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Summary: - The properties of some multiply-upsiream semi-lLagrangian schemes for
integrating the advection equation are analysed. It is shown that the schemes,
though explicit, are unconditionally stable for a constant wind field.b The
results of applying the schemes to a split-explicit multilevel model where the
adjustment terms are integrated using-a forward-backward treatment of the gravity
wave terms and a trapezoidal'implicit treatment of the Coriolis terms are
described. An alternating direction implicit method for integrating the adjust-
ment terms is also presented. This is applied in conjunction with a semi-
Lagrangian treatment of advection in a one-level model and found to give stable

integrations for long time steps.

1. INTRODUCTION

The requirement of computational efficiency continues to have a high priority in
NWP modelling, despite the advances in available computer power. The split
explicit and semi~-implicit time integration techniques have led to considerable
gains in efficiency, the former having had the greatest impact in limited area

grid point models and the latter in global speetral models.

The present lecture is concerned with the semi-~-lagrangian technique, which is
in essence a grid point technique. It has so far been applied only to limited
area models, but it is possible that it could be applied with advantage to global

models.

The situation at present prevailing with operational grid point models is that
the errors associated with the spatial discretization greatly exceed those
associated with.the time discretization (Robert, 1981). There is therefore much
scope for the development of efficient time schemes based on the use of longer

time steps.

The semi-Lagrangian technique allows one efficiently to circumvent the limitation
on the time step imposed by. the CFL condition for advection. The essential step
in achieving this, first introduced by Robert (1981), is to use multiply-upstream
interpolation, whereby values of the variables at the departure points of particles
are estimated by interpolating from gridpoints surrounding the departure points.
Previous semi~lagrangian models had estimated the values at departure points by
interpolating from gridpoints surrounding the arrival points of the particles.

Such models were subject to a CFL stability criterion for advection and gave no
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material advantagé over corresponding Fulerian models.

A semi-Tagrangian treatment of advection can be combined with various methods of
treating the adjustment terms in the equations of motion. Robert (1981).applied
the semi-Iagrangian technique only to the advection of vorticity and combined this
with a semi-implicit treatment of the gravity wave terms in the divergence and
continuity equations of a shallow water model. The latter two equations were
treated in an entirely Eulerian manner. In a more recent paper; Robert (1982)
has expressed the shallow water equations in momentum form and applied the semi~
Tagrangian technique to all three material derivatives. The adjustment terms are
treated in a semi-implicit manner. This has led to even greater stability when
the model is run with long time steps then was found with the original method. No

explicit comparison of the efficiency of the two methods has been given, however.

An analysis of the semi-Ilagrangian technique applied to the advection equation,
showing how the properties of the scheme depend on the method of interpolation,
has been given by Bates and McDonald (1982). A further analysis has been given
by McDonald (1983). '

Bates and McDonald (1982) made the first application of the multiply-upstream
semi-Lagrangian technique to a multi-level model. They applied the technigque

to the HIBU model, developed by F. Mesinger and Z. Jamjic. This is a split
explicit model which in its original Eulerian form combined an energy and enstrophy
conserving treatment of advection with a forward-backward treatment of the pressure
gradient terms and a trapegoidal implicit treatment of the Coriolis terms. When
the semi-Lagrangian method was used to integrate the advective terms, treating the
adjustment terms as before, it was found that a considerable gain in efficiency
could be achieved. The split semi-Tagrangian treatment of advection combined with
a forward-backward treatment of the pressure gradient terms and a trapezoidal
implieit treatment of the Coriolis terms will hereinafter be referred to as the
SLEBT technique.

The SIFBT technique suffers from the defect that the adjustment terms mist still
be integrated with a time step which is limited by a CFL condition for gravity-
inertia waves. Bates (1983) has developed a method whereby the adjustment terms
are integrated by an alternating direction implicit technigue while the advective
terms are again integrated using the split semi-Lagrangian technique. The new
method, referred to as the SIADI method, allows one to take & long time step for
adjustment as well as for advection. I+t has been applied to a one-level version
of the modified HIBU model and has been found to give a further gain in efficiency
compared to the SLFBT method.
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2. ANATYSTIS OF SEMI-LAGRANGIAN ADVECTION

We considei' the adfiect_ion equation
c&w/d‘tz (o) --~(1)

in one and two dimensions. Integrating over the trajectory of a particle which

arrives at a grid point P at time (n +1)A t we have

n+ /o " |
= . -~=( 2
WP) = i ()
n
where ’\b*is the value of ‘f/ at the departure point of the particle at time n s,
"

