VERTICAL DIFFERENCING OF FILTERED MODELS

A. Arakawa
Department of Atmospheric Sciences
University of California, Los Angeles, USA

1. INTRODUCTION )

In this lecture I shall discuss some of the vertical difference schemes commonly.
used for the equations that filter inertia-gravity waves through the use of the

quasi-geostrophic approximation or a similar but more general approximation.

Most of the numerical weather prediction and general circulation models currently
being used are based on the primitive eduations. Although a filtering approximation
is not explicitly used in such a model (except for the hydrostatic approximation

to filter vertically propagating sound waves), its primary objective is still to
prédict or simulate large-scale disturbances, which are nearly quasi-geostrophic in
the extra-tropics. Tt is therefore instructive to investigate the impact of verti-
cal discretization on such distﬁrbances using filtered models. In this way we
should be able to obtain some insight into the behavior of such disturbances in ver-

tically discrete primitive equation models.

2. THE QUASI-GEOSTROPHIC SYSTEM OF EQUATIONS

When pressure p is used as the vertical coordinate, the quasi-geostrophic system of
equations under frictionless and adiabatic processes consists of the following

equations:

Vorticity equation
(v V) +£)+ETw=0; | - )
at g g o ’

Thermodynamic equation

3 g _ . .
(E+_ng)e+ma;-o, (2)

Continuity equation

Ty + 200 - e
p .

Hydrostatic equation

3% _
dp

-0 ; ‘ (4)
Equation of state

6 = (p—;-)KT - (PE)KB o . | (5)
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Here 3/9t and V are the time derivative and horizontal gradient operators, respectively,

under constant pressure; Vg is the geostrophic velocity given by

v =kevy, p=& : (6)
g f
0
k is the vertical unit vector; Y is the geostrophic streamfunction; ¢ is the geo-
potential gz; g is the acceleration due to gravity; z is height; f0 is a character-

istic value of the coriolis parameter f; Cg is the geostrophic vorticity given by
L= keVxv = V3 (7)

v is the (non-geostrophic) horizontal velocity; 6 is the potential temperature;

w is the individual time derivative of the pressure, dp/dt; § is a standard poten-
tial temperature, which is a fun;tion of p only; o is the specific volume; K = R/cp;
R 1is the gas constant; and cp is the specific heat at constant pressure. For der-
ivation and justification of these equations, see for example, Holton (1979) or

Haltiner and Williams (1980).

Eliminating Vev between (1) and (3), and using (7), we obtain

0w _ ’
(Bt+v V)(V1p+f)-f 55—0. (8)
Multiplying (2) by -(a/S)/fo, which is a function of p only, and using (4) and the
definition of {, we obtain

£ 7
o

(g +vg ) §8+%s-0 (9)

where § 1s a static stability parameter defined by S = -(0./8)d6/dp, which is a func-

tion of p only.

We may further eliminate w between (8) and (9). Then we obtain

(-——+vov)q=o, q vzmpA+f+fg%(-l—%), (10)

S 9p

where ¢ is the guasi-geostrophic (pseudo-) potential vorticity. In deriving (10),

we have used (8vg/8p)°V(3w/8p) = 0. At the upper ( p = Pr ) and lower ( p = Pg )

boundaries, we assume @ = 0. Then from (9),
( + v °V ) —y~ at p = Pps Pg -+ (1)
Equations corresponding to (10) and (11) but with height z as the vertical coordinate

can formally be obtained by reinterpreting 3/5t and V as those under constant z and

rewriting 3/8p as - (1/pg)d/0z. Then (10) becomes

£2 =
(at+v V) q-= qEV2w+f+—§BZ<%-—S%), (12)



where ¢ is a standard density, which is a function of z only, N is the Brunt-Vidisild
frequency defined by N2 = g d4nf/dz, which is also a function of z only, and the rela-
tion § = (N/Eg)2 has been used. Eq. (11) becomes

9

—_— ] gyi = ) =
+ vg v e 0 at z =g z (13

( ot s*°T °

where Zg and z, are the heights of the lower and upper boundaries, respectively.

