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Abstract

Vertical diffusion in the ECMWF numerical model is parameterized by a
stability—-dependent eddy diffusivity. BAn alternative scheme, in which the
eddy diffusivity depends also upon the turbulent kinetic energy, is compared
with the ECMWF modei. The tests are carried out by integrating a one-
dimensional model over a diurnal cycle where there is a transition from stable
to unstable conditions. The effects of spatial truncation error on each model

are particularly studied.



1. INTRODUCTION

The vertical diffusion of heat, moisture and momentum is represented in the
NWP model at the ECMWF by eddy diffusivities that depend upon the local
Richardson number (Louis et al. 1981). The diffusivities are chosen to be
consistent with the available theory and observations on equilibrium boundary
layers and the resulting parameterization is found to yield reasonable results
in the ECMWF large-scale model in regions where moist convectioﬁ is not a
dominant process (Tiedtke 1981). Experiments by Miyakoda and Sirutis (1977)
suggest that a turbulence-closure scheme based on the work of Mellor and
Yamada (1974) can also produce good results in large-scale NWP models. Such
schemes, which include the turbulent kinetic energy as a dependent variable,
allow turbulence to be advected horizontally and they also allow second-order
moments (such as the temperature variance) to be estimated. Thus there may be
some advantage in using a higher-order closure scheme to model vertical
diffusion in large-scale NWP models. In the present work we describe the
development of a turbulent-energy closure scheme for use in the ECMWF‘large-

scale model.

2. TURBULENT-ENERGY MODEL FOR VERTICAL DIFFUSION

The basis of the turbulent-energy model for vertical diffusion is the

assumption that the vertical fluxes of scalars, such as heat 8'w' and moisture

q'w', can be represented by an eddy diffusivity K_, where K is proportional

Q Q

to the variance of the vertical velocity w'2 (Manton 1980). Thus we take

8w = - KQ 98/8z and qg'w' = - KQ dg/dz , (2.1)
-_— |2
where KQ = a1 w T

In equation (2.1) z is the height above the surface (z=o0), 8 is the mean

potential temperature, q is the mean mass fraction of water vapour, a, is a

constant and T is a characteristic time scale for the turbulence; all

quantities are ensemble averages.



The time scale T is an algebraic function of the mean shear and the local flux

Richardson number Ri; in particular, we set
=2 = {(3u/3z)2 + (3v/92)2} F(Ri), (2.2)

where (u,v) is the horizontal mean velocity and F is a piecewise linear
function of Ri to be determined. The variance w'? is taken to be an algebraic
function of the turbulence kinetic energy E, while E is found by simplifying

the full turbulent energy equation

Q-E () a_u_ ¥yt ?X la_ [ T2 5 2 12
at +u'w 92 +v'w - + 2 3z {W (u's + v'4 + w }
+ % %; (p'w') + (g/p) p'w' = v(u'Véu' + u'Véy' + w'Véw') , (2.3)

where t is time; p', p', u' and v' are the fluctuations in density, pressure
and velocity about their mean values; p is the mean density; g is the
gravitational acceleration and V is kinematic viscosity of air. Horizontal
gradients in (2.3) are assumed to be negligible in comparison with vertical
gradients, except in the advection terms.

in order to estimate the relationship between w'Z and E, we consider the
equation for the anisotropic components of the velocity covariance tensor Sij’

where in tensor notation

=u' ' - —u' u' 6, ., (2.4)

and (u;, ué, ué) = (u', v', w'). Under the assumption that the anisotropy of
the covariance is maintained primarily by the working of the turbulent
stresses against the mean strain rate, it is found (Manton 1979) that the

covariance is given by the equation
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+ (a2/ ) (ui w -3y oub Gik) 0 (2.5)
where (x1, X x3) = (%, vy, 2) and a, is a constant. The last term in (2.5)

represents the redistribution of turbulent energy among the x, y and 2z
components by the working of the turbulent pressure fluctuations against the
turbulent strain rate. Equation (2.5) is an algebraic set for the six

covariance components; in particular, we find that

u'w' = - Kﬁ du/dz, v'w' = - Kﬁ dv/0z, (2.6)
2 2
—~z _2 2 T %18 du
w = /{1 + 3 (a1) (5 + G 1}
where E = % (u'z + v'Z o+ W'Z) and X = w'Z T/a1 .

