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Summary: A balance condition is derived for atmospheric flow in tropical disturb-
ances by examination of the dynamics of cloud-mean flow interaction. This balance
condition together with the thermodynamic equation and the first order vorticity
equation proposed by Cho et al. (1982) gives a set of first order equations for

tropical disturbances.

1. INTRODUCTION

The theory for synoptic scale weather disturbances in the midlatitudes is consider-
ably simplified by the existence of the geostrophic balance. In these weather
systems, the velocity field is basically a rotational field with its vorticity one
order larger in magnitude than the divergence. Consequently, there is an approx-
imate balance between the centrifugal acceleration of the rotational flow and the

Coriolis and the pressure gradient forces.

It is not yet known whether a similar condition exists for atmospheric flow in
tropical disturbances. The dynamics of these disturbances is complicated by the
presence of large numbers of cumulus clouds. Cumulus clouds affect the synoptic
scale flow in several different ways. First, the latent heat released in these
clouds represents a major enmergy source. Second, the vertical circulations induced
by cumulus clouds redistribute the horizontal momentum in the vertical direction.
It has long been recognized that the problem of cloud mean flow interactions is

central to our understanding of tropical disturbances.

The purpose of this paper is to demonstrate, by examining a certain aspect of the
dynamiecs of cloud mean flow interactions, that a balance condition quite similar

to that of the midlatitude weather systems also exists for air flow in tropical
disturbances. The discussion will proceed as follows. In section 2, certain feat-
ures of the vertical circulation in a tropical disturbance will be illustrated by
purely thermodynamic considerations. A particular method of decomposition of the
wind field and the pressure field suitable for the analysis will then be presented
in sections 3 and 4. Based on the results of sections 2-4, a balance condition
will be derived in section 5 for atmospheric flow in tropical disturbances. The

paper will then end with a few concluding remarks.
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2. VERTICAL CIRCULATION IN A SYNOPTIC SCALE TROPICAL DISTURBANCE

Some features of the vertical circulation in a tropical disturbance may be derived
from thermodynamic considerations. Using the potential temperature 5, the first
law of thermodynamics for the mean flow can be written as
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The overbar denotes the horizontal areal average which is used to separate the mean
flow from the cloud-scale motion. The cloud effect is represented on the right-—
hand side of the equation in terms of the total cloud mass flux M.. This is the
representation first proposed by Ooyama (1971) and Arakawa and Schubert (1974) and
later refined by Cho (1977). 1In Cho's formulation, cloud areas are defined as reg-
ions where condensation and evaporation processes take place. Consequently, M.
includes both the condensation-induced upward motion and evaporation-induced cloud-
scale downward motion. If one defines the mean vertical motion in the cloud envir-

onment as

= o+M ' (2)

+ . = .
'—‘3 veVe + w 3 =0 (3)

It indicates that in addition to the horizontal thermal advection, the mean temp-
erature field is influenced by the vertical motion in the cloud environment. The
portion of latent heat released inside cumulus clouds that may be imparted to the
mean flow depends on the ability of the clouds to influence the vertical motion

field in the cloud environment.

It is well known from observations that the temperature variations in synoptic-—
scale tropical disturbances are very small. The horizontal total derivative of

potential temperature is only of the order of 0.30C day_l:

@]

é-E-+ ¥*V8 = 0.3°C day-1l. (4)

From equation (3), the typical values of & should be of the order 0.3°C day“l/
(96/9p), which is very small.

The heating rate due to cumulus clouds in convectively active regions of these

disturbances is considerably larger, typically of the order
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As noted by Wallace (1971), this implies that the cloud heating is balanced mainly
by the adiabatic cooling associated with the large-scale ascending motion. As a

zeroth order approximation, (1) may be reduced to

€1

36 _
55 = - M , (6)

or
w=-M . (7N

The large-scale mean ascending motion in the core regions of these disturbances is
essentially equal to the total upward mass flux induced imside cumulus clouds.
Consequently, the mean vertical motion in the e¢loud environment w is only a small
difference between two large quantities w and M.. These conclusions can also be
derived from a scale analysis. Interested readers are referred to Cho et al.(1983)

for details.

3. DECOMPOSITION OF THE WIND FIELD

In view of the vertical circulation features discussed in section 2, a particular
method to decompose the horizontal wind field will be introduced which is conven-

ient for later analysis.

