurious local maximum or minimum of z with a corresponding spurious
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geostrophic wind around this geopotential extremum. At the other extreme for
Ax= .5b the geopotential analysis is good, but the resulting wind analysis

is in error in the opposite sense. There is a relative minimum in the wind
error at Ax = b (cbscured by the true solution - heavy solid line in Fig. 21).
Thus, we can see that there ié some justification for the relative minimum

in the large-scale wind error in Fig. 20 (lower left hand panel).

We turn now to the wind only cbservation cases on the right hand side of Fig. 21.

In the z from v case, the OI method is unable to obtain the constant of

integration as noted by Lorenc (1981). 1In fact the constant of integration

has been set to zero. Also the method does not produce the large-scale geopotential
gradient correctly either. Itvmight be noted in Fig. 20 (upper right hand

corner) that there are some scales where the constant of integration is ;mall

and thus a reasonable analysis of z can be obtained from v.

For the v.from v case there is the same fall off between observation points at
Ax = 4b as in the z from z casé. What is more interesting, though, is the
serious underdrawing of the large-scale windfield for the intermediate
observation spacing b < Ax < 2b. The reason for this can be seen by examining
Fig. 1 which shows that the <u-u> and <v-v> correlations have large negative
lcbes. Thus, for a very large-scale windfield the observations at x = 2b

would be negatively weighted in the analysis of v at x = 0.

Further light is shed on the v from v large~scale analysis prablem in Fig. 22.
There are two v from v cases plotted here, in the same format as Fig. 21.

In both cases the experimental parameters are the same as in Fig. 21 with

the following modifications. In the left hand panel we used 21 observations
instead of 9. The observation spacing is the same as in Fig. 21, but we
search further for them. In the right hand panel we assume 9 aobservations,

but we use the Markov mcdel. The 21 point case demonstrates that the
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Markov function (right panel).

48



underdrawing gets worse for the large-scale windfield as more observations
(further away) are included. Fig. 1 shows that the <u~u> and <v-v> correlations
are negative over most of the domain so this result is not surprising

(although the effect may be exaggerated in one-dimension).

The Markov model (Fig. 22 - right hand panel) shows gquite different results
from the Gaussian model. Here, the underdrawing at the observational points
ig not as severe as in the Gaussian case, but there is a serious underdrawing
in between the observation points - in fact the curve represents a series of
isolated structure functions. This is presumably because of the weaker

negative lobes in Fig. 2 in the u-u and v-v correlations.

This section has uncovered some interesting and largely unknown potential
problems in the OI analysis of large-scale waves. The problems of generating
largefscale wind analyses from geopotential observations and vice versa are
probably merely curiosities because the assumed geostrophic relationship is
incorrect for the large~scale flow on the sphere in any case. The problem of
underdrawing the large-scale windfield when only wind observations are used

is potentially serious in the tropicse

4. TWO—DIMSIONBL MULTI-BOX ANALYSES ON F-PLANE AND SPHERE

The simple box experiments of Sect.3 have provided a number of useful
insights. into the internal mechanisms of multi-variate optimal interpolation.
We are now ready to relax same of the constraints of Sect.3 and to examine
more realistic and complex experimental situations. In particular, we shall
now introduce spherical geometry and the multi-box procedure used at the
BCMWF. However, we shall still retain other important simplifications : viz,
no vertical variations, no data checking, a homogeneous observation network
and error free data. In Sect. 4.1 we shall perform multi-variate multi-box
experiments on a two-dimensional f-plane. Our particular aim is to obtain a

complete two—dimensional scale response for the geopotential, rotational wind
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canponent and divergent wind component. We shall pay particular attention to

some of the problems noted in Sect. 3.3 concerning longwave analysis.

In Sect. 4,2 we shall examine the effect of spherical geometry on the
analysis scheme. These experiments were inspired by the results of Cats and
Wergen (1982) who showed that if the ECMWF analysis system was presented with
a single large-scale Rossby or Kelvin wave, there were serious errors in the
resulting analysis, even with a homogeneous observation network. Here too,
we shall be concerned with the analysis of large~scale Rossby and Kelvin

waves, but the emphasis will be strictly horizontal.

4.1 Multi-bak analysis on an f-plane.

The box-averaging scheme for producing the final ECMWF analysis from a iarge
number of single box analyses is a unique feature of the ECMWF OI scheme.

The box=-averaging simply requires that the final analysis at a given point be
a weighted linear combination of the local analyses produced in the
neighbouring boxes, evaluated at the point. The weights are related to the
distance of the analysis point from the box centre (maximum at the box centre
and falling linearly to zero at the box boundaries.) Fran a didactic point of
view, this procedure implies that analysis on an infinite plane is a simple
extension of the single box results of Sect. 3. Analysis on an infinite
plane offers two pedagogical advantages: edge effects are eliminated and a

proper divergent response can be obtained.

In this section the basic technigue is simply to present the multi-box
analysis scheme with a single two-dimensional Fourier camponent in u,v and/or
z and then determine the response of the analysis scheme to this wave. As
before, we assume that we are dealing with the observation minus first guess
differences. Thus, we have specified a multi-box analysis scheme with the

following representative characteristics. The box centres are 660 km apart
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and each analysis box is 1320 km x 1320 km, so they are overlapping as in the
ECMWF scheme. The observational network is specified to have a regular
spacing. The characterisic scale b.has been chosen to be 600 km, the
observation error ratio Ei = .25 and we have used the Gaussian model. The

analysis grid spacing is 200 km.

The results of these experiments are not insensitive to the data selection
strategy chosen. fhe responses could differ between the selection strategy
of ECMWF whiqh includes lérge numbers of observations and the strategy at
other centres which includes a small number of highly correlated
cbservations. In order to make the present study'as general as possible we
have déliberately included large numbers of observations in the hope that
they will define some type of asymptotic limit. Thus in each analysis box we
search out radially 3.5 times the observation spacing to obtain data. This
gives approximately 40 observatioﬁs of each data type per box (ie. 120
observations if u,v and z observations are used.) Thus the present experiment
uses approximately the same number of observations aé the ECMWF system.
(although the ECMWF system searches vertically as well, so that the

horizontal search would be more confined than in the present experiment) .

The experimental parameters which we vary in these investigations are

V, U« bX' the observ;tion spacing Ax and the scale of the two~dimensional
Fourier component. The input winds and heights have an X scale &x and a y
scale ly. We will relate the guarter wavelength of these waves to the
circumference of the earth (40000 km). For example, a wave with a quarter
wavelength of 10000 km would be wavenumber 1. In most experiments we will
assume - =.2y,

A typical experiment is shown in Fig. 23. Here the input is wavenumber 20
(lx=£y=20)': The observation spacing Ax=800 km, V =0 and p=1. The input or

truth is. shown on the botton panel (height on left, winds on the right). The
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Fig. 23 A typical multi-box f - plane experiment - height is on
the left, winds on the right. Box centers are shown by
the location of the numbers, with the numerical value
indicating the number of observations used in that box.
In this experiment the input is wavenumber 20 with
heights and winds geostrophically related and the uni-
form observational spacing is 800 km. The bottom panel
is the ‘truth’, the middle panel is the analysis with
wind or height observations only and the top panel is
the analysis with both wind and height observations. The
small black squares indicate the observation points.
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24 Summary of the résults of all experiments of the type illustrated in

Fig. 23. These are response diagrams as a function of input wavenumber
(abscissa) and observation spacing (ordinate). On the top of each diagram
is also shown the quarter wavelength (km). (a) geopotential response to
geopotential observations, (b) wind response to non-divergent wind
observations, (c) wind response to jrrotational wind observations, (d)

_ the response of height or wind to geostrophically consistent winds and

heights. The experiments are for u=1, v=o
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inputs are exactly geostrophically coupled, so there is no divergent flow.
The observation éositions are indicated by the small black squares on the
bottom panel - they are exactly collocated. The height variation is from -1
to +1 with contour interval .2 and all wind analyses can be strictly compared
to the wind input. In the top and middle panels of Fig. 23 we show the
resulting analyses of height (left side) and winds (right side). The large
numbers in these analyses indicate the position of the box centres and the
values indicate the number of observations used in that particular box. This
plot shows only a sub-section of a larger plot, so that no edge effects are
visible. The analysis of the top panel uses height observations only (left
side) and wind observations only (right side). The middle panel uses both

height and wind observations.

Examining the fesponses of height and wind fields we see that the wind
response is about .7 in both cases. On the other hand, the height response
is about .2 with only height observations, but .7 with the addition of wind
observations. This result confirms one of the conclusions drawn in Sect. 3
section b, namely that when u=1 and there is a supporting geostrophically

consistent wind, the height will be better analyzed.

The results with many input scales are summarized in the response diagrams of
Fig. 24. Here we plot isopleths of response (.9,.7,.5,.3,.1) as a function
of observation spacing (abscissa) and input scale (ordinate). We indicate
abscissa values in both wavenumber and quarter wavelength. All parameters
describing the analysis scheme are as described above. Responses less than
.3 are hard to determine, for there may be spurious components of different

character or scale in the analysis.

In Fig. 24a we show the geopotential response to geopotential observations

only; in 24b the wind response to non-divergent wind observations only; in
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Fig, 25 An example of under~-drawing the large-scale windfield. The input
windfield observations are wavenumber 1 - non-divergent and the
uniform observation spacing is 800 km,
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Fig. 26

An example of problems with the geostrophic coupling in large-scale

flow. The boxed numbers indicate the box centers and the number of
observations used in that particular analysis box. The height contour

interval is.01l.(a) (b) (c) are analyses while (d) is the ‘truth’.(a)and (b)
have height observations only,(c) has both wind and height observations.
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24c the wind response to irrotational wind observations only; and in 244 the
response of either wind or height (they are the same) to geostrophically

consistent wind and height cbservations.