Equation (2.6) allows the diffusivity KQ in (2.1) and the mechanical
production terms in (2.3) to be specified in terms of E and the mean gradients
of 6, g and velocity. 1In the absence of condensation the buoyancy flux term

in (2.3) is found from (2.1) and the equation of state to be given by

(g/p) p'w' = KQB ' . (2.7)

where B = g{% %% + (Rv/Ra - 1) %S} '

RV and Ra are the gas constants for water vapour and dry air. The right-hand
side of (2.3) accounts for the molecular diffusion and the dissipation of
turbulent energy. The former effect is negligible while dissipation is

assumed to occur with a time scale of order T; that is, we take

V (u'V4a' + v'V2u' + w' V') = - aj E/T , ' (2.8)

where a3 is a constant. The transport of turbulent energy by turbulent

fluctuations in (2.3) is modelled by the equation



w' (u's + v'4 + w'4) +p'w'/p = - K 3 - a (;TZ)i T KQB , (2.9)

1
2 Q 9z 4

where a, is a constant. The first term on the right~hand side of (2.9)
accounts for transport down the gradient of E. The second term is needed for

statically unstable cases (B<0) when the vertical transport of enefgy may be

supported by hydrostatic pressure fluctuations (Manton 1980).

Putting (2.6) = (2.9) into (2.3) we find that the behaviour of the turbulent

energy E may be modelled by the equation

%EE=¢E+%-2—Z-(P KQ%E)+%S_Z(D¢E)’ : (2.10)
where ¢ = {az (1-Ri)/(a,F) - a3}/T '

b=aga, 0 g pd

Ky=a, 8, ET,

o, = 1/{%+ 1/(a; )}

. du, 2 dv 2
= =) + (=
Ri =a, a, B/{(Bz) (Bz) }
The first term on the right-hand side of (2.10) represents the net rate of
production of turbulent energy; the three terms in ¢ are the mechanical
generation by the shear stress; the suppression by the mean stratification and

the dissipation by viscous forces. The last two terms of (2.10) represent the

turbulent transport given by (2.9).

and a, are found by comparing

The function F(Ri) and the constants a1h a2,Aa3 4

the solutions of (2.10) with the observed behaviour of an equilibrium surface
layer. Then the fluxes of heat, moisture and momentum can be estimated from

(2.1) and (2.6) in terms of the mean variables E, u, v, 0 and q.



3. EQUILIBRIUM SURFACE LAYER

We consider an equilibriumm surface layer in which dE/dt =0, u = (u,0,0),

g = 0 and the fluxes u'w' and 6'w' are constants. In neutral conditions
(Ri = 0) the turbulent time scale is given by the mean shear and so we take
F=1at Ri =0 . (3.1)
Observations, summarized by Mellor and Yamada (1974), show that the shgar
stress in neutral conditions is given by
—-u'w'/E = 0.32 (3.2)

Putting (3.2) into (2.6) and (2.10) we find a quadratic equation for a The

5
appropriate root of the equation is chosen so that the stresses w'2and v'2
from (2.5) are consistent with the observations discussed by Mellor and
Yamada. It is finally found that

a, = 1.69 and a, = 0.32 . (3.3)
We also take KQ equal to K.m {Louis et al 1981) and then (2.1) and (2.10) imply
that

a, = 0.59 . (3.4)
We note that, because the assumed behaviour of the anisotropic component of
the velocity covariance (2.5) is independent of the buoyancy flux, the

diffusivities of heat and momentum are equal for all values of Ri in the

present parameterization.