3. CONSERVATION LAWS FOR QUASI-GEOSTROPHIC FLOW

Before proceeding to the problem of vertical differencing, let us consider some
important integral constraints on quasi-geostrophic flow. For simplicity, we shall
use the B-plane approximation, in which the effect of the earth's curvature is

neglected except for the meridional gradient of the coriolis parameter f.

We introduce the cartesian coordinates x (directed eastward) and y (directed north-
ward), and let B = df/dy be constant. Using the linear differential operator L

- whose form in the pressure coordinate is given by

' _ 3 71 3
L) =V 4 gl (55 ) (14)

we may rewrite (10) as’
2 L) = JCLW), ) -

while (11) as

8 3y _ ., 8y .- - |
‘a?glpk—-}( ap’w) at P‘PT, PS . (16)

]
P:rG

(15)

Here J(a, b) is the Jacobian given by

_9da db 2a db
J(a’_ b):s;g-a—y-n . ‘ (17)

From the integral properties of the Jacobian, we obtain from (15)

9 T :

=LA =0, | (18)
21 2 __pg 3

at 2 [L(\P)] _-B ax L(‘P) ] ' (19)
b L) = 0 | (20

at each pressure level. Here the overbar denotes the horizontal area mean, along
an isobaric surface, over a domain that is periodic in x and bounded by vertical

walls at two latitudes along which { = constant in x. Similarly, from (16),

B '%’gigeo , | | ' | (21)
5 1rayf -
E’z‘(a%} =0 , : (22)
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T | |
q;ggs_‘g_o (23)

at p = pgs Pqpe (Since @ = 0 for such a domain, (21) is valid at all pressure levels,
as can be seen from (9).) '

From V2 = 3%y/ox> + 3%Y/dy? we find

3y _ 91 ay, 2 3y, 2 3 3y 3
W LG - Gh 1S G (26)

9y '9ox dy

which vanishes for the domain being considered. Then (19) becomes

9 1 _ W 8 /19 '
5;5[14011)12—-3%5‘}%—35@%) : (@25)

Integrating (25) by parts with respect to p from p = pp top-= Pgs We obtain
P

Pg p
= TEW T2 dp = - ge2 [ 2 2L 20 47 (26)

ool 1

P = Pp

which vanishes if 9Y/9p is constant at p = p_ and p = Py (i.e., the lower and upper

S
boundaries are isothermal or isentropic surfaces), as Charney (1971) pointed out.

Similarly, integrating (20) by parts and using (23), we find

P = pg

£2 2
9 o oY _
5 [ () + -2 G 1dp=0 . | (27)

oo

P =P

The first term in the integrand is the kinetic energy of the geostrophié wind per

unit mass, while from (6) and (4) the second term becomes %-uZ/S, which is the

available potential energy of the quasi-geostrophic system per unit mass.
Based on the analogy of the conservation laws (26),with the vanishing right hand side,

and (27) to enstrophy and energy conservation for two-dimensional incompressible

flow, Charney (1971) developed a theory of quasi-geostrophic turbulence.

4, THE CHARNEY-PHILLIPS VERTICAL DIFFERENCING

Charney and Phillips (1953) introduced a vertical differencing of the equations
governing quasi-geostrophic flow based on the vertical grid shown by Fig. 1. Here
£ is the index identifying pressure levels. The geostrophic streamfunction 1 is

carried at the integer levels, while w and 8 (or 3y/3p) are carried at the half-

integer levels. Correspondingly, (8) is applied to the integer levels and (9) 1is
applied to the half-integer levels. 1In this lecture, this vertical grid is refered
to as the Charney—Phillips grid, or the CP-grid.

186



- Charney —Phillips Grid
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Fig. 1 The vertical grid used by Charney and Phillips (1953).
See text for explanatious.