The value of \{J% is obtained by polynomial interpolation from neighboring grid—
points, the stability and accuracy of the scheme depending on the type of inter-
polation used. We examine five cases of interpolation, all of which reproduce

the exact solution at the interpolation gridpoints.
a. One-djimensional flow. ILinear interpolation

In this case the situation is as shown in Fig. 1. A constent flow u(we assume u>0
without loss of generality) advects a parbticle from its departure point xx at time
nd t to its arrival gridpoint P at time (n + 1)A+t. The grid interval within
which the departure point lies is p grid intervals upstream from the arrival point
(pz0). We obtain\{); by linear interpolation from the surrounding gridpoints

(I - p) and (I -p - 1). Hence (2) gives

\V;H = Cl-— Q}\PIV-LP + Q“PIA—P—’ ST Cg)
where |

= x-p , = Wdt/Ax
Assuming a8 solution
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Eq. (3) gives
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The scheme is stable U )(ls D) provided
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A
of the shortest resolvable wave I = 24 x occurs for X = 0.5), but the damping gets

less as the wavelength increases.

Since the analytical fréquency ¢ is given by ku, the relative frequency Rq (:Lfﬁd)

is given by

|
Ry = v
‘ ([:«—o()/élsx
;\(St&\éﬂx

X {p%.Ax + fan-.[ [— % (- Gohox)

In the long-wave limit (kAx=0), we see that R{?»1. In Fig. 3(a), R4 is plotted

as a function of wavelength for Q_: 0.25. We see that R4-»1 as p increases, i.e.,
the phase errors actually decrease as ult/Ax exceeds unity. This result is, of
course, peculiar to the case of a constant wind field, where the departure point
can be precisely located using the wind at the arrival point.

b. One~dimensional flow: Quadratic interpolation

In this case the situation is as shown in Fig. 4. The gridpoint nearest the
departure point Xy is chosen as the central point of the three interpolation points
(T-p+1), (T-p), (I-p~1). Thus x, lies within a half grid interval from

(I - p). TUsing quadratic interpolation, (2) gives
N+ A A w
Yy = 0.5,x((+o()‘fﬁr_,°_,

" ([~QX(+§()\P;:P - 0.5 o?(l»o?)\P;PH ---(3)

and assuming a solution of the form (4) we have

>\=[l—— g\('l((—' Caﬂédx) ,
— 1 Sm:\AAX—] exp (—- iFAAX) ~--(2)
Thus
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The scheme is stable provided

_[\<o<\<l ‘ = (i)

But out interpolation points are chosen such that
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Thus, this scheme is again unconditionally stable.
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In Fig. 5, Ml is plotted as a function of & for various wavelengths L. Since

we chéose?( to lie in the interval defined by (12), we see that complete extinction
never occurs and the damping is, in all cases, much less than that given by linear

interpolation.

The relative frequency for the case of quadratic interpolation, denoted by Ry, is

given by
S
7 (p+a)kox

- x Sind Ox
X {PAM + ton [ | — & (1= Gaktx)

Again, in the long-wave limit Ro»1, and if the departure point coincides with a
gridpoint Ro = 1. In Fig. 3b, Ro is plotted as a function of wavelength for Q =
0.25. Again we see that Ro->1 as p increases. Unlike the amplitude represent-
ation, we note that the phase representation is not improved by going to quadratic

interpolation.

c. Two~dimensional flow: Bilinear interpolation

In this case the situation is as shown in Fig. 6'~ The wind components (u,v) are
assumed constant and, without loss of generality, positive. Four interpolation
points are chosen to surround the departure'point (x*, y*). The interpolation
pox is (p,q) grid intervals upstream in the (x,y) directions from the arrival point

(p= 0, a7 0). TUsing bilinear interpolation (2) gives
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where of is defined as before, and :

%% = P-— 7, )‘ c>:: \fZYt/éQg;

Assuming a solution ; , '
P = BN Texp 4 (heety)] ~=(%)
Eq. i13) gives | |

)‘; )\('/\7_

where

A = { - &]1- @F(——iééxﬂ} exp (— f}:éAx> -~ (15) |
= {1 Bll-en(- 2og))ferp -izeay) )

i.e., the amplification factor is the product of two factors which are of the same
form as in the one-dimensional case of Section 2a. Thus we have the theoretical

simplicity of a splitting method, even though no splitting has been used.
A sufficient condition for stability is
’ A
A ' - l)
(osd<l) and (OB ) 7

which holds if (xy,yy) lies within the interpolation box. But this is guaranteed
by our initial choice of interpolation points.  Thus, the scheme is unconditional-
ly stable.
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Fig. 7. The nine interpolation points used in obtaining \{l;
by biquadratic interpolation are circled

As in.the case of Section 2a, heavy damping occurs for the shortest resolvable
waves.

d. Two-dimensional flow: Biquadratic interpolation

In this case the situation is as shown in Fig. 7. The grid-point nearest the
departure point is chosen as the center of the nine points used in the interpolat-
ion. The interpolation formule used is the Iagrangian formula (e.g. Carnahan

et al., 1969, p.65).