For slightly stable conditions we assume that E is independent of height and
that the gradients of u and 0 are constant. Then (2.10) reduces to ¢ = 0 and
the normalized time scale F in (2.2) is found to be a linear function of
Richardson number; in particular, for 0<Ri<Ricr

F=1-1.23 Ri , ] (3.5)

where Ricr is the critical Richardson number beyond which turbulent is



suppressed. Observations by Businger et al (1971) suggest that Ricr is equal
to 0.21. Assuming that the Brunt-Vaisala frequency yields an appropriate'time
scale for suppressed turbulence we see from (3.5) that for Ri>0.21

F= 3.53 Ri . (3.6)
As Ri+ -® the turbulent time scale should be independent of the mean shear and
so for Ri<0 we take

F=1- ag Ri (3.7)
To determine a5 we use the observation of Wyngaard and Coté (1971) that the
rate of dissipation of turbulent energy is about 35% of the rate of production
by buoyancy forces in free convection, i.e. as Ri+ -®. Thus it is found from
(2.7) and (2.10) that

ag = 0.43 . (3.8)
The last term in. (2.10) is introduced so that the turbulent transport term can
act as an energy sink in free convection. The term is irrelevant in stable
conditions when the atmosphere supports waves rather than convective thermals
and hence ag is set equal to zero for Ri>0. The value of ag for unstable
conditions is calculated from (2.10) using the obser§ation of Wyngaard et al
(1971) that

w'Z = 3.6 (Kg 8'w" 2/9)2/3 , (3.9)

where K is the von Karman constant (0.4). We therefore take

0, Ri>0 .
a, = : (3.10)

1.79, Ri<0 .

Equations (3.3) -~ (3.8) and (3.10) can be put into the energy equation (2.10)

in order to predict the behaviour of E as a function of time for all mean



stability conditions. The mean stability parameter B in (2.7) does not

account for the effects of cloud.

4. DISCRETIZATION OF TURBULENT ENERGY EQUATION

The discretization and numerical solution of (2.10) is similar to the methods
used for the primary vaariables in the ECMWF large-scale model (Louis 1981).
None of the tests described in the present report account for the advection of
E. The left-hand side of (2.10) is therefore reduced to a simple time
derivative and we consider the solution of a parabolic equation for vertical
diffusion using a centred time difference and an implicit representation of E

on the right-hand side of (2.10).

The equation of state and the hydrostatic equation together imply that

19 _ g_ i_
3z P do ' : (4.1)

o

where 0 = p/ps, p is the pressure and ps is the surface pressure. Thus (2.10)

reduces to the equation

9E
Fre $E = G , (4.2)
where
_? og.? 3E 3 og
G = {(EE) KQ g } vy {(EE) wE} '
T = e'GRa/Cpa ;

T is the air temperature, Cpa is the specific heat at constant pressure for

dry air. The discretization of the right-hand side of (4.2) is taken to be

T+1 T+1 T+1 T+1
At G = A (B, -E ) -C (F -E_)
T+1 T+1 T+1 T+1
-M (B, tE )N (B -E, (4.3)
where
A (Gg/RT)k+§ (24t KQk+i/ ok+iA°k)’



C, =A Ack_1/Ack,

k k-1
Mk = (Gg/RT)k+% (2At wk+§/2A°k) ’
= A A
Ny = Mg 8% 1/89y

where At is the time step, Aok is the increment in ¢ at level k (k=1,...,N),
T
Ek is the value of E at time TAt and level k. The non~linear coefficients Ak'

Ck' Mk and Nk are evaluated at time (T-1)At.

The discretization of the ¢-term in (4.2) must be handled carefully because
that term tends to dominate the equation. The coefficient of E on the right-
hand side of (4.2) is approximated by Ak which is of order At KQ/(Az)z, where
Az is an increment in z. Typical values are At = 900 s, KQ = 1 m? s~! and Az
= 300 m for the ECMWF model, and so the coefficient Ak is of order 10™2. oOn
the other hand ¢ scales with 1/T and the turbulent time scale is generally of
order 500 s. Thus the coefficient ¢At tends to be greater than unity.
Moréover the coefficient is positive in unstable conditions and negative in

stable conditions. We therefore take the formal solution of (4.2); namely,

%E {Eexp (- [ ¢at)} = G exp (- f¢ at) .