Examining 24a, b and d we note that small-scale wind fields can be analyzed
better than small-scale height fields, which might be expected from an
examination of the structure functions of Fig. 1. The problem with

under-analysis of the large-scale windfield shows up in the upper left hand

corner of Fig. 24b. We note that 24d shows how the addition of

geostrophically consistent wind observations assists the analysis of the
multi-scale height field. As indicated earlier, most of the results were obtained
with fy = &y . We did a few runs with different aspect ratios, however, and

did not find much sensitivity.

In Fig. 25, we demonstrate the undexr—-drawing of the large-scale windfield
that appears in Fig. 24b. This is a wavenumber 1 case with truth on the

left and analysis on the right. The cbservation points (Ax = 800 km} and box
centres are indicated as before. The extensive underdrawing shows up

clearly.

In Fig. 26 we examine the problem with large-scale height and wind analyses
indicated in the lower left hand corner of Fig. 24d4. 'This is a blow-up of
one section of the analysis. The observation spacing is 200 km, p=1, and
the box centres are indicated by numbers as before. The height contour
interval is .0l1. This is a wavenumber 1 case with the geostrophically
consistent truth in the lower right hand corner (26d).. The obsexrvation
positions are indicated by the position of the wind arrows in Fig. 26d.

In this case the observation network and analysis grid coincide.
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Fig. 27 Same as Fig. 25 except for irrotational wind input of wavenumber
15. The ‘truth’ and analyses for V=0 and V=1 are shown.
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Fig. 28 Response curves in the same format as Fig. 24 for irrotational wind
input for two cases - left v=.1, bxfb and right v=.1, bx=2b.
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In Fig. 26 a, b, c we show the resulting analyses in 3 cases. In Fig. 26a and
b we show the analyses of height and wind when only height observations

are used. Fig. 26b shows the resulting normal analysis and it is chvious
that it is not at all geostrophically consistent. In Fig. 26a we show the
same analysis without box-averaging (the analysis box boundaries are shown by
straight black lines). 1In Fig. 26a the analyses are geostrophic within the
boxes (as they must be when p = 1). It is the box averaging which produces
the non-geostrophic effects. This effect occurs, as has been noted
previously by others (Cats, G. — personal communication), because the

lateral variation of the box-averaging weights is not considered in
calculating the geostrophic winds. In Fig. 23d we show that the addition

of wind observatiéns assists the problem, but does not cure it., We stress
that this pathological example is not as worrying as it might seem. Firstly,
the geostrophic relationship is not really valid on these scales anyway.
Secondly, it requires a very weak height gradient compared to the. absolute
magnitude of the height, and thus the geostrophic winds are very weak in any

case.

We turn now to consideration of the divergent wind. We show in Fig. 27 an
example of analysis of a divergent windfield. The truth is on the bottom and
two resulting analyses are above. At the top is the case v = 0 and in

the centre v = .1. 1In this case bX = b and all other experimental parameters
are as before. The input is wavenumber 15 and the observation spacing is

600 km. The cbservation positions and box centres are indicated as before.
We see that for this example, v = 0 virtually suppresses the divergent

motion, whereas v = .1 gives a response of about .5.

The divergent response for the case v = 0 are shown in Fig. 24c. The
complete suppression of the divergent wind (compared to the rotationall
except at very large-scales and dense observation networks is evident. In

Fig. 28 we show the divergent responses in the case v = .1, bX = b (Fig. 28a)
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Fig. 29 Spherical harmonic spectrum of the kinetic energy of the 200 mb
divergent wind for January 1979 (reproduced from Hollingsworth and
Cats - 1981).
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and v= .1, by = 2b (Fig. 28b). The much stronger response in the

shorter waves is evident in Fig. 28a. It is probably undesirable to have
too strong a divergent response in the short waves, so there is good reason
to make bX larger than b. The choice of bX = 2b reduces the response for
the short waves (except when the data density is high), but increases the
response in the long waves for low data density. It might be noted in
passing that the change of bX and V does not change the response to the
rotational wind except for an improvement in the longwave, low data density
case. This is because, for a single analysis box, longwave rotational and
divergent flows are indistinguishable,

Our response curves for the divergent flow in the case v = 0. (Fig. 24¢)
is consistent with the spectrum of analyzed divergence obtained from the FGGE
data set using the ECMWF system. We reproduce in Fig. 29 a plot of the
spherical harmonic spectrum of the kinetic energy of the 200 mb divergent
wind for Janauary, 1979. This plot was originally due to Kanamitsu and was
presented in Hollingswoth and Cats (1981). It demonstrates that there is
really very little analyzed divergent kinetic energy in wavenumbers higher
than 6. Now, these FGGE analyses are produced from a linear combination of
first guesses and analysis increments. Our Fig. 24c demonstrates that the
ECMWF analysis system (with Vv = 0.) underestimates the divergent winds on
the shorter scales, which is consistent with Fig. 29. The lack of divergent
kinetic energy in the first—guess field is explained by the damping effect of

the full field interpolation plus adiabatic initilization.

4.2 Analysis of planetary scale modes in pseudo-spherical geometry

Cats and Wergen (1982) determined the response to the full ECMWF analysis
system to the input of planetary scale modes. They specified an analytical
"observed minus forecast field" which they then sampled on a homogeneous 7.5

degree observation network. The specified input consisted of individual
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normal modes of the ECMWF gridpoint prediction model. These normal modes
were then analyzed using the full ECMWF system. The resulting analyses could
then be back-projected onto the normal modes and the response of the input

mode and the aliasing onto other modes could be determined.

Cats énd Wergen (1982) presented the full ECMWF analysis system with various
large-scale Rossby and Kelvin modes of different equivalent depths and zonal
and meridional scales. They concluded that the mid and high latitude
analyses of these modes were acceptable, but that the tropical analyses were
poor. Consequently, the modes, particularly the Rossby and Kelvin waves,
tended to alias substantially in the analysis. Part of the problem, at
least, they attributed to difficulties with the vertical prediction error

correlations, but there were probably horizontal effects as well.

Inspired by the results of Cats and Wergen (1982) and the conclusions of
Sect. 4.1, we decided to examine the horizontal aspects of the

planetary scale analysis problem. This could be done using a fairly
straightforward extension of the f-plane code developed in the preceeding

section.

We decided not to use true spherical geometry because of the many
complexities in the vicinities of the poles. Instead we decided to limit our
analysis to the region 60 degrees north to 60 degrees south and to make the
following modification to the coordinate system to partially account for the
convergence of the meridians. We relate our usual x,y coordinates to the

pseudo-spherical latitude (6 ) and longitude( A ) in the following way.
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Fig. 30 Assumed prediction error in the heights (dashed line) and winds
(solid line) as a function of latitude for the experiments of
section 4.2. The ordinate scale for the heights (m) is on the left
and for the winds (ms~1l) is on the right.
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It is necegsary to make this spherical correction in order that the
geopotential gradients be consistent with the winds in the x,y coordinate

system.

We defined a multi~box analysis scheme with box centres 660 km apart and with
each analysis box being 1320 km x 1320 km as before. Following the ECMWF
system, b is defined to be 600 km north of 30N, 200 km south of the

equator and linear in between. We define H =,95 porth of 30N, —-.95

south of 30S and sinusoidal in between. We assume a Gaussian model with

v =0. The observation spacing is 750 km (similar to Cats and Wergen, 1982)
and in each analysis box we search out radially a distance of 3b looking for

observations. This gives approximately 50-70 observations per analysis box.

We assume an observation error of 3.4nm—1 in the wind and 12.1 m in the
height everywhere. The prediction error was specified to be the
zonally-averaged 500 mb winter values used by the ECMWF system. These are
plotted in Fig. 30. These are related geostrophically in the extratropics
(E, = gE,/fb)

We presented the analysis program with a series of large-scale normal modes
of the ECMWF gridpoint model, which we linearly interpolated to our
observation network. Rossby, Kelvin and gravity modes, symmetric and
anti-gymmetric, of different equivalent depths and zonal and meridiomal
wavenumbers were all tested. We show here 4 examples. These are all

external modes with an equivalent depth of 11886 m.

Fig. 31 shows the truth (left) and analysis (right) of the first symmetric
Rossby mode of wavenumber 1 (5 day wave). The plots extend from 10 degrees
south to 60 degrees north. The longitude, by eguation 22, varies from top

to bottom. The geopotential is contoured with a contour interval of 1 and
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Truth Analysis
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the winds are indicated by the wind arrows. The winds can be strictly
compared between truth and analysis. The positions of the observations are
indicated by wind arrows on the truth plot. The box centres are indicated by
the large numbers on the analysis plot and the values of the numbers indicate
the number of observations used in that particular box. The analysis is
evaluated on a 400 km grid (indicated by the wind arrows on the analysis
plot). The analysis extends out further than is plotted, so there are no

edge effects.

Fig. 31 shows that the first symmetric Rossby mode is fairly geostrophic
except near the equator. The analysis scheme does a reasonably good job on
this mode except for a systematic under-drawing of the winds in the tropics.
The height analysis is good everywhere. All the parameters of the analysis
scheme are at most functions of latitude, so the relative response of the
analysis scheme is independent of longitudef (This is not the case with Cats
and Wergen's(1982) results, where the assumed prediction error is a function

of longitude and pressure as well).

Fig. 32, in the same format as Fig. 31, shows the first symmetric external
eastward gravity mode of wavenumber 1 (Kelvin mode). BAgain there is a very
good height analysis and under-drawing of the tropical windfield. In
addition, there is a systematic turning of the winds toward geostrophic in
the sub-tropics. In other words, this mode which is geostrophic at high
latitudes, is not completely geostrophic in the sub=tropics, but the analysis

system forces in geostrophy.