In the study of the dynamics of synoptic scale flow, cumulus clouds are usually
treated as eddies. The synoptic scale meteorological fields are defined by an
areal averaging. The area of average A is defined as being only a small portion of
the large-scale weather system, yet large enough to contain a large number of
cumulus clouds. Such an area can be divided into two parts: the area occupied by
clouds A., and the area occupied by the cloud environment (A-A.). If a; is the

area occupied by the i'th cloud in A, then

A =) a; €))
i=1

where N is the total number of clouds in the area. The fractional cloud coverage

is defined as
L= A./A . (9)

It is typically of the order of a few per cent. For any meteorological variable a,
the synoptic scale mean values o can be expressed as
o =730, + (1-%a (10)
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where &C is the ensemble mean over the cloud areas and @ the mean over the cloud

environment.

Typically, in areas occupied by cumulus clouds there are strong vertical motions
and large values of divergence and vorticity which can be two orders of magnitude
larger than those of the mean environment. The total divergence field and the
vertical relative vorticity field are usually decomposed into a mean field and an

eddy field:

§ =8+ 38"
(11)
L=z +z'
In such a decomposition, 8' = 0 and Z' = 0. Although the values of §' and ' are

much larger than § and ¢ only in cloud areas, the areal integrated contributions of
§' and ' from the cloud environment are equally important. Alternatively, one may

also decompose the total divergence and vorticity field as follows:

§ =6+ 8"
(12)

g =g+ "
where § and  are the mean values over the cloud enviromment. In such a decompos-
ition, the values of &8" and z" vanish in the cloud environment. They have signif-

icant values only inside cloud areas. The mean values of §" and z" are given by
g

=35 -8 ‘
and (1L3)

=z -

They are not identical to zero. If the subscript i is used to denote the values of

a quantity inside the i'th cloud, then

g =68, -6
i
and (14)

L, =C. — ¢ .

1 1

Using the decomposition given by equation (12), we shall define the velocity field
?hto be such that

S =3
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where ﬂ is the unit vector in the vertical direction. ? can be interpreted as what
the wind field would be if the divergence and vorticity fields were everywhere
equal to their mean cloud environmental values. It is a synoptic scale velocity
field distinctly different from the mean wind field ?} and the mean cloud environ-

mental wind field ?.

Relative to ?} one may now describe the cloud-scale velocity fluctuations in terms

of V" given by

V=TT, (16)
Since

=3 an
areal averaging of equation (16) gives

vev-v7 . (18)
Furthermore, because of the identity

AR RSN AR (19)
there is the following relationship between V' and V'":

V=Y -7, (20)

The velocity fluctuations V" is directly related to the cloud scale vorticity and

divergence fluctuations " and §". From the definition of V", one has

‘Z'V" = g" ’ (‘21)

~

and

~

k'y x Yll - C" .
Area average of equation (21) gives

7y = 8" =

v ) J 8" da

1
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The decomposition of,? into §:and iﬁ according to equation (18) is not unique. One
may assume, for example, that ?ﬁ.has zero deformation without loss of generality.
This assumption will be made throughout this paper. Furthermore, ?ﬁ is also
approximately irrotational. Cho et al. (1979) and Cho and Cheng (1980) showed that
cloud vorticity, although it has very large point values, when averaged over the
cloud cross sectional area, has a magnitude comparable to that of the large scale

mean flow. Therefore, if the fractional cloud coverage I is small,

r >> E-Y X Yﬁ ="z (23)
and

c=r+" =g . (24)
This approximation will be used later in this paper.

Another property of this wind decomposition is that g'is approximately non-diverg-

ent. Results from section 2 indicate that

?=S<<6=§+ﬁ:_6—'_'. (25)
Therefore
3> 3 = V'§ 0 . (26)

This approximation will also be used later in section 5.

4. DECOMPOSITION OF THE PRESSURE FIELD

In order to study the dynamics of cloud-mean flow interactions using the wind
decomposition defined in the previous section, a dynamically consistent decompos-
ition of the pressure field is also needed. For the purposes of this analysis, the

following form of the horizontal equation of motion will be used:

]

FraRCR A,

ov

lp+r G+phxv+w—=0 . 2n
p ~ ~ 2z

Furthermore, the anelastic approximation will be made so that the density p will be
replaced everywhere by its large scale mean E in calculating the inertia of air

flow.