By using the most straight-forward vertical differencing of 3w/3p and y/op, we may

write the discrete version of (8) and (9) as

w - W
D g2y - . 2 e T e
2T VA, = - vV VP, + £ ) + £ @,
for L =1, 2, ***, L, (28)
I R/ NN ) 1% Bl S 0
ot (Ap)l_,_‘1 s (Ap)MJé £ 2+
for ¥ =1, 2, *--, L-1, (29)
where
= 1w, +vy,p)
Vot T 2V T V4’ . (31)

Note that for £ = 1 and £ = L, the boundary conditions m% = 0 and W = 0 can be
. 2

directly incorporated into (28), so that (29) applied to £ = 0 and £ = L, which

corresponds to (11), is not necessary.
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Eliminating non-zero w's for % = 1%, 2%, ..., L~k between (28) and (29), and using

VR.-F!ﬁ.V( wl"‘l - ‘pz ) = Vl'V( w£+1 - wl ) = v£+1-V( ‘pfrl-l - wﬂ, ), we obtain
3t 9 T T VptVay s | (32

where the subscript g for v has -been omitted, and

=V + £ o b Y,
LT ey ey, (33)
B MgtV Y -
_ 2 0 S A L ! . e
WSV Pt gy, Bp) gy, BoYy, 1 °°F 2 3 R
2oy -y
qL = VZwL 4+ f - o] L L-1 (35)

(AP)L (SAP)L—% N

It should be noted that (34) can be derived through a straight-forward differencing
of (10), but (33) and (35) cannot. This is because the boundary condition w = 0
has already been used in the definition of q. In fact, the limit of (35), for

example, as (Ap)L and (Ap) approach zero gives

1
L—25

fo 3

qs=vzws+f_—-——ps_ps_(%—a—‘é’-)p=p_ - (36)
S

Here Pg™ is the pressure slightly above the surface. This does not agree with the

surface value of q defined by (10); but it does agree with the modified potential

vortitity q discussed by Bretherton (1966), which is defined by

£2
o - _géﬂi) _ oY -
q=q 5 p ) S(pg - p) "'(s 3p> ) 8p = pp) (37)
P = Pg P = Pp |

where ¢ is the Dirac delta function. (To see the agreement, integrate (37) with

respect to p from p_~ to Pg after substitution of q given by (10) and then divide

S
the result by Pg - pg--) If we modify the operator L(y) to L(Y) following the

modification of q to g and if i(w) is used in place of L(Y) in (15), we can show
that

P

= s__ )
2 %-_ [LW]2dp =0 . - (38)
Pr

One of the major advantages of the vertical differencing presented here is that

the governing equation can be compactly written in the form of (32), which 1s a

discretée analog of
Dxz_y V3 (39)
3t 1 7 vg Ve » :

for the continuous case. Corresponding to (38), we can show that
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vo-v
2 2 -2 112
{v Wl (AP)l + £ 253571; }

-1
Vo~ ¥y 9, -V
R G TP e S s =y P

Q
nlw
o=

‘= o (SAP)R,-{-% (S4p) 2=
v - b
2 2 'L I-1 42 _
- Py 00y - £ g ) ] -0 . (40)

We can also show that the vertical differencing presented here satisfies

- fz

L ~ Wgpq ~ ¥)?
o 3O, + ) R —E -0, (41)
. P L+
=1 =1
which is a discrete analog of (27).
5. TOTAL POTENTIAL ENERGY, AVAILABLE POTENTIAL ENERGY AND GROSS STATIC STABILITY

Before describing Lorenz's approach in vertical differencing, let us briefly review
in this section the concepts of total potential energy, available potential energy
and gross static stability, as presented by Lorenz (1955, 196Q0).

Energy of the atmosphere consists of kinetic energy, internal energy, potential
energy and the latent energy of water vapor. Here we ignore phase chadges of water
éo that only the first three need to be considered. The kinetic energy of the
entire atmosphere is given by

1
K = 5 v2dM s (42)

where dM is an €lement of mass of the atmosphere. Similarly, the internal and
potential energy of the entire atmosphere are given by

.
I= | cT ay (43)

P= | ¢du, (44)
J ' ‘

where c, is the specific heat at constant volume. When the hydrostatic approxima-

tion (4) is used, we obtain, through integration by parts,
Pg
ddp dS

-
1
a9 |+

0
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il
o
o

.
P=P S

=1 [ép] s + podp{ds
& P

f
= .é- ¢ pgdS + | RT dM (45)

J

where j dS is the area integral over the entire globe. Using R = cP -, We obtain

P+I=|= ¢Spst + cpT dM . (46)

The sum of P and I is called the total potential energy. If the surface pressure

Pg is approximately constant in time and space, as we have been assuming in the

previous section, we obtain, approximately,

d - AT
£ (P+I) = e 5o (47)

Conservation of the total energy is gilven by
4 (ps1+K)=o0. (48)
dt

In the quasi-geostrophic system of equatilons, however, 3(3y/3p) /ot = 0 at all pres-
sure levels (see the statement in the parentheses below (23)), and, therefore,
9T/3t = 0 at all pressure levels. Use of (47) in (48) then shows that conservation
of the total energy is géneraliy not satisfied with the quasi-geostrophic form of
the thermodynamic equation (2).