(-p-1,J-a-1) [ [ a-p.J-q=

Fig. 8. The four interpolation points used in obtaining \P: by
bilinear interpolation in the oblique axes (X,Y) are circled.
The direction of the original orthogonal axes are shown by the
dotted lines.
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where the (i,j) range over the nine interpolation points, and
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This formula reproduces the exact solution at the gridpoints, and when applied
to (2) gives
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Assuming a solution of the form (14), we then find

>\: >\[ >\‘L

where

>.‘ = [l— (- ook DX) - io?fw,éma exp (- i/o&)x)

)1: [l—!(\él({ - [e’:@dj)— 1{3\&&\[113—] exp (- n\¢ ﬂAgl)

i.e., the amplification factor is the product of two factors which are of the same
form as in the one-dimensional case (b), so that again we have the theoretical

simplicity of a splitting method, without doing any splitting.
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A sufficient condition for stabiii'by is
" A A -~~~
(-—[ < X< I} and (—is (5 Y D (9“3)

But our initial choice 'o‘fv interpolation points is such that

(-0-55@50.5) and (-o55 B 0:5) SNEY |

Thus the scheme is unconditionally stable.

As in case (b), complete extinction never occurs and the damping is in all cases

much less than that given by bilinear interpolation.

e. Two-dimensional flow in an E~grid

The E-grid (see Mesinger and Arakawa, 1976) is a semi-staggered grid in which
vector and scalar quantities are expressed at alternate gridpoints. We consider
the semi-Taegrangian approach in such a grid for a constant wind field. Bilinear
and biquadratic interpolation are most easily defined and amalysed if we adopt
the axes (X,Y), in general oblique, which run through grid points of a given type
(see PFig. 8). Liet the wind componeri'ts in the oblique axes be (u.E, VE).

Then defining

6\(: D(~f> ) ol = ME‘A{'/AX

B=p-9 . = Veat/sy

we use bilinear interpolation in the (X,Y) coordinates to obtain from (2) an

expression of exactly the same form as (13). Assuming a solution

wig = e NV exp[ i (A HbeY)]
wg find .
X = \l‘X1_
T fim 21 ep (-t} en (- (phed)
Ny = 1= f [ exp(- ilear)]} exp (- izbeoY)

Thus again a sufficient condition for stability is

(o<251) and (ox@si) - G

which is guaranteed by our choice of interpolation box.

Similarly, the amalysis for the case of biquadratic interpolation in the (x,Y)

coordinates proceeds as in (d), giving formally identical results.
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3.  APPLICATION OF THE SLFBT TECHNIQUE TO A MULTI-LEVEL MODEL

In this section, we describe the results of computations using the SIFBT technique.
Operational forecasts made with the HIBU model in its Fulerian form serve as our

reference with which to compare the results of the SLFBT integrations.

a. The Eulerian model

The model is a modified version of the HIBU model, develoﬁed at the Federal Hydro-
meteorological Institute and Belgrade University, Yugoslavia (Janjié, 1977, 1979;
Mesinger, 1977, 1981). It is a limited area, split explicit, primitive equation
model on an E-grid (Arakawa notation), using latitude-longitude coordinates and
the sigma vertical coordinate. The model includes a treatment of the divergence
term in the continuity equation which prevents the accumlation of two-grid-

interval noise. Only very simple physics are employed, moisture and radiation

being omitted. There is a simple treatment of surface friction and vertical eddy
momentum transport. Dry convective adjustment is applied once every eight time—

steps.

The principal modification made to the HIBU model in introducing it into operat-
ional use in the Irish Meteorological Service was to rotate the latitude-~longitude
coordinate system so that the pole was displaced into the Pacific (it now lies at
1500E, BOON). This gives a much more uniform grid in our area of interest and
saves considerably on computer time, since polar filtering is no longer necessaxry.
(The stratagem of rotating a model's spherical coordinate system had previously
been used at the Swedish Meteorological and Hydrological Institute; Undén, 1980).