First, an average pressure field E-will be defined in such a way that

_ _ . _ ¥
_+V-(%Y-Y)+%Yp+(_f+;)ka+w——=0 . (28)
p
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The pressure fluctiation p" is then defined by
p=Dp+p" (29)

The equation governing V" can be obtained by subtracting equation (28) from equat-

ion (27)

avll

——a-E + Y(?'Y” + %Nn_Yn) + 1 v p" + [En f( % ? + (f + ?)12 % Y”
p

av" 3V av"

+§"12xV] [W"—'i'w —a——-+w ———J"O . (30)

At the cloud scale, the vertical velocity is governed by the vertical equation of

motion:

’.' w') + Q + BDWW

sow"
V(o ¥ W'+ 2z 2z

at

° l

SRS (31)

]

Equations (30) and (31) together with the mass continuity equation

pwW
3z

Vep U+ =0 (32)

then implies that the pressure field p" satisfy the following diagnostic equation

V2 p" + A_E-Z_ + Ve E V(?,Yn + 1/2~||.Yn) + Y'H[E‘." - ?n + (f+?)12 % Y"
3z )
. _ 8y BV av"

" " -
+z"kxV J + Ve olw ———-+ w" 7 — + v —SE:

3 p? — =
el (o VW"+oV"W) +55 (o ww +pww")

3z
= (0 ge"/e) =0 (33)

This is the equation usually used to determine the pressure perturbations induced
by cumulus clouds in numerical cloud models. Equation (33) together with equations
(28) and (29) then completely sepcify the pressure decomposition which is consist-

ent with the velocity decomposition introduced in the previous section.
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5. THE BALANCE CONDITION

The thermodynamic considerations presented in section 2 indicate that the diverg-

ence field in the cloud environment is about one to two orders smaller in magnitude
than the vorticity field. Therefore, the forces in the cloud environment have to
be such that the cloud-environmental flow is approximately non-divergent. The
implications of this condition on the distribution of the pressure field and its

relationship to the momentum field will now be examined.

First a few notations will be introduced, referring to Figure 1 illustrating the
area of averaging A. The outer boundary of this area will be denoted by C. The
boundary of the i'th cloud will be denoted by Ci' n will be used to denote the

unit normal vector pointing outward along a closed path.

By definition, §" =0, ¢" = 0, and w" = 0 outside the clouds. The eddy momentum

equation (30) may be reduced to

ay" -
3% + VTV + L VY + % VP E+ Dk x V" +w a—;—— =0 (34)
For simplicity, the notation F" will be introduced:
avll

F" = 5’ Y(?.Y" + 4 Yll.y") + an + S(f + ?)E x Y” + 5 ; (35)

- Y
It will be referred to as the eddy forcing. Since V" is non-divergent in the cloud

environment, line integrations of equation (34) along C and Cis give

r .
% F'en do = ) T F'.h de . (36)
i

C,
i

The total normal eddy forcing across the outer boundary C of the area of averaging
is equal to the sum of the normal eddy forcing across the outer boundaries of

clouds located in the area.

. The normal eddy forcing at the cloud boundaries may be evaluated from equation (33).
Note that 6", z", and w" all approach zero at the cloud boundaries. Integration of

equation (33) over cloud areas gives
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Figure 1. Area of averaging A. a; is the cross-—

sectional area of the i'th cloud. Ci 1s the outer
boundary of the i'th cloud and C is the boundary of
the area of averaging. n is the unit normal vector

pointing outward along a closed path.

371



- 32" 3 — n~= 3 ~ on =
= ". = - —— e .
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Ci ai
82 . =
+——2-(pww"+pwV")Jda . (37)
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Here Fc is used to denote the total normal eddy forcing across the cloud boundar-
ies. Formally, it is difficult to evaluate Fc using equation (37). It requires

the solution of the poisson equation (33) for the pressure perturbation p'". But a
much simpler experession may be obtained by combining equation (37) with the vert-

ical derivative of equation (31):

3 — % )
FC— —g aj 3. P 6 (38)

where E; is the mean divergence over the cloud area. Following the derivation giv-

en by Cho (1977), it can be shHown that
— 1
F= -Ap = (5 (1) - ) (39)

where T is the mean cloud life-span, and 5C(T) is the ensemble mean value of cloud

divergence at the end of individual cloud life cycles.