When ¢S = 0, use of the potential temperature 8 in (46) gives

C

P+1=-E p<o dM. (49)

Py

Available potential energy is a portion of the total potential energy which may be

available for conversion into kinetic emergy, and it is equal to the excess of total
potential energy, above the:total potential energy which would be present if the
atmosphere were to be rearranged, under isentropic changes of state, to possess hor-
izontal isentropic surfaces, with stable stratification. (This isentropic arrange-
ment of mass is illustrated in Fig. 2 by the open arrow.) The resulting value of

P + I after the rearrangement would be obtained. by replacing pK in (49) by ﬁK,

where P is the average value of p on each isentropic surface, which is an invariant

under isentropic processes. Thus the avallable potential energy is given by

(o4
A:—-E (pK—gK )edM. (50)
pD
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From the definition of A, it is clear that dA/dt = d( P + I )/dt, so that

d
3t (A+K) =0 , (51)

- (b) (c)

Fig. 2  Vertical cross-—sections showing air separated by isentropic
(6 = const.) surfaces. (a): Given state. (b) and (c):
Hypothetical states that could be obtained from (a) through
isentropic rearrangement of mass. The excess of (P + I )
for (a) above that for (b) is the available potential energy
and the deficit of ( P + I ) for (a) below that for (c) is
the gross static stability.

Analogously, gross static stability is equal to the deficit of total potential emergy,

below the total potential energy which would be present if the mass of the atmosphere
is to be rearranged, under isentropic changes of state, to possess vertical isentropic
surfaces. (This isentropic rearrangement of mass is illustrated in Fig. 2 by the

solid arrow.) The resulting value of P + I after the rearrangement would be obtained
by replacing pK in (40) by its average value over the mass of a vertical columnm, i.e.,

p§/(l+K). Thus the gross static stability is given by

K
Cc ’ P
5 K
S='—IK,' (m——p )0 dM. (52)
po

(This S must be distingulshed from the previously defined —(a/B)dé/dp.) Integra-
tion by parts ylelds '

1 © K 1+ b))
S = Tie —PE (PSP-P ) (- gg)dM, (53)
(]

which is a weighted mean of -36/3p. Note that

d , ‘
3 | a=o | | (54)
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under isentropic processes. Taking into account (54) and (49), we see from (52)
that

a4 . 4
ES=-gxp ®+D, . (55)

so that, from (48),
Et'S='d—t-K. (56)

Thus, the gross static stability increases as kinetic energy increases. This is due
to the mean vertical transport of potential enthalpy, cpe, associated with the
conversion from potential energy to kinetic energy. For a dynamical consequence

of this stabilization, see Arakawa (1962).

In the quasi-geostrophic system of equations presented in Section 2, the relation
(51) holds in an approximated form, as shown by (27). But it fails to satisfy the

relations (48) and (56).

6. THE LORENZ VERTICAL DIFFERENCING FOR THE BALANCED SYSTEM OF EQUATIONS

Lorenz (1960) discussed the energetics of a filtered model in which the balance
equation (Charney, 1955) is used as a filtering approximation. The model consists
of the following system of equations:

Vorticity equation

3 ]
(ﬁ— + vw»V)(; + £) + Vo[(C + f)vx + m—gavw] = 0; (57)

Balance equation

Y% = Vel(g + £)VY - v% vls (58)

Thermodynamic equation

3 3 |
GG + vy D8 + T (w 8) + 35(8) = 0, (59)

Continuity equation

Vey +-ilm = 0. (60)
X op :

The hydrostatic equationm and the equation of state remain the same as (4) and (5),

respectively. We have used the notations
=y, +v,, STy oy = (61)
v vw X vw "y X

where ¥ is the streamfunction, which is generally not the same as that of geostro-

phic velocity, and ¥ is the velocity potential. The balance equation (58) is a sim-
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plified form of the divergence equation and gives a more general balance between Y

and ¢ than that of pure geostrophy.