The total discretization of (4.2) is then given by

;+1 =Y E;_1 + 28t G, (4.4)
where
Ve = O Bmg 1 U1 5 By v By = A0y, /200,
1 + 2At ¢k+i P ¢k+§ >0 .
Bk+§ =
1/ (1 - 2At ¢1+§) P ¢k+i <0 .
The function Bk+i is an approximation to exp(2At ¢k+i)' and Yk accounts for an

irregular spatial grid.



. , . T+
The tridiagonal system (4.3) - (4.4) is solved for k=1,...,N with EN !

specified and the boundary condition of zero flux at the top

(i.e. CO = No = 0). Because the generation term dominates the turbulence

equation, E tends rapidly to its equilibrium value and so the initial
distribution of E is not critical to the ultimate solution. We therefore set
the initial value of E at time t=0 such that

E =E r k=1,...,N, (4.5)

where Emin is usually 0.01 m? s~2. The exponential behaviour of (3.2) causes

E to decrease rapidly in regions where Ri>Ricr. Because equation (4.4) is

T~ - T
homogeneous, the value of Ek ! is replaced by max (Emin' E; 1) so that Ek can

grow locally when instability occurs.

5. SURFACE BOUNDARY CONDITIONS

The value of the turbulent kinetic energy E is specified at the lowest grid
point (k=N) through use of the equilbrium surface layer observations discussed
in Sect.3. For neutral conditions the mean velocity u is given by the
logarithmic profile |

u = (u,/) log (z/2_) , (5.1)
where zO is the specified roughness height of the surface and u, is the
friction velocity. Using (3.2) and (5.1) we therefore find the boundary value

of E for Ri = 0 to be

E

2 2
N 3.13 CD (uN + vN) ' (5.2)

where CD {K/log (zN/zo)}2 ’
Zyg is the height of level k=N above the surface, and (uN,vN) is the velocity
at k=N. Turbulence is found to be reduced with increasing Richardson number

and it is suppressed when Ri is greater than the critical value Ricr. Thus,

for Ri>0, we take



= . 2 2 R .
EN max {Emin’ 3.13 CD (uN + vN) (1 RlN/Rlcr)} (5.3)
where RiN is the bulk Richardson number of the layer from the surface to level

k=N.

To determine EN in unstable conditions the observed result for w'2 is used in
the model equations. Then integration of (2.1) for the virtual potential
temperature profile yields an estimate of the enhancement of E due to a
superdiabatic surface layer. It is finally found that for Ri<0

= 2 2 1/3

= 3. + + 3. - .
E 3.13 CD (uN VN) 3.02 (zo/zN) gz, (6 ] )/es,(5 4)

N N v,s v,N

where ev is the virtual potential temperature.

T

The difference equation (4.4) for the turbulent energy Ek is solved with the

initial condition (4.5) and the boundary conditions (5.3) - (5.4). The
complete system of equations for the mean temperature T, water mass frction g
and velocity (u,v) is closed by specifying the diffusivities of heat KQ,N+&
and momentum KM,N+% in the surface layer. Although the present ‘
parameterization has KQ equal to KM within the bulk of the atmosphere,
detailed observations suggest that this approximation is valid in the surface
layer under only neutral stability conditions. For most of the computations
in the present work we therefore take the surface values of KQ and KM used in

the ECMWF large~scale model (Louis et al 1981). However, some calculations

are carried out using the simple approximation

2. 2v% 4 s o ,
max{O,CDzN(uN+vN) (1 Rl/Rlcr)} , Ri>0 .
: - = 5.5
KM,N+§ KQ,N+§ ( )
2 2y ico
CDzN (uN + VN) , Ri<0 .