Our integration area, shown in Figs. 9-13, is spanned by 81 X 26 gridpoints
carrying the same variable, located at alternate intersections of a 10 X 10
horizontal mesh. Thus the grid distance, defined as the shortest distance
between similar points, is 157 km at the model equator. Five levels are used
in the vertical, the three upper layers having[)d‘: 0.25 and the two lower layers
having A6= 0.125. The model top is at 200 mb. The time step At is 7.5 min,

this being imposed by the stability criterion for gravity-inertia waves.

We update the variables on the two outermost boundary lines of the model every time
step, using values derived from.previous predictions of ECMWF. On the next three
lines in from the boundary the integrations are performed using a simple upwind
difference scheme for horizontal advection, which gives high damping. In addition,
light second-degree diffusive damping is applied on the five outermost boundary
lines. Divergence damping (sadourny, 1975), formulated so as to have no effect on
the rotational part of the flow, is applied over the whole area for the full period

of the integration, with a coefficient of 1.3 X 106 m2s~1.
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Fig. 9. 24 h 500 mb forecast for 31 March 1982 at 0000 GMT, performed with the Eulerian model.
Time step 7.5 min for all terms. Contours in gpm. ’

The model as described above was used operationally between July 1980 and May 1982
to produce 36 h forecasts twice a day on é DEC 20/50 computer having a speed of
approximately 1 MIPS and a core storage of 256 K words. The model resides in
core. Using an Adams-Bashforth time scheme for the horizontal advection terms,
which was found most satisfactory in operationdl practice, the CPU time required
for a 24 h integration was 37 min, of which 17 min was spent on the horizontal

advection.

b. Attempts to use multiple time steps for advection in the Eulerian model

Tn a model based on the splitting method, the separate phases of the integration
have their own stability criteria. In principle, therefore, it is possible %o
economize on computer time by using a multiple time step for the advective terms,

since these have a more lenient stability criterion than do the adjustment terms.

100w

W

Fig. 10, A8 in Fig. 9, but performed with the model having semi-Lagrangian advection.
Case of bilinear interpolation. Adjustment time step 7.5 min, advection time step
30 min.

176



We have made numercus attempts to use this theoretical advantage of the splitting

method in the framework of our Eulerian model, but without success.

With the single step Adams-Bashforth or Euler-forward time schemes for horizontal
advection, we have found it possible %o ensure stability only by using the same
time step A t for advection as is used for adjustment. With the two step Heun
scheme, we have been able to achieve a time step of 24t for advection. However,
there is no net saving of computer time in this case, since the additional inter—
mediate calculations required by the Heun scheme cancel the advantage of using a

double time step.

As far as we are aware, no other users of split explicit Eulerian models have been
able to use multiple time steps for advection with a single step time scheme.
Marchuk (1974), in his textbook devoted mainly to the splitting mej;hod, does not
refer to any such application. J’anjic,: (personal commnication, 1980) and others
(Gadd, 19783 Duffy, 1981) have succeeded in using 3A t for advection, but in all
cases in combination with a two-step time scheme requiring intermediate calculat-

ions.

c. The model with semi-lagrangian advection

We now modify the Eulerian model by taking the horizontal advection terms in the
momentum and thermodynamic equations and expressing them in the form (aw/ dt)H =0,
(av/at)y = 0, (aT/dt)y = 0. We integrate these terms in the semi-Lagrangian manner,
chosing a multiple time step NA+t. The remaining terms are kept in their original
Eulerian form and integrated as before with vthe single time step At.

On arriving at a time nA+ in the cycle of integration when a horizontal advection
step is to be performed, the departure points of particles which will arrive at

the gridpoints (I,J) at time (n + N)A t are first estimated. This is done by
talting the available wind components (u,v)IIl,J, regarding them as valid at (n + N/2)
A t, and using them to go back from the gridpoin‘tsiover the interval NA+t to find
the departure points at time o+, (A time truncation error enters here, of course;
it can be reduced by adopting an iterative procedure — see below. ) Gridpoints
surrounding the departure points are chosen as interpolation points, in the mamner
described in Secion 2. The advective j.ntegration is then performed a’ccordj_ng to

the formula

n4N

P> =\P=': o ®)

w
where \[, is evaluated by bilinear or biguadretic interpolation in the (X,Y)

coordinates of the E-grid, as described in Subsection 2e.
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The above description refers to the integration of the momentum equations. In the
case of the thermodynamic equation, where wind components are not available at the
relevant gridpoints, the trajectories are estimated using winds obtained by four-

point spatial averaging.