Fig. 33, in the same format as Fig. 31, shows the first antisymmetric
external Rossby wave of wavenumber 1 (mixed Rossby~ gravity wave). Again the
height analysis is good everywhere and the high latitude wind analysis is
also good. The remaining wind analysis is very poor. The wind in the

tropics is under-drawn and there is substantial spurious turning of the wind
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in the sub-tropics. This mode is the least geostrophic of the modes we

have shown so far, and it is not surprising that it is poorly analyzed.
However, the period of this mode (1.16 days) is not all that small and it

should be analyzed properly.

Fig. 34, in the same format as Fig. 31, shows the first symmetric
westward gravity mode of wavenumber 1. This is a true gravity mode and is
really nowhere geostrophic. As might be expected, the height is analyzed
well, but the winds are completely modified to be in geostrophic balance.

In effect, this gravity mode has been analyzed as a sort of Rossby mode.

Figs. 31-34 show that the analysis scheme analyzes the large-scale
geopotential field well. It generally does a good job on the winds at

high latitudes. It under-draws the large-scale windfield in the tropicé

and enforces geostrophy too strongly in the sub-tropics. Most of these faults
disappear if a characteristic scale b is chosen which is more appropriate to
the large-scale flow - i.e. b = 2000-5000 km. These general conclusions

are not at variance with those of Cats and Wergen (1982). Their specific
conclusions for a particular mode may differ from ours because of the
complicating effects of the vertical analysis problem. For example,
artificial analysis deficiencies could introduce an over-drawing of the tropical
windfield which could counteract the under-drawing noted in the present
experiments. Both the results of Cats and Wergen (1982) and the results of
this section are influenced in part by the choice of observation spacing

of 7.5 degrees. A finer observation spacing would produce less under-

drawing in the tropics.

5. CASE STUDIES OF DIVERGENT TROPICAL FLOW

The results of Sects. 3 and 4 suggest that there are real advantages in
using slightly divergent structure functions rather than the conventional
non-divergent structure functions. In particular, Fig. 28 shows the much

improved divergent response for intermediate waves if the non-divergence
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constraint is relaxed slightly. However,there is one serious objection to
the use of divergent structure functions. That is the possibility that the
analysis procedure will produce more ‘noise' or be less effective in

rejecting bad data.

To see how the slightly divergent structure functions behaved under more
realistic conditions we decided to do two case studies taken from the FGGE
data archives. These two cases - 12 GMT 16 December 1978 and 18 GMT 16
December 1978 had both been previously examined by Julian (1980). They were
both 200 mb analyses in the tropical western Pacific in which Julian (1980)
suspected that there were strongly divergent flows which were not well
analyzed by the conventional analysis system. We have chosen these cases
because the divergent outflow from the tropical convective clusters is at
about 200 mb, and because there are a great many aircraft reports and
satellite cloud winds at this level. The cases differ from each other

primarily in the amount of data available.

5.1 Case I - 12 GMT 16 December 1978

We show in Fig. 35 a wind analysis for this case. The region shown is from
25 to 22N and from 172W to 148W - i.e. in the tropical western Pacific. The
5 panels of Fig. 35 show the 6 hour forecast (produced by the ECMWF model),
the observations, the observation increment (observation minus forecast), the
analysis increment and the final analysis. The latitude is indicated along
the ordinate and the longitude along the abscissa. The wind speeds and
directions are indicated by the arrows. The wind magnitude can be obtained
fran the box in the lower right hand corner of each panel which shows a wind
arrow and the corresponding speed in m/s. Note that the increment has been
scaled by a factor of 3. In the 6 hour forecast, analysis increment and
analysis the winds are on a regular 2 degree grid., Also shown in these 3
panels is the divergence field with a contour interval of 10—5 s*l

(positive contours are ‘solid while negative contours are dashed). This
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divergence is calculated in a straightforward fashion using second order
centred differences. This divergence field would be similar, but not exactly
the same as that calculated by the finite difference operators of the ECMWF

model.

The 6 hour forecast was that used in the preparation of the FGGE IIIb grid
point analyses, interpolated to our 2 degree grid. The observations were
taken from the ECMWF FGGE archives. No geopotential or temperature
information was used. Three types of observations were used - aircraft winds
(AIREPS), satellite cloud winds (SATOBS) and radiosondes (TEMPS and PILOTS).
Any AIREP or SATOB between 300 mb and 100 mb was used directly with no
correction for off-time or off-level, The AIREPS are indicated by an open
triangle and the SATOBS are indicated by a solid square in the analysis'
increment panel. There are no PILOTS or TEMPS visible in the panels shown.
All data checking was done manually and in the area of interest no data was

rejected.

A multi-bax two-dimensional analysis was performed over an area approximately
twice the area shown to avoid edge effects. The position of the box centres
and the corresponding numbers of data in each box are shown by the numbers in
the observation increment panel. The box centres are 1320 km (6 degrees)
apart, with each analysis box being 6 degrees by 6 degrees. We define the
value of b exactly as in Sect. 4.1 and u is assumed to be zero

everywhere. The prediction error was assumed to be 9.5/5.4 times the prediction
error shown in Fig. 30. This multiplicative factor reflects the

fact that we are doing a 200 mb analysis rather than a 500 mb analysis. We
assumed an observation error of 8.4 m/s for AIREPS, 7.5 m/s for SATOBS and
3.4 m/s for TEMPS or PILOTS.F In Fig. 35 we used a Gaussian correlation

model with v = 0. The observation search radius was 1200 km.
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Julian (1980), in examining this case, noted that there appeared to be a

strong region of divergence oriented along a line from 8N, 170W to 9N, 150W.
This was surmised, not only from the data plotted, but also from data 6 hours
previously and also from GOES - WEST imagery for this time period. The

analysis for this case made by the ECMWF system can be seen in Fig. 11 of
Julian (1980) and can be directly compared with the wind analysis of our Fig. 35
(Note that the scaling of the wind vectors is not the same as ours and
Julian plots isotachs rather than divergence.) Despite the use of a
two~dimensional system with no vertical structure functions, the present
analysis is reasonably consistent with the ECMWF analysis.

The ECMWF analysis apparently produced divergence of the order of 1-2 x 10—55—1

extending along the aforementioned line. Julian (1980) made a

gubjective analysis of the divergence in this case and determined that there
were divergences in excess of 8 x 10—55_1 in the area. Julian (1980)
attributed the apparently weak divergence in the ECMWF analysis to the use of

non-divergent structure functions. We are now in a position to examine

Julian's (1980) conjecture.

In Fig. 36, we show the analysis increment field (including the divergence)
for CASE I as a function of V,; upper left hand corner (v =0.), lower left

hand corner (y =.1), upper right hand corner (v =.5), lower right hand

corner (v =1.). 1In all cases b= bx.

In examining Fig. 36 two points are fairly obvious. First of all, relaxing
the constraint of non-divergence does not greatly enhance the divergence in
this case. Secondly, the more divergent analyses even with Vv =1, are not

noticeably 'noisier' than for the non-divergent structure functions (v =0.).

We will consider first the apparent failure of V # 0 to substantially

enhance the divergence field. The results of Fig. 28, together with the
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conjecture of Julian (1980) both gave reason to expect a stronger divergence
response when V was increased. There is some increase in the divergence as
V  is raised, but the maximum value when v= 1, is only = 3X10_5 S—l.

The fact that the maximum divergence calculated here is much less than that
calculated subjecﬁively by Julian (1980) is not particularly worrying because
the calculation of divergence is strongly dependent on grid-spacing and
choice of finite difference operator. What is a little harder to understand
is why the change in calculated divergence field between v = 0. and Vv =-1

is so small when compared to the response diagrams of Sect. 4.

The major problem in this case is that there really isn't enough data to
define the divergence field well. Subjectively, the divergence field is
defined by the 3 northward pointing wind vectors at 10N and the 3 south%ard
pointing vectors at 5N in the observation increment field of Fig. 35. On
the other hand, the analysis increment for Vv = 0. (Fig. 36) has the main-
divergence centred at 5N , 155W where there is really no data at all. Very
likely, there is a large fictitious component of divergence in all the
analyses of Fig. 36. This situation is far removed from the regular

observation network used in producing Fig. 28.

We will now consider the second point mentioned earlier, the apparent lack
of 'noise' in the analyses with divergent structure functions (v # 0.) of
Fig. 36. The apparent 'smoothness' of these analyses even when v = 1.
were somewhat surprising at first, because it is widely believed that the
constraint of non-divergence acts as a noise filter for the analyzed wind

field.

We can explain our result with the following simple thought experiment.
Suppose we had two situations of wind observation increment which were very

close to each other and yet completely disagreed.
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We will assume the distance between observations A x <<b and that there is no
external reason to reject any of the data. Both of these situations would
tend to produce noise in the analysis. An analysis with VvV = 0. would
completely suppress TYPE B noise, but would partially draw for TYPE A
'noise'. On the other hand, and analysis with v = 1. would completely
suppress TYPE A 'noise', but would partially draw for TYPE B 'noise'. The
form of 'noise' produced in the two cases would be different - TYPE A ‘'noise’
would be rotational and TYPE B 'noise' would be divergent - but the magnitude
of the 'noise' would be the same. Since situations represented by TYPE A are
just as likely to arise as the situations represented by TYPE B, the kinetic
energy spectrum of an ensemble of analyses would contain approximately the
same amount of small scale 'noise' for the case Vv = 1. as for the case of
v =0, In fact, examination of Fig. 3 might suggest the 'noise' would be
minimized for v = .5, Tt would seem that the 'noise' is controlled by the

choice of structure functions and characteristic scale and not by setting

v = 0.
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The results of CASE I were not as expected. Slightly relaxing the
non-divergent constraint did not greatly increase the divergence as might
on the other hand, the wind analyses,

have been expected from Sect. a4,

even with v = 1., were not nearly as 'noisy' as expected.