It can be shown that the above system of equations satisfies all of the conservation
1
laws presented in Section 5, the only modification being that i-vz is replaced by

l-v?‘. Lorenz (1960) presented a vertically discrete version of this system, following

2y

an approach that could best be described by his own statements quoted below.

"Let us now replace the three-dimensional atmosphere by n layers, bounded by the

n + 1 isobaric surfaces ...... . We must now replace the system of differential
equatilons by a modified system in which finite differences replace derivatives with
respect to p. Our problem is to do this in such a way that reversible adiabatic
processes still have numerically équal effects upon kinetic energy, total potential

energy, available potential energy, and gross static stability. To this end, we

define 6 and Y within each layer. At this point we depart from many of the currently

used models in which the wind field 1s defined at n levels and the temperature field
at n -~ 1 levels (see Charney and Phillips, 1953)."

Fig. 3 shows the vertical grid on which the Lorenz vertical'differencing is based,

In this lecture, this vertical grid is referred to as the Lorenz grid, or the L-grid.

Lorenz Grid
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Fig. 3 The vertical grid used by Lorenz (1960).
See text for explanations.
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In this grid, ¥, X, ¢ and 0 are defined for each layer, which is identified by an
integer value of £; while ®w is carried at each level that separates the layers,
which is identified by a half-integer value of £. After rewritting the last term
in (57) as 3(wV{)/3p - (Bw/3p)VY, all vertical derivatives with respect to p in
(57), (59) and (60) can be replaced by vertical differences following

() - ()
L e (62)

()], =
Oy = — :

For the results to be meaningful, however, ¥ and 0 at the half-integer levels with

non-zero @ must be specified through some interpolations between the layers. Lorenz

chose
¥ Ly, +v,,.) (63)
Hs 2 T T T ' A
X ‘
Oy =3 (B +8,5 ), (64)
and
K K
¢Z - ci)fl,+l = cpel+% [ (pl+llpo) _‘(pllpo) 1, (65)

for £ =1, 2, ..., L -1, and

1
Pz = 5 ( pﬂ«—li + p2,+1§ ). (66)

The choices (63} and (65) were made to conserve total energy, while the choice (64)
was made to conserve 62, integrated over the entire mass. Eq. (65) is a finite-

difference analog of the hydrostatic equation written in the form

% __ .. ' (67)
3(p/p )" P
o
7. THE LORENZ VERTICAL DIFFERENCING APPLIED TO THE QUAST-GEOSTROPHIC FLOW

The merit of using the Lorenz grid in vertical differencing has been widely recog-
nized, as far as a system of equations more genmeral than the quasi-geostrophic system
is concerned. In fact, most existing numerical weather prediction and general circu-

lation models with the primitive equations are based on the Lorenz grid.

However, primary objectives of such models is still to predict or simulate large-scale
disturbances which are nearly quasi-geostrophic in the extra-tropics, even though the
quasi-geostrophic approximation is not explicitly used. An important question is
then to find what the departure from the Charney-Phillips grid means to quasi-geos-
trophic flow. To seek an answer to this question, we shall examine the Lorenz ver-
tical differencing applied to the system of quasi-geostrophic equations presented

in Section 2.
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To illustrate one of the problems with the Lorenz grid, let us consider a two-level

(or two-layer) model as shown in Fig. 4,

CP-Grid L-Grid
VOO TPV IIIIINIIIA T VIV IIITIIIA
| ———————— ¥  Ap ———————— 0
i w,8 % w
2 —mmm———— A ———————— 6
TTT777T7777TTTTT T

Fig. 4 Two-level modelé based on the Charney-Phillips
grid and the Lorenz grid

The thermodynamic equation applied to level 1! of the Charney-Phillips grid is

) df
(gt V8 +o g =0 | (68)

with v]}i obtained by using geostrophic vy and v, in (31). Here the subscripts 1%
for w and df/dp have been omitted. Hereafter we shall use the definition