The advective step is followed by N applications of the adjustment step, acting

in the first instance on the values \pj. obtained from (23).
: Y

Numerical experiments have been performed with the model thus modified, for the -
cases of both bilinear and biquadratic interpolation. All non~advective para-
meters have been kept at the same.values as in the Eulerian model. With the
semi-Lagrangian approach we have found it possible, for the first time, to use
miltiple time steps for advection without having to employ an intermediate time

stepping procedure within this phase.

The integrations for the bilinear case, though very efficient and completely stable,
have been found to give undesirably smooth forecast charts; +this is in accord with
the analysis of Section 2. We show in Fig.9a 24 h 500 mb forecast performed with
our Fulerian model. The corresponding bilinear semi-lagrangian forecast with an
advective time step of 4A+ is shown in Fig. 10. Though the patterns are similar,
it can be seen that considerable smoothing has taken place. The CFU time spent

on the horizontal advection phase, however, has been reduced from 17 to 3 min for
the 24 h integration, representing an overall saving of 38% (the time taken from

the adjustment phase remains unchanged).

The results for the case of biquadratic interpolation are much more satisfactory.
We show in Fig. 11 the corresponding forecast for this case, again using 4N+ for
advection. Comparing this with the Eulerian forecast we see that the results are
very close. The time now taken for the advective phase is 4 min for the 24 h
integration, representing an overall saving in CPU time of 35% compared to the

Fulerian run.

In this biquadratic semi-Lagrangian run, the advective time step was large enough
so that 201 vector points and 188 scalar points (mostly at the top level) had p or
g greater than zero at the beginning of the integration. After 24 h, 157 vector
points and 145 scalar points still had p or g greater than zero. Thus, the
miltiply-upstream interpolation was being fully used.

Sixty 36 h forecasts were run in parallel over the period 6 April-8May 1982 to
compare the bi-quadratic semi-Lagrangian model as described above with the

Bulerian model. In all cases, the integrations remained stable, and subjective
comparison showed no significant differences between the two sets of forecasts.

Some objective verification statistics derived from these runs are shown in Table 1.
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TABIE 1. Verification statistics for the Eulerisn model, and the biquadratic
semi-Tagrangian model with a time step of 4[&t for advection, for sixty 24 h (36 h)

forecasts. The statistics were evaluated on a central verification area.

, Biquadratic semi-
Fulerian Tagrangian
model : model

rms error (m) in 500 mb ' : o :
geopotential 34.37 (48.90) 32.78 (46.90)
Standard error in the mean .
(m) in 500 mb

geopotential 1.29 (1.94) 1,18 (1.82)
Tms error (mb) in surface . . .

pressure 3.72 (5.12) 3.70 (5.15)
Standard error in the mean

(mb) in surface pressure 0.15 (0.20) - 0.15 (0.19)

No loss of accuracy is indicated on going over to the semi-lagrangian model, despite

its longer advective time step.

As a result of these tests, the bigquadratic semi-lagrangian model with the time
step of 4 A+ for advection has been adopted for operational use in the IMS, beginn-
ing on 10 May 1982. In addition to economy in computer time, the semi-Tagrangian
model has the advantage of requiring less computer storage than the Fulerian wmodel.
This is due to the fact that the Fulerian model with the Adams-Bashforth time
scheme for advection required storage of the three-dimensional arrays relating to

the advection of (u, v, T) at the previous as well as the current time level.

To further test the properties of the biquadratic‘semi—Lagrangian model, we have
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Fig. 11.. As in Fig. 10; but for case ot bi-quadratic interpolation.
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Fig. 12. As in Fig. 11, bub with an advection +ime step of 1 h.

performed a number of 36 h integrations using an advective time step of 8At. The
integrations have all remained stable, though localized noise is evident on some of
the forecast charts. As an example, the 24 h forecast corresponding to Fig. 9 is
shown in Fig. 12. In addition to the appearance of noise, there has been a notice-
able loss of accuracy compared to the Eulerian forecast. In the present case,

1949 vector points and 1954 scalar points had p or q greater than zero at the
beginning of the integration, while the corresponding figures after 24 h are 1749
and 1725, respectively. Extensive use was therefore being made of the multiply-
upstream interpolation. Our subjective impression is that the noise arises in

regions where significant changes in wind speed or direction occur.