5.2 CASE TI — 18 GMT 16 December 1978

We show in Fig. 37 the 6 hour forecast, observations, observation increment,
analysis increment and analysis for this case in the same format as Eig. 35.
The prediction error correlation model is Gaussian, v = 0. and the search
radius is 1200 km. BAll other parameters are exactly as in Fig. 35. It is
apparent that there are many more data for this case as an apparent divergent

flow can be seen by eye in the observation increment field.

In Fig. 38 we show the analysis increments for this case as a function of

v in the same format as Fig. 35. That is, V = 0. upper left hand

corner, v = .1 lower left hand corner, v = .5 upper right hand corner,
v = 1. lower right hand corner. What is immediately obvious is the large
change between the cases of Vv = 0. and v = .1. The flow becomes
noticeably more divergent with Vv = .1 in this case. The divergence

naturally increases as V 1is increased, but at Vv = 1. there is scarcely
any more divergence than in CASE I. Again, as in CASE I there is no

appreciable increase in 'noise' in going from v = 0. to v = 1.

In Fig. 39 we show the analysis increments for CASE II in the same format as
Fig. 38 for the case where we have used a Markov structure function instead
of a Gaussian. As before, there is a fairly strong change between Vv = 0.
and v = .1, but by and large, there is as much divergence produced as in
the Gaussian case. There is, however, noticeably more 'noise' in the Markov
case; both in the windfield and in the divergence field. This result might

have been anticipated from Sect. 3.
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In the course of this work, we have not generally been much concerned with
data selection strategies. In the regular observation networks used in
Sects. 3 and 4, the results are not all that sensitive to data selection.
For an irregular observation network, however, data selection does make a
difference as we show in Fig. 40. Here we show CASE II analysis increments
for v = 0. upper left hand corner, vV = .1 lower left hand corner, and
v=-5 upper right hand corner for an observation search radius of 600 km. All
other parameters are identical to those of Fig. 38. The number of
observations in each analysis box are indicated in the observation increment
panel in’the lower right hand corner. Here, we notice that with many fewer
data selected the case v = 0. differs substantially from the corresponding
panel of Fig. 38, with much more divergence being drawn in Fig. 40. On the
other hand, the Vv = .1 panels (lower left corner) are fairly similar in
Figs. 38 and 40. What is encouraging is that setting V = .l seems to
produce a fairly consistent result even when the data selection algorithm is

substantially changed.

The experiments of Sect. 5 have been at least partially successful. We have
found that in one case, at least, slightly relaxing the non-divergence
constraint produces a substantially improved divérgence analysis. This
analysis seemed to be less sensitive to changes in data selection strategy
than for an analysis produced using completely non-divergent structure
functions. Moreover, we have not found the analyses produced by slightly
divergent or even completely divergent structure functions to be noticeably

more 'noisy' than for the completely non-divergent structure functions.
Of course, relaxing the constraint of non-divergence is only the simplest of

several steps that must be taken to produce good tropical divergence

analyses. The high level outflow discussed here must be combined with low
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level inflow if the divergence fields are not to be destroyed by the
initializatién process or natural Rossby adjustment in an uninitialized
model. The combination of good low level wind data with appropriate vertical
correlations will be required. The use of IR data to define the high level
clouds as>suggested by Julian (1980) would also be helpful. A third
ingrediént for quality tropical divergence analyses is a sound convective

parameterization scheme for production of the first guess field.
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6. THE ANALYSIS OF LARGE-SCALE TROPICAL FLOW WITH A REALISTIC
OBSERVATION NETWORK

The experiments of Sect.4.2 together with the results of Cats and Wergen
(1982) have suggested that there are deficiencies in the analysis of the
large~scale flow even with a uniform observational network. Further
experiments have been performed by Cats and Wergen (1982) which imply that the
analysis of the large-scale flow is even worse when a realistic observation
network is used. 1In these experiments a single large~scale Rossby or Kelvin
mode was sampled on a realistic non-uniform observation network (obtained from
an operational file). These pseudo-observation minus forecast data (synthetic
but realistically distributed) were then analyzed by the operational ECMWF
analysis procedure. The analysis produced by the ECMWF analysis system from
these pseudo-observations was very poor, with the input mode being severely
damped together with substantial aliasing onto the other modes. They were
able to define é response matrix which demonstrated how the amplitude of any
particular large-scale mode was aliased onto the other modes. As before, the

problem was the worst in the tropics.

These results of Cats and Wergen (1982) are somewhat alarming, because they
suggest that there may be serious errors in the operational analysis of the
large-scale flow. Their results, however, are somewhat at variance with two
earlier studies - those of Leary and Thompson (1973) and Baer and

Tribbia (1976). Leary and Thompson (1973) examined the response of the
analysis system of Starr et al. (1970) to the input of single spherical
harmonics of geopotential sampled at the Northern Hemisphere radiosonde
locations. They found that there was a good response for large-scale
spherical harmonics and a poor response for small-scale harmonics, which is

intuitively reasonable. Baer and Tribbia (1976) defined a 'true'
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one-dimensional Fourier representation which they sampled on various
irregular one-dimensional networks. The analysis was performed usiné a
Gram~-Schmidt analysis procedure which produced estimates of each Fourier
coefficientwdirectly from the pseudo-observations. They concluded that
wavelengths greater than or equal to twice the maximum gap in the network
would be well-analyzed, but that shorter waves would not. These results of
Leary and Thompson (1973) and Baer and Tribbia (1976) are intuitively
reasonable, but they are at variance with the results of Cats and

Wergen (1982).

The éingle—wave experiment of Cats and Wergen (1982}, although philosophically
similar to that of Leary and Thompson (1973), is considerably more realistic.
It is global and thus includes tropical problems. It is multivariate and the
input modes are also multivariate. It is three-dimensional and thus includes

the very difficult vertical problem.

Presenting the analysis system with a single mode and examining the resulting
response is a technigue we have used extensively in the uniform observation
network experiments of Sect.4. However, the 0I method assumes that there
exists a spectrum of specifiéd character, and not just a single wave, so that
in some sense, the single wave experiments are unfair. For the uniform
network experiments of Sect.4, it is reasonable to deal with individual waves
because of the linearity of the problem and because aliasing is minimal except
forbthe'short waves near the Nygvist limit. 1In the realistic network case,
however,tﬁe validity of single wave experiments is less clear. Cats and
Wergen (1982) demonstrate that there is substantial alaising from a given wave
into other waves. Since the aliasing can obviously go in both directions and
may have constructive as well as destructive properties, it is possible that

single wave exﬁerimehts could give misleading results.

We can distinguish here between two types of errors. Let us suppose that we

have a group of large—scale waves that we wish to analyze. We will further
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_suppose that we are only interested in the low-frequency modes - Rossby and .
Kel;in waves. We could construct a large-scale 'truth' from these moaes,
sample it on a realistic network and present these pseudo-observations to the
OI system. From the resulting analyses on a uniform grid, we could project
back onto the set of large-scale Rossby and Kelvin modes and calculate the
error. This is essentially what was done by Cats and Wergen (1982) and more
simply by Leary and Thompson {1973), except that they only presented one mode

‘at a time. This type of error we will refer to as direct error.

There is, however, another type of large-scale error not examined by either
Cats and Wergen (1982) or Leary and Thompson (1973). That is the error caused
by the aliasing of smaller-scale waves into the large-scale waves due to an
inhomogeneous observation network. We will refer to this type of error as

indirect error.

It is clear that OI methods have both direct and indirect error. There are
analysis methods, however, which have no direct error. For example, a

least-squares fit to the large-scale Rossby and Kelvin modes, will have zero
error if the original pseudo-observations were constructed solely from these

modes. This is true on virtually any arbitrary observation network.

In this section we intend to investigate a number of questions raised in the
preceeding discussion. Our experiment will concentrate on the analysis of
the large-scale tropical flow. As before the experiment will be restricted
to two-dimensions, but in most other respects it will be more general than

previous work in this area.

We will define a 'truth' which is hopefully realistic in its spectral
characteristics and which is known everywhere. We will define two realistic
observation networks taken from the FGGE observational coverage. We will
sample the 'truth' with and without observational error at the observational

points and use the OI technique to obtain uniform grid analyses. We will
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then project the analysis onto a set of large-scale Rossby and Kelvin modes
and compare the results with the appropriate ‘truth'. We will also develop a
direct least-squares method for calculation of the Rossby and Kelvin modes

and compare the results with the OI procedure. Both direct and indirect
errors will be calculated. We shall attempt to resolve the discrepancies
between the results of Cats and Wergen (1982) and the earlier results of Leary
and Thompson (1973) and Baer and Tribbia (1976). We will also examine the

validity of single wave inhomogeneous network experiments.

6.1 Experimental design

Perhaps the most controversial aspect of experiments of this type is the
choice of the 'truth'. We wish to define a 'truth' which would have all the
characteristics of an observed minus forecast field, if such a field could be
known everywhere. The requirgment of being known everywhere automatically
precludes the use of real observations, so we are forced to rely on existing
analyses. We decided to use the fields obtained by subtracting two existing
ECMWF analyses 6 hours apart as our 'truth'. These analyses are the

uninitialized 200 mb heights and winds for 00 and 06 GMT January 15, 1979.