1 g | (69)
ap (% -0 ) _

S

1

The thermodynamic equations applied to levels 1 and 2 of the Lorenz grid are

w6 :
3 . et (70)
50, t Vo) + T 0
w8
9 . et (71)
70, + V0 v,0) B 0. |

Here v, and v are non~geogtrophic. Using the continuity equation

Vev 4 4= 0 ‘ | (72)
m -3
Vev, - 45 = 0, | (73)

(70) and (71) may be rewritten as

) " :
o7 o - =
5{61 + v1 91 + Ap(ela 91) 0
28 +vevs +2(@® -0,)=0. (75)
ot 2 2 2 Ap* 2 14
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Replacing v, and v, now by the corresponding geostrophic velocity, using (64),
replacing 92 - 61 coupled with ® by 52 - §1, and using the definition (69), we

obtain
d w df _ ,
E—el + V1 V61 + 7 dp = Q: ' (76)
3 w db '
. 289 _ v 77
§_t82 + VZ V92 + 2 dp 0 - ( )

The factor %-on ® appears since thermodynamic equation is applied to the dashed line

levels in Fig. 4. If we neglect (vl - vz)'V(e1 - 92), (76), (77) and (64) give

(§L'+ v

140 _
£ lli. w p) -—5 = 0. (78)

V)ell5 +
Note that 61% is the potential temperature which is related to the thickness between
levels 1 and 2 (see (65)), and therefore to wl - wz' By comparing (78) with (68),

we see that the effective static stability in the two-level model with the Lorenz

grid is one-half of that with the Charney-Phillips grid.

The second problem with the Lorenz grid is that, in an L-layer model, there are L
degrees of freedom in 8, while there are only L-1 degrees of freedom in the vertical
differences of P. This means that there 1s an extra degree of freedom in 8 that

cannot satisfy a thermal wind relationship.

The third problem is that the governing equation cannot be written in a compact form
such as (32) and a discrete analog of the potential vorticity cannot be easily de-
fined. Let us define a " (pseudo-) potential vorticity equation " by an equation
that does not involve @, obtained by a linear combination of the vorticity and
thermodynamic equations. 1In an L-layer model, there are L vorticity equations and

L thermodynamic equations. If we eliminate L-1 non-zero @ from these 2L equatioms,
we obtain 141 " potential vorticity equations ", while there are only L potential

vorticity equations with the Charney-Phillips grid.

The " potential vorticity equation " in the above sense with the Lorenz.grid may be

written as

D £ D &6

1 o 1 11 .
—(C + £f) + — — — = Q . (79)
Dt ™ Ap (elli - 91)/Ap Dt Y
g8, -8, D
2% 2 "3
=t (¢ + f)
@é% —'gi% Dt 72
i’.{ 1 2% _ 1 20 ] =0 (80)
A (=) -8 Dt ‘[ -y Dt :
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8 -8, . D 6, -6 D
L41% TR+l TR+, L L=} 2
= —= Dt \c2.+l + £f) + ?_:'__——E(Cl + 1)
241 T Tads 2+ T Tl
% 1 Ppa¥p4 1 Doy ] _ .
A ) -8 Dt ) -5 Dt
P8y qs, = Bpp,)/0p - B, - Ty /0
for £ =2, 3, ..., L-2, (81)
Or-1 = Or1y DL-l,C . )
8. ., -0 Dt “°L-1
LY “L-1k
£o 1 D8 1 D18
P (G—L = eL 1) /Ap (eL L - eL 1!5)/Ap
D f D.B
._.L.(C + £) - o 1 L'L _ 0 )
Dt *°L Ap (8 - ®© pt  °° (83)
P ( L SL_%}/AP )
Here
D
L - 9 .
3 = (gt v V) _ (84)

and, for simplicity, Ap has been assumed constant.

To interpret the above "potential vorticity equations', it should be noted that q

in the continuous case defined by (10) with S = -(0./8)d8/dp may be rewritten as
_ 28 | ‘
@=CT+f-f70, (85)

where 0 = —dé/dp. Let us now consider (79) through (83) for a sufficiently small
Ap (1.e., a sufficiently large L). Then,

Pern, Dy | 36)
Dt "Dt

may be used within each of the equations as a crude approximation. 1In addition, from

(64) we obtain

o4 "% 18 78 o &7
ip 27 & |

O %y 1% % , 38)
Ap 2 Ap .