In an effort to reduce the noise and increase the accuracy of the integration having
an BA t advective time step, we have performed some experiments in which the

departure points are estimated using an iterative procedure. As a first stép in

00w

Fig. 13. As in Fig. 12, but with position of departure points estimated
using an interative procedure.
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the iteration, we proceed as before, using (u, v)%’J to estimate the departure
points of particles which arrive at the grid-points (I,J) at time (n + B)A t. A
first biquadratic semi~Lagrangian update is performed and the values (u,v)%j?
obtained are regarded as provisional. An average of the velocity components
(u,v)?,J and (u,v)%jg is then taken, and the departure points are re-estimated
using these average values. This is followed by a second biquadratic semi-
Tagrangian update, again acting on the time level n quantities, giving the new
values (u, V, T)?j?. The results of a 24 h integration using this iterative
procedure, valid for the same time as Fig. 9, are shown in Fig. 13. The forecast
is indeed more accurate {relative to the Fulerian forecast) and less nosiy than
Fig. 12, but not as accurate or as noisefree as Fig. 11, where a 4/t advective
time step was used without iteration. The CPU time required by the iterative run
was almost the same as that required for the forecast of Fig. 11. For a given
expenditure of computer time, therefore, it appears preferable to use shorter time

steps without iteration, rather than longer time steps with iteration.

Finally we note that Robert (1981) has used bicubic interpolation in his integrat-
jons, which he finds to be expensive. Our results would seem to indicate that

the bigquadratic is as high an order of iﬁterpolation as is required.

4. THE STADI 3SCHEME

An alternating direction implicit method was developed by Leendertse (1967) for
integrating the shallow water equations in the hydraulic engineering context. From
the meteorological viewpoint, Leendertse's scheme suffers from the defects that the
advective terms are computationally unstable and that there is no simple numerical
solution corresponding to a Rossby wave. In the SIADI scheme presented by Bates
(1985), these defects have been eliminated. The scheme is based on the following

splitting of the shallow water equations:-

=0 0 [ Bo ({4420 6
j‘}\r = 0O - ;-(lLa ‘%.% = “i"‘ %g —_ (44_ LLU::«@') w | _~{17)
%o gy | 2o (Fee ek - 2 Rbed 8

Where]f is the mean geopotential and<P’is the deviation therefrom.

The advective equations (23)—(25) are integrated using the multiply—upstream semi-~
Tagrangian scheme with biquadratic interpolation, as described in Bates and
McDonald (1982). The advective time step is A€ agy.
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The adjustment equations (26)-(25) are integrated in two steps. In the first, -

A -derivatives (in linear terms) are treated implicitly while § ~derivatives are
treated explicitly; din the second, 8 -derivatives (m linear tems) are treated
implicitly while N ~derivatives are treated explicitly. All non-linear terms

are treated in an effectively explicit manner. The adjustment time step is Dtad}_

Thus we have:

Step 1.
et e h n ,
\)-I - oty l ‘PI,T-Q-[ —‘FI - )
= = - ET,[ ~5A3 c%r;r U“ -~ (29)
S owslfy, o . V\-H/L u-&-l/z
Wrs ) _ ( 4’14.',-5 ~ :-n,T] - n \J'WH 2 - (39)
R T aoselT) 2 AN I,7 "17
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~ tLCo‘ie (_7) 2 A& .
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where
A ; . LL(J"-HG
T= ﬂtwtl/l ) (U-):;T = [U_G}SG)I,T ) ?LIT - (/“{ + )IT

The indices (I,J) denote vector points in our semi-staggered E grid, while (I,J')

and (I',J) denote scalar points.

In Step 1 the V-equation, being explicit, is integrated first and the Wand ¢
equations are then integrated together as a coupled implicit pair (see below),
while in Step 2 the u-equation is integrated first and the U and <P—equ.ations are

then integrated as a coupled pair.
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In all the SLADI numerical experiments described later, we alternate the order in
which Steps 1 and 2 are performed. This increases the symmetry of the scheme and
gives results slightly closer to the reference SLFBT integration than When the

order is not alternated.

The integration domain is identical to that used for the SIFBT experiments
described earlier. Apart from the replacement of the SIFBT by the SLADI method
of integration, the only.other difference is that in the present case. the boundary

conditions are held fixed.