This 'truth' is shown in Fig.41(a) - geopotential height (m) and Fig.41(b) -
winds (ms~') on a 4 degree grid. These figures show the sections from 36
degrees South to 36 degrees North and from 180 degrees East to 180 degrees
West. The contour interval for geopotential is 30 meters and the wind
magnitude (in ms~1) is indicated by the box in the lower right hand corner of
fig,41(b). The tropical domain which we intend to use throughout this
experiment is defined by Fig.41. The rms height and vector wind variances in

Fig.41(a) and (b) are 22.16 meters and 6.913 ms~1 respectively.
The roughly geostrophic character of the ‘truth' at higher latitudes is

evident. It is also clear that there is power in all parts of the spectrum,

particularly in the smaller scales. We have chosen the 200 mb field for two
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Fig. 41 1Input height fields (a), wind fields (b) for the experiment of section
6. The height field has a contour interval of 30 meters and the wind
field is on a 4 degree grid with magnitude (ms—1) indicated in the
lower right hand corner. The uniform 4 degree grid used for analyzing
the large-scale balanced flow is shown in Fig. 41 (c). The solid
squares indicate the observation position. The resulting large~scale
balanced flow (Rossby and Kelvin waves of zonal wavenumbers 0-4)
determined from Fig. 41 (a) and (b) by network 41 (c) are shown in
Fig. 41 (d). The abscissa is longitude and the ordinate is latitude.
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reasons. Firstly, the tropical observation network at 200 mb is better than
at most other levels. Secondly, the 200 mb tropical flow is more interesting

than, say, the 500 mb tropical flow.

The next task is to determine the large-scale ‘truth' from the complete
'truth' shown in Fig. 41(a) and (b). We will arbitrarily define the large-
scale '"truth' as consisting of the 4 gravest Rossby modes and the Kelvin mode
of zonal waves 0 to 4. This defines 5x(2x4+1) = 45 degrees of freedom. In
three-dimensional experiments Rossby and Kelvin modes of many different
equivalent depths would be relevent. In two-dimensional experiments, however,
there is only one eguivalent depth which is at the disposal of the
experimenter. Because this was a tropical 200 mb experiment, we decided to
use the second internal mode of the ECMWF model, which has an equivalent depth
of 928 meters. We note that this mode is essentially an upper troposphefic

mode with a peak around 200 mb and is largely tropically trapped.

As mentioned before, the domain of the experiment is 36 degrees North to 36 degrees
South. We use the horizontal modes corresponding to the second internal mode of

the ECMWF model, which are orthogonal over the sphere. The modes of different zonal
wavenumbe; or different equatorial symmetry are also orthogonal over our tropical
domain. However, waves of the same zonal wavenumber and symmetry are not orthogonal
over the tropical domain. Although, not strictly necessary for our experiments we
decided to make the modes orthogonal over the tropical domain by using a simple
Gram-Schmidt procedure on the global ECMWF modes. We started with the Rossby and
Kelvin modes and constructed a new set of Rossby, Kelvin and gravity modes which
were orthogonal over the tropical domain. It might be noted, that because of the
way the procedure was ordered, all the orthogonal Rossby and Kelvin modes were
linear combinations of the old non-orthogonal Rossby and XKelvin modes. This Gram-
Schmidt process is not strictly necessary and all results obtained in this section

are virtually unchanged if it is not used.
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The large-scale 'truth' (Rossby and Kelvin waves) was constructed from the
complete 'truth' using the uniform 4 degree observational network shown in
Fig.41(c). The solid squares in this figure are the uniform‘observation

points where each of u,v, and z are assumed to be known. The resulting
large~scale 'truth' is shown in Fig.41(d). The height contour interval is 10
meters and the winds are shown every 8 degrees with the wind magnitude shown

in the lower right hand corner in ms=1. The rms height and wind vector

variance of these large scale fields are 16.18 meters and 2.036ms_1 respectively.
Again, the geostrophic character at higher latitudes is evident. We might add
here, that if Rossby and Kelvin modes of a different equivalent depth (say

10 xm) were to be used, Fig.41(d) would not be substantially different.

The next step is to define the observation network. The FGGE observatioﬁ
network for 00 GMT 15 January 1979 was used as a basis. Two categories of
observations were defined. Firstly, observation types which had a complete
vertical sounding such as TEMPS, PILOTS and SATEMS and secondly, singlevlevel
data such as AIREPS and SATOBS. Any single level data point in the tropical
domain between 300 mb and 100 mb was considered to constitute an observation
point. In order to make the experiment truly tropical and to avoid edge
effects we assumed that we have observations of u,v, and z every 4 degrees of
longitude at 32 and 36 degrees North and South. The complete observation
network can be seen in Fig.42(a). Complete u,v, and z reports are shown by
solid squares, z only by stars and winds only by 'v'. It is fairly easy from
Fig.42(a) to pick out satellite tracks and the radiosonde network. We note
that we use the FGGE data to determine the observation position and type, but

make no other use of the data.
The observation network shown in Fig.42(a), which we will refer to as

Network 1 is a fairly complete network. It is not representative of other

levels because it includes much single level data. Single level data aliases

92



a) : ‘OBSERVATION NETWORK 1

-1 140 -1 -100 - 80 -5 ~4a -20 o] 20 Ja0 420 A0 4
29 0 ED nml\.piqwmn P-nulz :,u- Yalyt;hyg nyl:nm CE N RS &{hn,,n
& v FIL e T aai) t Ty oy
20l {vuY% Y AL mvdl\r‘_vﬁi -Q{YYY‘ "
10 VA A Yom, i)
T ¥ v 1Y
AR R A : =l vy
Pl T L - i ¢ ]
-10 L - s o il V%L—V% 4 10
X Yoy Y Yoy v
ot [ Y =l o ' AN T ¥
- T3 vy 1 g LY n MTIE ] L] i Rkl Yy vl ¥ LA
_wﬁ“: ' YV‘«vau Ya : H\\W\Q o - R vy vy Vv YV\YV¥ oty Yﬁ_w
A e T N TR R S I EE R R R R R LR R R CLELELELLL] lllll
b) 0I BOX CENTERS - 1
-160 ~140 -120 -100 -60 -80 -40 =20 ¢] 20 40 60 a0 100 120 149 160

-;0 273 20 20 31 40 44 17 36 26 2526 30 50,53 30 35 58 30,34 22 3028 27 24 36,34 52 42 40 3 3940 34 3537 364 S04S 36 34 50 44 3081 3289506050 4339411 292799 P4 218 g

1011403026 2427 14 9|7 1412152021 23242019022 16,12 B 10 Lt 153042 36(39 43 37 42,26 33 25 4B.32 3532 47 50 50 37 29.25 50 50 50143 28 322320 15 1S 1745

20 isasadeeriadys 5§
10
0

5318 B 55— G4 2R O 102621 B4 15006 T I E-4-33 27 B3-30-10-6—2P8-2643- SR UBS HHH-S8-3829 2 PRk 9912 1820
1315168 644 90030 1321213182113 072 D Y 2242u93935[27 424543403828 19°8 |6 LF TP IUISHIIININ 211 1417156 § B 6
PR REEG [ 2000456 gURR2IIT T3 TIOR3 3TN 22 Ui EB S0 PE I8 6 B F 7 34U/ S5 UEF050 26 b [ 1H1f 31141010
5399301618102 0 0|4 6 5 5. 2 0 0 68 3|3 815182017121521 18/163650803425271421 27|22 16184341 36505035 1110151711 613197 8

1215116261903 0 0 b 104 0|0 0 0|6 3 3 5 13294R423314(7 21 181431 3B4FYIU4IIRT 34 37412723 1,1 1415180633 14 3 151910 4 12214213 14
w10 e hagounoa uule g higy d 2ie nle augseRda B 17-50-BHAT AT T8 B 20 R DB HT BRI G IS G i-If 1R h 3R aE— 10
3220 5| 741SP21L-8 2 4 20/8 26|17 3 3 3620335050224 193435504422 193532p51410 712 @ 0 090009 1l141pB1EPIAREZ238
WX B 523517 1Y 5 3 000 2 3.3 0]3 121128923210 0 19262731 2HH207 25018 7[5 2.0 D 0 4 0 J 1191212182816 § 2020 |
402724182533 51 2830 2B 25 23 16 18 18 16118 21 18 1824 27 16 2832 28 1B 1821 27 31 3228 323531 B5 3528201818 181818181820 24 19226 203034 9882853 | 4y