T T Y s T - |
Ae =T 2hp (89)
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In the following we use the notation

0 -0
- _ 1" % ‘
s 5 T T Bp . | (90)

Using (86) through (90) in (79). through (83), we can define approximate expressions
for the potential vorticity with the Lorenz grid as follows:

2f 6
q =¢ +'f_____0__1_, (9L)
1 1 Ap 01;5
Io1, 2fo ez el 92)
gL = (t + £f) - [ - 1 92
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It should be noted that in the limit as Ap + 0 (95) involves the delta function, as
(36) for the Charney-Phillips grid does. The same is true for (91). A feature
unique to the Lorenz grid is in (92) and (94). Eq. (94), for example, also involves
the delta function in the limit as Ap + 0, but with a coefficient whose sign 1s
opposite to that of (95). A similar situation exists between (91) and (92).

8. BAROCLINIC INSTABILITY WITH THE CHARNEY-PHILLIPS AND LORENZ GRIDS

The argument given in the last section indicates that there can be significant dif-
ferences between the solutions of the two types of discrete models, one based on the
Charney-Phillips grid and the other based on the Lorenz grid, whenever the lower

(or upper) boundary conditions play an important role. In this section we compare
the two types of discrete models in view of baroclinic instability of horizontally
unifdrm zonal flow with respect to a small-amplitude y-independent wave disturbance.
An f-plane and a B-plane, both centered at 45°N, and pr = 100 mb and Pg = 1000 mb

are used.
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When the modified potential ﬁorﬁicity q defined by (37) is used, one of the neces-
sary conditions for baroclinic instability (Charney and Stern, 1962) applied to the
above problem is that 3(/dy must change sign in vertical. Here § is g for the basic

state,
3Q ) d ] d £2
9 - gogzdfldy __0(___U ep) - o -5,
' P=Pg P=Pg

and U(p) is the basic zonal flow (eastward positive).

For simplicity, we shall only conéider the case where S = constant ( = 2X10—2mzsec—2
~2
mwb ~ ) and dU/dp = constant < 0 (i.e., a profile linear in p with westerly shear).

Then the second term om the right'hand side of (96) vanishes,

(a) B8=0

Let us first consider the case of f-plane, for which B = 0. This case is equiva-
lent to the Eady model (Eady, 1949), for which the analytic solution is known. In
this model 3(/3y changes sign due to the existence of the two boundary terms in (96).

Fig. 5 shows the growth rates as functions of wavelength and vertical shear, with
the Charney-Phillips grid (the left panels) and the Lorenz grid (the right panels).
the upper, middle and lower panels are the resﬁlts obtained from the 2-level,
6-level and 18-level models, respectively. (With the Lorenz grid, the vertical dif-
ferencing of Arakawa and Suarez (1983) was used instead of the original Lorenz ver-
tical differencing.) ‘ '

As we can see from the figure, the cutoff wavelength of the 2-level ¢odel is shorter
with the Lorenz grid than that with the Charney~Phillips grid. This is anticipated
since the effective static stability with the Lorenz grid is roughly one half of
that with the Charney-Phillips grid, as pointed out in Section 7.

The most remarkable feature in. Fig. 5 is the rapid growth of short waves in multi-
level models with the Lorenz grid. This is obviously spurious since it contradicts
the analytic solution of the Eady model. The maximum of this spurious growth rate
shifts toward shorter ﬁavelengths as the vertical resolution increasés. This can
be more clearly seen in Fig. 6, in which the growth rates for |du/dp| = 5 m sec—ll
100 mb are shown as functions of wavelength and the number of levels. Note that
the growth rate with the Charney-Phillips'grid rapidly converges as the number of
levels increases, while that with the lorenz grid converges very slowly. Even with
the 30-level model the spurious growth réte is still very lg;gefthdugh it appears

for very short wavelengths.
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as functions of wavelength for |dU/dp| = 5 m sec™} (100 mb)
obtained from the 18-level model with the Charney-Phillips
and Lorenz grids on an f-plane.