Method of solving the implicit equations

The first pair of implicit equations (30) and (31) can be written
n -+ 7_ -/ . n+l/7_ R L
% (T>(F“+( ¥ Y:T):'/L - (T) CF)I-?,T = E( L, J) <3f)
_ , + . w2 o Lo =/ o
“P M_’ (T) L('V;_-Q-,/; T 4):’, T - ¢« (jj l’LI.’—I,:r = E (Iﬂ') (34)

where

o, (T) = ’z/za cos0(Dax , (3)= T/Za c00(T) 48
E(T7) = Wy, +T Ei U;; > == (37)

cim = o (1= 4G (m - 8552 ]
(<P’)§T % (7) ( u,;”,ﬁ_ll7 - u;_m_) ()

In (35) and (36) all quantities at the new time level appear on the l.h.s. while

all non~linear terms occur on the r.h.s.

Supposing first that we are on a line with an even value of J, where the end points

are vector points, we can write the pair of equations (35), (36) in the form

ArwWre, +Wr— A W, = E; 5 35T < (Tn-2) | --- (37)
where T has a range (‘l,IM) and

A - { F(3), I even _“@o)

(7 | I odd

(W, o wa ] = G389, (e, -, (B205)] )
LEsE, -~ Ezm—ﬂ=[5@ﬂ E(eT), ~--- E(rm—ztr)—] - (&)

For convenience, the J-subscrlp'bs have been suppressed in the gquantities (AI W, EI)

We solve (39) by assuming a recursion formula
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Wr = - PI Wr+( + &r 5 2 Is In-1 "’(‘*3)
from which it follows that
- =~ FI-—,WI + Qf—l

Using this to eliminate Wr.j from (39) gives

Ar Qe +E7
WI: B l‘f“AI I-‘]WIH { [ +AIPI—I

whence we have, by comparison with (43),

LI - Shas B S A
* i+ A Pry t + Az P

As boundary conditions ori the solution of (39) we require

i

Wl n -
w, = ¢ = ‘FiJ o (w3)

2,7

W _ ‘FM//L = LF;;")T Com- (‘“”)

M_I - IH"“j

In order that (43%) hold at L=, we require, using (45),

('P:':T = = P’l v‘l5+/z Q‘I_

Tn order that this hold for arbitrary W54 Hr we must have
i .
P-:_ =0 ) Qv_ = ‘l’m,:\' (47)
Starting with the values given by (47), we sweep from left to right using (44) to
calculate the (Pz, (v :) for all doubly-interior points. Then starting with
Wr,,,—j as given by (46), we sweep from right to left using (43) to calculate

the Wz for all doubly-interior points. Thus, all the (n + %)—level quantities

for even values of J are determined.

Supposing next that we are on a line with an odd value of J, where the end points
are scalar points, we can write the pair of equations (35), (36) again in the form

(39) provided we now define

(7)), L even e ()
.Al' = {F ) (T}, T odd ’
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[t e [, (57, - (205

The solution proceeds as before, the boundary conditions corresponding to (45),

(46) now being

ﬂ+l/7_ . )

Wo= Ung = Was G
= = W -~ (8o
WIM""' LLI"'I",;T Ty, T ' (s2)

The starting values (P2,Q2) corresponding to (47) are now given by

P,= 0 Q.= Wiz - Ge)

p]
The remaining (Pr, QI) are again determined by a left~to-right sweep and the Wy

by a right-to-left sweep, using the same formulae as before.

The second pair of implicit equations (33), (34) can be written

o5(T) brmes + Vi Gy, = E@Y 6D

QFO("(T’) {};\:il t CPIT' _‘PD(?-CT) 7,7 E<I3") -~ (53

’) +

where

0(3("3‘) = T CDSQ(T)/ZQA@
n+l/7_ "C(}VHJ/L u"t‘*"-] — (;,7[) .

I)j I)J'

é‘(r)jy) = Cos&(T) [
trr)= erlt[i- ) (W -u ]
_ '(LPQHH/L oa (j_ ) ( A V::/.;- __{\’_I':l::{?;) . (55')‘

L, T’
This pair of coupled equations are solved by a method exactly analogousto that

described above, where the direction of sweep is now up and down.

We note that the Py and the denominators of the Qr, as defined by (44), do not
depend on the time step and therefore need to be computed once only, thereby

increasing the efficiency of the integration.

Stability of the above method of solving the tridiagonal system (39) requires
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diagonal dominance (Isaacson and Keller, 1966, p.56). To show that this indeed
obtains, we use (36) to eliminate the <PVP*VL from (35), giving
/o

BlvGT w2l Flae) W

— (T)[ E(I‘(‘l,j') —-F (I‘I,T)‘] — E(IJL)

(learly the absolute value of the coefficient of the diagonal term exceeds the
sum of the coefficients of the off-diagonal terms, so that numerical stability
of the method is assured, regardless of the time step. The same consideratibns
apply to the pair (52), (53).