“©

-y

4B

* 3731 30 30 3032 32 34 36/30 30 30 30/30 30 30 30'30 30[30 3330 30 32 3030 30 31 31/31 34 31 3036363 32°3Y4 32|30 30°30 30 30 30.30 30 30 30152 34 32 3232 34 32 3232
c) : OBSERVATION NETWORK 2
=1 —~14a =120 =100 -80 —B0 b L ~20 g 20 B0 % 100 120 1ug J50
w EBRE nEED BERHA EEEREB .83 LR N K] BB O3 ool nERD ,FD:E‘Q,E BEEEM LN LI | cEEE ERERE Hll-m
® W - N T Ve ek ¥ op an Bl W (e
20 ] 2 P - 2 8 %—" -
= v LA LR o ® LIl v 2
LI L] B e s
10 | &y L a n A 1 10
B T - |® ola M om Um
9 a « ALY a® Pﬂuun . ¥
0 ¥ B 0
L L “n HEE B &Y a2
-10 : - a ° = y =810
e ¥ ¥ vy
_ L ¥ Y Y Y., s Y
m-‘t‘{l"('.‘* ¥ a o = a4 % : 1y Py L
- . Fhoiion 22 L I T |
HAUGSNDRENOCDUEyEBIBGCNOERGGCEBORGOOAREANR nunhtlnnn EEAAJOEONpDCAENUO AR O RE NN AABENNAREGEERRA

d) 0I BOX CENTERS - 2
-160 -140 -120 -100 €0 -60 ~40 -20 0 20 40 60 an 100 120 140 160
40| 2118181816 1818 181820 24 30 5 433033001816 18151816 18 18 1818 1818 18 21 2830 2327 252 2523 B 1827 3] 2931 37 595050 5039272121 24 21 181818 |45
03560000 3(512121518152) 126 3[0 00D 00 g0 Q03 Ba]BISISIIIBI0G|0 3151819192650505033128 5.6 3 3 3.3 .
20 3556361085036 0LP 1T 1516125000365 S T 60400 ISR P SRS R B 1T TR 20
33D go gD aO0[D30p 39T 0 D00 g e 518022231760 Q3 0DI06223212525191217/8 3 6 996§ 86
W o330 o000 0000005585003 336 9|96 UI0IBI2I600[00 000 3 MIIRPEATREL TFRTIRREE
ol 3683000000000D00QEE3I38113129 3 3 6(142826100 3 90 3 3|0 0 0596172915916 338038395 g
6300033000000/ 0006 336UUILI 03306 THIYIGSIS03F3330328U80350003035F8
| A e A Y A B AR IR I TSR OGN LRI MRS AN S s I
063565/6300000000|33 3356126/ 0000361520186/ 352(38§87-200/008005F 2641210216586 |
Do R I53330033 000 0T T 0T 20 300002 6780y 6063520p 000 0TYRERFIERE I,
ap|-322720182321 b1 1818182121 181818181821 1815242716 18181848 1821 2527262630 3327 21 2 18 1D 1916 18 181818182024 22 202 18242824 b0 2023 | o
3791 4030 303030 3050130 20 30 3030 30 30 3030 30130 3330 30 30 3030 30 31 31131 32 31 3036 36 3 3030 3030 30°30.90 30 30°3.30 30 30132 3230 3032 3 0I0FY |

U
o-d
8

Fig. 42 Observation network 1 and 2 are shown in Figs 42 (a) and (c). The box
centers with numbers of observations are shown in Figs. 42 (b) and
(d). Solid squares indicate observations of u, v and z, stars indi-
cate observations of =z only and v indicates observations of u and v

only.
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badly in the vertical and would be the cause of much error in a three;
dimensional experiment such as that of Cats and Wergen (1982). Consequently,
we constructed a second network shown in Fig.42(c) which has no single level
data and is thus more representative of the network used in Cats and

Wergen(1982). This network we shall refer to as Network 2.

The OI analysis procedure used in the subsequent experiments was much the
same as that used in Sect. 4.2. Thus the definition of b, gy, v, box size etc.
were unchanged. Our standard version had a data search radius of 800 km, but
we limited the number of observation per box to 50. The only change of any
significance from Sect. 4.2 was that the 200 mb rather than the 500 mb
prediction error was used. The assumed observation error for the winds was
5 ms~1 and for the heights was 12 meters. The box centres and numbers of
observations per box for the two networks are shown in Fig.42(b) and (c), for
a search radius of 800 km. In the OI procedure we worked with a strict
latitude-longitude coordinate system and did not alter the geometry as in
Sect. 4.2 because the analysis went no further from the equator than 409,

We did, however, partially correct for the convergence of the meridians by
using approximately the true spherical distance in the prediction error

correlation function.

As mentioned earlier, we also tested a second procedure - a direct least-—
squares estimate of the large-scale Rossby and Kelvin waves. This procedure is
relaﬁed to an experimental procedure described by Halbefstam and Tung (1983).
This procedure has no direct error, and it also has the correct multivariate
large-scale tropical relationship. This procedure attempts to minimize the

following sum:
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. L L . .
I=F [Fi) -fA G (1)12 W(i)cosé, C(23)
i i
where i indicates an observation point,

F(i) is a datum at the observation point i,

I} .
G (i) is the value of a particular large-scale Rossby or Kelvin or gravity

mode at the point i,

A2 is the unknown amplitude of the mode Gz(i),
W(i) is a specified weight function,

¢i is the latitude of the point i.

L
Minimizing this sum with respect to the A gives

k _k 2 '
-]Z{A R, =F (24)
where
= 3 F(i) Y1) W(i) cosd,
1 i
(25)
R§‘= I G“(i) Gk<i) w(i) cos¢i

This defines a matrix problem of order L where 1 &%, kg L. In actual

: . 2 ‘
fact, the G (i) are vectors with u,v, and z components, so the more
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correct form of F is
L ™ , L, , R
F = i] LF (1) 6 (i) e W )+ F () G (1) @ W(i)
(26)
+F () G G 1) ] o
p(1) Gy (1) Wg(i) | cos i
where F (1) , F, (1), Fg(i) are data at the point i,
c ), ¥i), 6% (i) are the vai
L) 6 (), s e the values of u, v, or z components of

a particular large-scale mode,

w (i) , W¢(i) are the relative wind or height weights,

® is the equivalent depth.

The complete equation for Rt

is obtained in the same way as equation (26).
We note that in equation (26) we do not require that the observation points
be regular or that all of u,v,z be available at every point. In the case of
the ECMWF modes with a regular observation grid consisting of the grid points

of the ECMWF model and all W(i) = 1, the R];

would equal 6; - the Kronecker
delta. In the case of the Gram-Schmidt orthogonalized modes defined on the

k
reqular 4 degree tropical grid shown in Fig. 41(c), the Rl would equal

dt . In general, however, the Rz ig a full matrix.

The fact that the Rz is a full matrix limits the utility of the method to
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less than = 500 degrees of freedom because of machine constraints. In
addition, it is well-known that this method (when used with many degrees of
freedom) gives good results in data-rich regions, but gives bizarre results in
data-poor regions. For these two reasons we must limit ourselves to a
sub-set of large- scale modes. We choose the set of modes to consist of the
4 gravest large-scale modes (Rossby, Kelvin and gravity) for the second -
internal mode of zonal waves 0 to 4. This gives 4x3x(2x4+1) = 108 degrees of
freedom. We have arbitrarily chosen to include the large-scale gravity modes
in this process to reduce aliasing into the large-scale Rossby and Kelvin
modes that really interest us. We note in passing, that the reason that the
Gram-Schmidt procedure discussed earlier, was not strictly necessary was that
the least-square procedure (24) can be used to obtain the amplitude of the
large-scale Rossby and Kelvin modes from the grid of Fig.41(c) even when the

modes are not orthogonal over the domain.

One very important property of the least-squares technique is that if the
data presented to it consists of only a linear combination of the 108 modes
it attempts to resolve, then it will make no error. This is true for any
observation network except for: a few pathological examples (i.e. fewer
observations than modes, or the presentation of a single mode sampled at the
nodes of the mode). This means, that the least-square method has no direct

error, and thus provides an interesting comparison to the OI- procedure.

The weights - W(i) in this procedure are arbitrary. For true optimality
considerable experimentation would have to be performed. Consequently, we
have arbitrarily set all W(i) = 1. There is also the possibility that one
can force the analysis in the no-data regions to the first-guess field simply
by inserting appropriate dummy observations of zero (when analyzing
observation minus forecast data). This technique would be similar to that
used in the Hough analysis scheme at NMC (Flattery. 1971). We have not

attempted to exploit any of these refinements.
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6.2 Experimental results

The OI and least-square methods were tested using data extracted from the
'truth' - Fig.41(a) and (b) sampled on the two observation networks Fig.

42 (a) and (c¢). The large-scale Rossby and Kelvin modes were obtained
directly in the least-sguares case and via direct projection from the uniform
analysis grid in the case of OI. Four typical large-scale analyses are shown
in Fig.43. Fig.43(a) shows the OI analysis for Network 1, Fig.43(b) shows the
ieast—squares analysis for Network 1, Fig.43(c) shows the OI analysis for
Wetwork 2, and Fig.43(d) shows the least-square analysis for Network 2.
Comparing these analyses with the 'true' large-scale flow - Fig.41(d), we note
serious errors in all cases - particularly in the Network 2 cases. OI has a
tendency to under-analyze, least-squares to over—analyze. The fit at the

northern and southern boundaries is as desired.

Rather than present large numbers of analyses we used two techniques to
condense the information. 1In Fig.44 we show the root mean square error in the
large—-scale Rossby and Kelvin modes as a function of zonal wavenumber for the
Network 1 case. On the left is the vector wind error (ms~1) and on the right
the geopotential height error(m). For reference, we show in the solid black
line (top panel) the variance in these waves as determined from Fig.41(d).

The light solid line in the top panel is the OI error and the dashed line (top
panel) is the least—squares error. It is evident, that with the possible
exception of wavenumber 0, that the OI procedure is substantially better in

this case.
To see why this is so, we have done further experiments with OI, shown in the

bottom panel. Here we have repeated for reference the light solid line of the

top panel, but changed the scale of the ordinate. The dash-dot line is the
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Fig. 43 Resulting large-scale analyses for 4 cases -~ (a) Network 1- 0I, (b)
Network 1 - Least-squares, (c) Network 2 - OI, (d) Network 2 -
Least-squares. The format of each panel is the same as Fig. 41 (d).
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Vector wind error (ms™)

Network 1
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Zonal wavenumber

Fig. 44 BMS vector wind error (ms_l) - left panels and geopotential height
error (m) - right panels as function of =zonal wavenumber in the
Rossby and Kelvin modes for Network 1. In the top panel are shown
the variance in the Rossby and Kelvin modes (ie. Fig. 41 (d)). The
dashed curve shows the error for the Least-square method and the
light solid curve shows the error for the OI method. In the lower
panels the light solid curve is repeated. The dotted curve shows
the aliasing from the short waves into the large-scale Rossby and
Kelvin waves for the OI method. The dash-dot curve shows the response
of the OI system to the input of large-scale Rossby and Kelvin waves.