The upper panels of Fig. 7 show the phasé speed (the real part of the complex
phase speed c), relative‘to U of the bottom boundary, of various modes in the
18~level models for the same ldU/dp]. On the heavy parts of the lines c is a
pair of complex conjugates; while on the thin parts of the lines ¢ 1s real.
Parallel or nearly parallel thin lines correspond to neutral singular modes

in the continuous case. The steering levels of these modes with

 the Charney-Phillips grid are approximately at & = 2, 3, ..., L-1, while

those with the Lorenz grid are approximately at £ = 1%, 2%, ..., L-%. Note
that these are the levels where q is defined (see (34), (92), (93) and (94)).
The lower panels of Fig. 7 show the growth rates of amplifying modes as func-
tions of wavelength. Fig. 8 shows the structure of amplifying modes with the
Lorenz grid for two selected wavelengths. The upper panei is for a spuriously
amplifying mode, while the lower panel is for the amplifying Eady mode. Fig. 9

gives an example of the structure of neutral modes.

(B) B #0

This case is equivalent to the Green model with the Boussinesq approximation. As
Green (1960) showed, the inclusion of B eliminates the short-wave cutoff of the
Eady model. The results for this case are shown in Figs. 10, 11 and 12, which

correspond to Figs. 5, 6 and 7 for the f-plane case, respectively.’
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Fig. 12 The same as Fig. 7 but for a fB-plane.
The dashed line shows the growth rate
of the amplifying mode with a steering
level near the upper boundary.

Rapid growth of short waves in multi-level models with the Lorenz grid is again
apparent in these figures. The shortest-wave peak must be highly spurious as

in the f-plane case. Minor peaks, which also appear in multi-level models with
the Charney-Phillips grid, are probably associéted,with critical layer imstability
with non-zero 3Q/dy (Bretherton, 1966). The groﬁth rate spectrum is discrete,

however, because there are only discrete critical levels.

A similar analysis has been performed for a more realistic vertical distribution
of the static stability parameter S. The result shows that the spurious growth
of short waves ﬁrapped near the bottom boundary is even larger. In a wmodel that
includes condensation processes, the spurious growth can be even more drastic.
Since the supbiy of moisture available for condensation is more or less limited,
the SpuriOUS'gfowth of small-scale motions in a nonlinear model will decrease
the amount of moilsture ayailableAer condensation due to synoptié—scale waves

and thereby produce errors in their dynamics.

We hypothesize that this spurious growth is a consequence of the existence of the
delta function in (92) and (94) in the limit as Ap + 0. To verify this hypothesis
and to obtain a guide for overcoming this problem, we have recalculated the growth

rates with the additional term
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in the right hand side of the aellat'equation and the term

( B = S ) ' (98)
- k0, -

L UL—!g +UL—11§ L-1

in the right hand side of the BGL/Bt equation. The addition of these terms
prevents the quantities in the brackets in (92) and (94) from being very

large. We have found that the results are insensitive to even the order of
magnitude of the coefficient k, if k 2 10—3 sec_l. The dotted lines in Fig. 13
show the modified growth rate. Note that the shortest wavelength peak has

been practically eliminated, while the growth rates for longer wavelengths

remain approximately the same.
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Fig. 13 The same as the bottom right panels of
Fig. 7 and 12. The dotted lines show
the modified growth rate with the terms

(97) and (98).

9. SUMMARY AND CONCLUSIONS

The vertical differencing of Charney and Phillips (1953) for the quasi-geostrophic
system of equations based on the grid shown by Fig. 1 is very straight-forward,
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especially in that there exists an analog of the quasi-geostrophic (pseudo-) poten-
tial vorticity.

On the other hand, as Lorenz (1960) showed, the grid shown by Fig. 3 is more con-
venient to maintain conservation of energy and enthalpy for more general flow in

a discrete system. One of the disadvantages of this grid is the lack of a clean
analog of the quasi-geostrophic (pseudo-) potential vorticity, a consequence of
which is the growth of sub-synoptic.scale waves due to spurious baroclinic insta-
bility. It seems, however, this difficulty can be practically eliminated by modi-
fying the (potential) temperature prediction equation for the bottom and top layers.
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