The results derived so far are general. If the condition

«<T (40)

osff

is introduced and the first order approximations are made that

w20

(41)
§ 0
then ? is approximately a non-divergent wind field. Using
F=pVGVD +Vp+p(E+Dkxy (42)

to denote mean forcing, line integration of the mean momentum equation (28) along

C gives

§ Fendi=0 . (43)
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The total normal forcing across the boundary C can be obtained by combining equat-

ion (36) and (43):

f = =
§ (F+ - di= 45 L@ (-9 . (44)
c

Note that

§ (‘F—j + F") en di = } (my(;i ?.? + ?.Yn + Y Yu.yu)
C C
+ ¥ + p") + 5 (£ + DEx(T + y")J n d2

= A[V-S V(s VY + VU BT + v p o+ Vep(f + Dk x ?]. (45)

The condition that 6 is very small then glves us the following blance condition

which is obtained by substltutlng equation (45) into equation (44):
v p y-[E V(s VY + UV + ) y"-y")] +Y-[E(f + Dk x Y]

%(a (t) -8 . (46)

In the pressure coordinate system, the balance equation may be expressed in terms

of the geopotential ¢ = g z:

2 -F+%§Ty")+y-[(f+?)ﬁx?]

v § 4+ vP0 VeV +

'<H
*<H

z pront
= -2 (8 (r) = ®) (47)

This balance condition may be written into a more convenient form by first making

the approximation T = E.given by equation (24), and then substituting the relation

V=V- Vﬁhgiven by equation (18):

V2T + VP VT = 5 VT 4 I 7Y + Y-[(f + D)k x ?] =—€- (8, (1) - B)
(48)

It was assumed when introducing V" in section 3 that it has zero deformation.

Furthermore, from equations (23) and (25)
vev' = §
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and k vV x V" = o .

Therefore, using D to denote the total deformation of the mean wind field ?;

equation (48) can also be written as

D’
2

2

V8 = L(f +'E)2 - 2

SRR A A R S L I O N B (1)

The last term in the balance eguation (49) is probably negligible. It seems reas-
onable to assume that at the end of cloud life—cycles,_Sc(T) ~ §:= g << 8. Since
i/t ~ 1 day"1 (Cho, 1977), comparable to the inverse of the time-scale of the
synoptic scale flow, this term is considerably smaller than the other terms in the
balance equation. Equation (49) can be further reduced to

52
2

2

VEeuc+ D’ -2 - T - o T (50)

rof o
1<t

The geopotential field is related diagnostically to the centrifugal accelerations
due to the mean rotation and deformation, and the mean eddy dynamic pressure due

to cumulus clouds.

6. CONCLUDING REMARKS

We have shown in this paper that a balance condition exists for air flow in tropi~-

cal disturbances, despite the fact that the mean divergence and vorticity are
comparable in magnitude in these weather systems. The balance equation is derived
from a condition deduced from thermodynamic considerations: the air flow in the
clear area between cumulus clouds being approximately non-divergent. It relates
the geopotential field diagnositcally to the centrifugal accelerations due to

mean rotation and deformation, and the effy dynamic pressure due to cumulus clouds.

When applied to an axisymmetric vortex, the balance equation (50) becomes the non-
linear gradient wind balance equation often used in modelling hurricane development,

provided that the effect of eddy'dynamic pressure can be ignored, i.e.,

2

VRV E 0.

The existence of the balance condition also makes it possible to derive a set of
first order equations for tropical disturbances. Using the scaling argument ident-
ical to that discussed in section 2 of this paper, Cho et al. (1982) derived a

first order vorticity equation for tropical disturbances:

3(f + )

et TIE+ D =L g 0 - . (51)
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This equation, together with the balance condition derived in this paper

: 2
V5=4(f+f)2———2———2-—§-2f—v L V"Y' (52)

@
@l

LA w~==0 (53)

[nd

1 <g|
:
@]
+

forms a set of first order equations applicable to the tropical atmosphere.

According to these equations, the evolution of the mean vorticity equation can be
determined to the first order from the simple vorticity equation (51), provided
the amount of cloud activities is known. The mean geopotential and temperature
fields must evolve with the vorticity field according to the balance equation (52).
The thermodynamic equation can be then used to determine the mean vertical motion
in the cloud environment w. Provided the amount of clouds is known, equations
(51)-(53) give a complete first order description of the dynamics of tropical

disturbances.
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