100

(w) 10119 1yBray



Network 1

Amplitude

90°W 0° 90°E 90°w 0° 90°E

Longitude

Fig. 45 The gravest symmetric Rossby mode (solid), Kelvin mode (dashed) and
mixed Rossby-gravity mode (dash-dot) of wavenumber 1 as function of
longitude (degrees). The ordinate is amplitude. The upper left hand
panel is the truth . The upper right panel is the Least-square
analysis. The middle left is the OI analysis. The remaining panels
all describe OI experiments. The middle right is the OI response to
the three individual waves. The lower left is the OI response to the
input of all large-scale Rossby and Kelvin modes. The lower right
shows the alaising into the 3 modes from small-scale input. This
figure is for Network 1. ‘
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0I large-scale error if the analysis is presented only with the Rossby and
Kelvin waves of Fig.41(d). The dotted line is the error in the large;scale
Rossby and Kelvin modes if the the OI scheme is presented with all the
remaining modes (i.e. 'truth' minus Rossby and Keivin modes). These remaining
modes would thus consist of all the small-scale modes plus the large—scale
gravity modes. Basically, the dash-dot curve measures direct error, the

dotted curve is the indirect error.

Now the total OI large-scale error (light solid) is made up of both types of
error. We note, however, that the total error curve is usually less than the
square root of the sum of the squares, which means that the two types of
error must be negatively correlated to some extent. in some cases the total
error is less than either the direct or indirect. We note that the direct
error has much the same shape as the original variance spectrum (dark soiid),
but that the indirect error is fairly flat. This result might perhaps have
been anticipated, because the OI procedure is designed to analyze a complete
spectrum, which is more like the 'truth' of Fig.41(a) and (b) than the large-
scale 'truth' of Fig.41(d). Although the least-squares technique has no
direct error, its indirect error is substantial in this case, and thus it

produces an inferior large-scale analysis.

A second method of examining these analysis methods is to display the
response of three seperate longkwaves under different experimental
conditions. WNormally, the amplitude and phase of a long wave would be
presented as a vector on a polar diagram. We choose instead to multiply the
cosine and sine components of each long wave amplitude by the relevent cosine
and sine of longitude and display as a function of longitude. One can also
think of this presentation as a plot of z or u for a given mode as a function
of longitude for any fixed latitude. In Fig.45 we show 3 zonal wavenumber 1
modes for Network 1. They are the gravest symmetric Rossby (solid), Kelvin
(dashed), and ﬁixed Rossby—-gravity (dash-dot). In the upper left hand corner

is the 'truth'. 1In the upper right is the least~sguares analysis and the
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Fig. 46 Same as Fig. 44 except for Network 2.
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Fig. 47 Same as Fig. 45 except for Network 2.
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middle left the OI analysis. It is evident that the least-squares is
overdrawing and the OI slightly underdrawing. The relatively low amplitude

mixed Rossby-gravity wave is completely mis-analyzed by both methods.

In the remaining panels of Fig.45 we show 3 OI experiments. In the middle
right panel are shown three sub-experiments in which the OI scheme was
presented with each of the 3 modes in turn. In the lower left panel we
presented the OI scheme with all the large-scale Rossby and Kelvin modes
similtaneously (as in dash-dot curve éf Fig.44). 1In the lower right we
presented to the OI the 'ryuth' minus Rossby and Kelvin waves (as in dotted
curve of Fig.4g). Tt is evident that the middle right and lower left panels
are similar; also, the negative correlation can be seen again when examining

the Kelvin wave in the middle left and lower right and left.

In Figs.46 and 47 we show the Network 2 counterparts of Figs.44 and 45 in the
same format. Fig.46 demonstrates how much worse the error is with Network 2
and that for waves 0,1 and 2 the least-squares procedure seems better than OI.
In Fig.47 the least-squares clearly produces a better result as the OI

seriously underdraws. Surprisingly enough, the phase errors are not too bad.

All of the experiments so far considered perfect observations. We did one
experiment to consider the effect of random observation error. Using Network
2, we constructed random observation errors from a normal distribution with
mean zero and standard deviation of 22.16 meters for height and 6.913 ms™ 1

for wind (the same as in the 'truth' of Fig.41(a) and (b)). We then looked at
the error in the large-scale flow caused by this random observation error (the
‘true' signal was set to zero). The results for OI (light solid) and least-

squares (dashed) are shown in Fig.48 (top panel). As expected the OT

procedure is much less sensitive to random observation error.
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Vector wind error (ms™)

Network 2

10 . - <10

Zonal wavenumber

Fig. 48 Same format as Fig. 46. Top panel shows the
large-scale error for OI (light solid) and Least
squares (dashed) for input of random observational
error, Bottom panel shows the large characteristic
scale OI experiment (b increased by a factor of 5
with a large search radius)., Total error is light
solid, indirect error is dotted, direct error is
dash-dot.
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The uniform network experiments at Sect.‘4.2 suggested that the long-wave
response could be improved by increasing the characteristic scale b to make it
more consistent with the scale of the long waves. Several experiments were
performed with Network 2 to see if the same result followed. Fifstly, b was
increased to a value 5 times its normal size (i.e. approximately 3000 km in
Northern Hemisphere). This had virtually no effect on the long wave analysis
(although it drastically affected the short wave analysis). Next, using the
large value of b we modified the data selection so that the data search radius
was increased from 800 km to 3200 km. In this way, data from much further

away was used in the low observational density regions.

The simultaneous increase in b and the search radius had a dramatic effect on
the long wave analysis as can be seen in Fig. 48 - lower panels. 1In this
figure, in the same format as Fig.46 - lower panel - are plotted the total OT
error (light solid), direct error (dash-dot) and indirect errxor (dottéd). As
compared with Fig. 46 - lower panel, the direct error has been reduced
dramatically - as expected. Unfortuﬁately, the indirect error (aliasing from
smaller scales) has increased substantially. The net result is somewhat
better in waves 0-1, but worse in waves 3-4. It would appear that increasing
b (and modifying data selection) produces much the same effect as the least-
squares analysis (which has no direct error, but a substantial indirect
error). It might be noted that the random observational error for the large b

experiment also produces considerable long wave error.

The large long wave errors due to aliasing from smaller scales and
observational noise in the least squares and large b OI experiments might be
explained as follows. The true longwave signal in the observation increments
has relatively small amplitude compared to either the shortwave signal or the
observational noise and this makes it difficult to detect accurately except

with a network of uniform density.
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6.3 Experimental summary

In this section we have examined some of the problems of large-scale analysis
with non-uniform observational networks. We have examined both direct errors
as in Cats and Wergen (1982) and indirect errors (aliased from smaller

scales). Both OI and a least-squares technique with no direct error have been

examined.

In general, the results agree with those of Cats and Wergen({1982) -
particularly for Network 2, which is the one most analagous to the three-dimensional
network that they used. Thus, the large-scale Rossby and Kelvin modes are

not well analyzed at all by either OI or least-squares. The smaller amplitude
modes such as the mixed Rossby-gravity mode are completely incorrect. I£

would appear that the more optimistic results of Leary and Thompson (1973) and
Baer and Tribbia (1976) are primarily due to the over-simplified nature of

their experiments, i.e. restriction in dimensionality, restriction to higher

latitude and restriction to a univariate analysis procedure.

In general, the OI procedure seems to yield better results than least-squares,
although there is some indication that for sparse networks and very long
waves, least-squares may be better. Both direct and indirect errors are
important in the OI large-~scale analysis but there is some cancellation
between them. The OI technique is much superior in suppressing random

observation errors.

These experiments (and those of Cats and Wergen — 1982, Leary and Thompson -
1973, and Baer and Tribbia -~ 1976) were static experiments in which only a
single analysis was done from the data assumed collected over a single

analysis cycle (6 hours at ECMWF)}. The results of this experiment show that
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the large-scale analysis produced in this way is inadequate. We note,
however, that Figs.44-48 show that the longwave errors, alﬁhough large, are
generally less than 100%. This means that even for the long waves, the
analysis if generally closer to the "truth" than is the first guess. Thus, if
Networks 1 or 2 were to be used in a forecast—-analysis cycle with a "perfect”
model, the lonéwave analysis would eventually converge to the "truth" (within
observation error). It is the implicit assumption of the forecast—~analysis
cycle, that the major reduction in error occurs through the forecast
operation, and that a somewhat lesser reduction occurs through the analysis
operation. The present results show that tﬁe reduction in longwave error
through the analysis operation is very small and thus the veracity of the
final long wave analysis will be very dependent upon the accuracy of the-

forecast model.
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7. CONCLUSIONS

The definition of the initial state of the atmosphere is of crucial importance
in deterministic forecasting. Initial errors would still rank near the top in
most subjective assessments of the causes of forecast errors. Despite this,
objective analysis has had relatively less attention than other aspects of the
foreéast-analysis cycle. This relative neglect is manifested in a paucity of
good pedagogical material and an under emphasis in training courses.
Nonetheless, objective analysis provides a wealth of interesting and worthy

scientific problems to attract the research scientist.

Our aim in the present work was to explore a number of different aspects of
objective analysis ~ with particular reference to multi-variate statistical
analysis (0OI). Our approach was midway between a strictly theoretical
statistical approach and a synoptic examination of specific analysis
situations. Thus, we tended to treat the objective analysis system as a
largely unknown operator, whose properties we wished to determine. Generally,
we presented this operator with well-controlled, idealized inputs and examined
the outputs to determine the response of the operator. We had a variety of
parameters internal to the operator which were under our control, and could

thus determine responses by sweeping throucgh parameter space.