5. APPLICATION OF THE SLADI SCHEME TO A ONE-LEVEL 'MODEL

The theoretical properties of the SLADI scheme are analysed in Bates (1983). Here
we present some results of 24-hour numerical integrations using the SLADI scheme as
appliéd to a one-level model representing the 500 mb level. The integrations start

from the analysis for 00% on 21 May 1982 as shown in Fig. 14. In all cases, ¢

corresponds to the standard atmosphere value for the 500 mb level.

As a reference, we show in Fig. 15 the one-level 24-hour forecast using the SLFBT
scheme with Atzgg = 30 min, Atadj = 7.5 min. As the SLADI integrations to be
described below do not include any mechanism for suppressing two-grid intexval
noise, we omit the noise suppressor in the reference integration also. The CPU time

taken for the reference integration is then 138.5 sec.

8o kﬁ#’
gya(/)»“

)

00'w

Bo'w

Fig. 14 500 mb analysis for OOZ on 21 May 1982

186



200w

ao'w

Fig. 15 24 hr 500 mb reference integration using the SLFBT
scheme with At,5, = 30 min, Atadj = 7.5 min

(Biquadratic interpolation)

The results of a 24-hour integration using the SLADI scheme with Atadv = 30 min,
Atagy = 7.5 min are shown in Fig. 16. The cycle of integration is
(A~1-2-2-1-1-2-2-1) , where A refers to an advective step and (1,2) refer to step 1
and 2 of the adjustment scheme. It can be seen that the results are very similar

to those of the reference integration. - The maximum height differences which occur
are of 15m in the neighbourhood of the low centres, representing a slight smoothing
by comparison with the reference run. The differences away from the low centres are
negligible. The CPU time taken for the integration is 210.3 sec, representing an

increase of 52% over the reference run.

\ﬂgﬁ, '?;.—\ - [ E
\ “"'52& B ST

‘Q \g %‘\ //.
DN A 2 )

100'W

60w 40w 0. [

Fig. 16 24 hr 500 mb integration using the SLADI scheme
with Atadv = 30 min, Atadj = 7.5 min

(Biquadratic interpolation)
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100 W

80w

Fig. 17 24 hr 500 mb integration using the SLADI scheme
with Ataav = Atadj = 30 min (Biquadratic interpolation)

We now quadruple the adjustment time step while holding the advection time step
unchanged and integrate with the cycle (A-1-2-A-2-1). The integration remains
stable, the results being shown in Fig. 17. The differences between Figs. 16 and 17
are less than 5m over nearly all of the chart and at only one point amount to 10 m.
Quadrupling the adjustment time step does not appear to have led to any disimprove-
ment of the forecast by comparison with the reference run. The CPU time is now

81.6 sec, representing a saving of 41% over the reference run.

As regards the smoothing of both SLADI inﬁegrations by comparison with the reference
run, we note that én SLFBT integration With,Atadv = Atadj = 100 sec gives even
greater smoothing, the low centres being up to 20m less deep than those of Fig. 15.
Thus, it is difficult to say which of the integrations described above is most
accurate. This question can best be decided by using both schemes in a multi-level
model, running a large number of forecasts and comparing the results with what

happens in the real atmosphere.

6. CONCLUSIONS
The split semi-Lagrangian method of integrating the advective terms has been
combined with two methods of integrating the adjustment terms in primitive equation

models.

In the first, the SLFBT method, the adjustment terms are integrated using a forward-
backward technique for the gravity wave terms and a trapezoidal implicit method for
the Coriolis terms. This allows a long time step for advection but still requires

a short time step for a&justment, as determined by the CFL condition for gravity

waves. The method has been applied to a multilevel PE model with variable boundary
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conditions and shown to lead to a saving of a third of the CPU time required to

integrate the model in Eulerian form.

In the second, the SLADI method, the adjustment terms are integrated using an
alternating direction implicit scheme, where all non-linear components of the
adjustment terms are treated in an explicit manner. The adjustment integration is
then carried out in two steps, where each involves only the solution of a simple
tri-diagonal system. The method allows one to take equally long time steps for
adjustment as for advection. When applied to a one-level PE model with fixed
boundary conditions, it leads to a further saving of CPU time amounting to 40% by

comparison with the SLFBT method, while giving comparable accuracy.
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