Our study was highly constrained in one direction, that is, we confined all
our work to the two-dimensional horizontal problem, and completely neglected
the very important vertical problem. On the other hand, we used a
particularly general form of the prediction error correlation, which allowed
greater flexibility in the horizontal problem. The prediction error
correlation used at ECMWF has a free parameter ﬁ which describes the

geopotential-streamfunction correlation or alternatively, the strength of the



geostrophic coupling. In the same spirit, the present prediction error
correlation introduces three new parameters - V (the ratio of the di;ergent
wind error to the total wind error), A (the streamfunction-velocity potential
correlation) and A* (the geopotential-velocity potential correlation).

V corresponded to a shrinking or stretching of the wind-wind prediction error

correlation while A or A* corresponded to rotation.

Calculations with atmospheric data and a literature search suggested that A
and A* were very small, but that V was non-negligible. The parameter V was
defined to be 0 for a completely non-divergent prediction error correlation
(£he value in the present ECMWF system). V was defined to be 1 for a

completely divergent prediction error correlation. The value of V obtained

from atmospheric data was approximately .1.

We developed two forms of the prediction error correlation, the Gaussian
model which is presently in use at ECMWF and a second order autoregressive
fodel which we refer to as the Markov model. Both models have one free
parameter corresponding to their characteristic scale. The Markov model had
a much more spread-out height-height cgrrelation and much more concentrated

wind-wind correlation than the Gaussian model.

We wished to examine three seperate aspects of the objective-analysis system:
- multi-variate relationships
- analysis of divergent tropical flows
"~ analysis of tropical large-scale flows

In the main body of the work (Sects. 3-6) we developed a number of techniques

for examining these problems. In general, each of these sections and sub-

sections have been oriented around a particular technique and not
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around one of three aspects listed above. We will attempt here to summarize
our conclusions for each of the three above aspects in turn, with material

drawn from the entire body of the study.

7.1 Multi-variate relationships

Much of the theoretical work in objective analysis in general and OI in
particular has been univariate and somewhat less emphasis has been placed on
multi-variate aspects. We concentrated oﬁ two particular multi-variate
relationships - the geostrophic relationship and the non-divergence
relationship - béth of which were under our control through the free

parameters 4 and V defined above.

Multi-variate relationships serve two functions. Firstly, they can act as
filters against types of flow which are considered undesirable. Thus, By
setting u=1, it is possible to minimize the amount of ageostrophic or anti-
geostrophic flow in the analysis. Similarly, by setting v=0, it is possible
to minimize the response of the analysis system to divergent flow. Secondly,
in the case of i, if only geopotential or only wind observations are

available, it is possible to get an estimate of the unobserved variable.

It is well-known that OI is linear in the observations, it is less well-known
that OI is highly non-linear in ¢ and V. For example, in the case of u, we
can define u=1 as the geostrophic limit and =0 as the uncorrelated limit. If
we examine the matrix of analysis weights, we find that the analysis weights
"do not vary linearly as H is varied. Thus, if 1W=.9, the analysis weights are
already halfway between the geostrophic and uncorrelated limits and by u=.5
the weights are virtually the same as in the uncorrelated limit. The same
result hold true for V. This suggests that unless the constraint is applied

rigorously,.i.e. t near 1 and v near 0, it will be ineffective. Conversely, if



it is considered desirable to have a non-geostrophic or divergent analysis, the

constraints p=1 or v=0 have only to be relaxed slightly.

An analysis of the eigenstructure of the prediction error correlation confirmed
this conclusion. In this form of analysis, it was easy to show how the ageo-
strophic and divergent eigenvectors were completely suppressed at p=1 and v=0.
When the constraints were even slightly relaxed, the response of the ageostrophic
and' divergent eigenvectors increased rapidly. The results with the Markov model
were quite different. In particular, the Markov model had much less sensitivity
to variations of u and v, and for p=1 and v=0, the Markov model was much less
effective in suppressing ageostrophic and divergent structures. Thus the -Markov
model would tend to produce a "noisier" analysis. We were also able to show that
the reason that the ageostrophic eigenvectors existed when p=1 (assumed geostrophy)

was because the analysis was discrete and not continuous.

The eigenvector analysis suggested that when p=1 and there is a supporting
geostrophically consistent wind, the height will be better analyzed. This result
was confirmed by examining the spectral response on a two-dimensional f-plane of

the OI procedure.

7.2 BRnalysis of divergent tropical flow

Our more general form of the prediction error correlation permitted for the first
time.a serious examination of the analysis of divergent flow. The simple experi-
ments discussed in Sect. 7.1 suggested that a value of v which was non-zero but

still small might improve the analysis of divergence. This was further supported

by examination of the spectral response of the OI system to the input of divergent

structures. Thus in the present ECMWF systems (v=0) only divergent structures of
very larée-scale and even theén only with a reasonably fine observation network are
well-drawh. The response at v=0 was largely confirmed by an examination of the
divergent kinetic energy spectrum in the FGGE analysis. When v is allowed to

increase to the suggested value of .1, the divergent response is much improved.
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We tested the more general prediction error correlation on two real-data

cases taken from the FGGE year. They were both 200 mb tropical cases where

it had been conjectured that the deficiencies in the operational divergent‘
wind analyses were due to the operational setting of V=0. There had been some
concern expressed that setting V=.1 would result in 'noisier' analyses. This
did not turn out to be the case. In some cases, the analyses were not very
sensitive to variations of V. 1In one case, at least, there was considerable
improvement in the divergent wind analyses when V was increased to .1. We
found that setting V=.1 produced an analysis which was less sensitive to the
more arbitrary aspects of OI, such as data selection. In general, we found
thaf the Markov correlation model produced ‘noisier' results than the Gaussian

model.

7.3 Bnalysis of large-scale tropical flow

Recent results of Cats and Wergen (1982) have cast some doubt on the quality
of large-scale tropical analyses. They did experiments which suggested that
there were non-negligible errors with uniform observation networks and

alarming errors with realistic observation networks.

We completed a whole hierarchy of experiments to examine this problem. We
first calculated the estimated analysis error for simple one-~dimensional
uniform networks in which the scale of the input information was different
from that assumed in the prediction error correlation. This allowed us to
produce plots of estimated analysis error as a function of observation
spacing and sub-population characteristic scale. Several problems in the
analysis of the large-scale were immediately apparent. There were, first of
all, several difficulties in determining the winds from the heights and vice
versa in the large-scale. 1In effect, the geostrophic relationship (u=1) is

not appropriate on these scales and causes difficulties. Perhaps more
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serious, was a substantial underdrawing of the large-scale windfield.for
larger qbservation spacing (of the order of 1.5 times the assumed
characteristic scale of the prediction error correlation). The reason for
the underdrawing was the negative lobes of the wind;wind correlation. It was
thought that this problem might be potentially serious in the tropics where

y is assumed small.

These results were confirmed by uniform network two-dimensional f-plane
experiments which determined the spectral response of the OI procedure.
There were further uniform network experiments on the sphere, in which
various la:ge—scale Rossby and Kelvin modes were presented to the analysis
system. Thére were serious deficiencies in the response of OI to the input
of these modes. In particular, the tropical windfield was seriously
underdrawn and the flow was forced to be geostrophic at too low a latitude.
However, for these uniform network experiments most of the large-scale
analysis problems could be rectified by using a prediction error with a much
larger characteristic scale. In our two-dimensional context, we could not

examine the serious vertical problem noticed by Cats and Wergen (1982).

Lastly, we examined the analysis of the large-scale tropical flow with a
realistic observation network. We defined a tropical domain and specified
two realistic observation networks. We defined a 'truth' which we hoped
would have the spectral characteristics of the observed minus forecast field
and yet would be known everywhere. We sampled the 'truth' on the two
networks and produced analyses using OI. We then calculated the analyzed
large-scale flow using direct projection from the uniform analysis grid and
compared with the 'true’ large-scale flow. We considered two types of
lagge-scale error. Direct error is the error caused by a poor response of
the objective analysis system Eo the input of large-scale structures.

Indirect error is the error caused by aliasing from the smaller scales into
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the large-scale due to a non-uniform observation network. We also tested a
least-squares analysis procedure which has no direct error and the correct

large-scale multi-variate relationships and compared it to OI.

We found that, in general, OI was more accurate in the large-scale than the
least-squares technigque. Although the OI procedure has both direct and indirect
error, they tend to be somewhat negatively correlated, resulting in lower total
error. OI was also more effective in suppressing random observation error. For
very long waves, and sparse networks, however, the least-squares technique was
more accurate. Both techniques produced very poor results in the large-scales

with observation networks which we considered realistic.

7.4 Discussion

The use of sliéhtly divergent prediction error correlation functions (V ¥ 0)
looked fairly promising and should be pursued. This step alone will not

solve all the problems of the divergent wind analysis however. The vertical
problem with the coupling between high level outflow and low level inflow

must also be addressed. The use of infra-red data to define the high level clouds
would also be useful. The coupling between the analyzed divergence and the

convective parameterization should also be further examined.

With respect to the analysis of the large-scale tropical flow, our results
confirmed those of Cats and Wergen(1982). The results suggested that all the
data available in a 6 hour time window is insufficient to adequately define
the large-scale tropical flow. This result is at variance with earlier
studies of Leary and Thompson (1973) and Baer and Tribbia(1976). Our
least-squares technique, which was by no means completely exploited, looked

promising, but there are obvious limits defined by the observation network.
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Although, it can be argued that observations coming in over several days
might be adequate to define the stationary and transient parts of tﬁe
large-scale tropical flow, this has not been proven. We know that
large-scale forecast errors are still appreciable, especially in the medium
range, and it may well be that initial large-scale tropical error is an

important contributing factor.
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