10



6. SLIGHTLY STABLE BOUNDARY LAYER

Tiedtke (1981) shows that the ECMWF parameterization of the eddy diffusivities
yvields a good approximation to the "Leipzig" wind profile (Mildner 1932)
observed in slightly stable conditions. It is appropriate to test the present
turbulence scheme on the same data set. The ECMWF grid-point model is run in
its one-column mode, iﬁ which the adiabatic terms of the equations of motion
are specified and the equations reduce to a one-dimensional set for the
vertical distribution of the dependent variables. For the present test the
temperature T and moisture g profiles are fixed and the horizontal pressure
gradients in the momentum equations are specified. The distribution of grid-
point O-levels in the vertical is given by

o, = 0.75 3 + 1.75 33 - 1.5 %, (6.1)
where j = (2k-1)/2N and k=1,...,N. The number of vertical grid points N is
set equal to 15 so that the‘obsérved boundary layer occupiles the lowest three

levels. The initial velocity profile is set at the observed values and the

equations are integrated with a time step of 900 s.

Figure 1 shows that a steady solution is obtained after about 12 h of
integration. We note that a steady solution is not readily attained unless
the parameter a8 in (2.9) is equal to zero for stable conditions, as discussed
in Sect.3. In Fig.2 the computed steady velocity profile is compared with the
derived profile of Carson and Smith (1973) and with that predicted by thé
ECMWF parameterization. The low level wind is seen to be overestimated by the

E-model and this is reflected in the surface stress being 0.54 N m~2

compared
with the observed value of 0.47 N m~2. (Another analysis of the Leipzig data

by Lettau (1950) yields a surface stress of 0.54 N m2).

We find that essentially the same result is obtained if the boundary value of

Km is given by the simple representation (5.5), rather than the detailed ECMWF

11



LEVEL 15

LEVEL 14 ——
R AR I —
i I I ‘
L&On u _
a 20:: e e o ]
~ b TTrrmeerasscaacacsass
E T -
- -
'Dn
_2_0:: - ‘ _
D B e
=
3 B e
& - | i
Z-'-i@n = . _
.
™ B . —
] ! 1 |
O 12, o

TIME (HOURS)

Fig, 1 Temporal variation of the zonal wind component at
levels 13, 14 and 15 (o= 0.914, 0.967, 0.996)
for Leipzig profile using E - model for turbulent
diffusion.

12



vims~1)

10[-

Fig, 2

5 10 15
u{m s-1)

Steady velocity profile for Leipzig conditions; e Carson
and Smith (1973); o ECMWF model; B E-model.

13



version. However, this result is expected because the surface layer in this

case is near neutral stability where the two representations are equivalent.

7. DIURNAL VARIATION OF THE BOUNDARY LAYER

In order to compare the behaviour of the ECMWF turbulence scheme with the
present E-model in unstable atmospheric conditions we consider a 24-hour
integration that approximates the observed diurnal changes during Day 33 of
the Wargara experiment (Clarke et al 1971). A one-~dimensional numerical
model, described in Appendix A, is used so that the vertical grid spacing éan
be readily altered. The model does not include a surface parameterization and
so the surface temperature TS is a specified function of time. Earlier tests
with the full ECMWF one-column model show that a suitable function for Ts in
degrees K is

276 , 0<t<8 hrs .
T = 276 + 3.455 (t-8), 8<t<13.5 hrs . {(7.1)

295 - 1.810 (t-13.5) , 13.5<t<24 hrs .

Equation (7.1) represents the effects of the diurnal variation of the
radiation flux at the surface. The surface wetness WS is fixdd at 0.05. The
initial profiles of u,v,T and q are shown in Table 1. The geostrophic wind
(u_, v ) is set equal to the initial wind velocity. Advection effects are

neglected.

The ECMWF operational model uses the standard vertical grid (6.1) with N=15
and a typical time step At is 900 s. Figure 3 compares the results of the
ECMWF model with the E-model for these standard conditions. It is clear from
the behaviour of the water mass fraction g that, when convection begins after
about 10 hrs, the E-model generates a deeper and more uniform mixed layer than

that of the ECMWF model. The entrainment of warm air causes the potential

14



Table 1

Initial profiles for Wangara conditions

p(mb) u(m s~
26 5
78 7
135 10
197 15
266 20
341 25
423 25
511 23
601 20.4
692 14.8
781 10.1
863 6.2
934 6.0
287 6.0
1017 6.0

15

vim s~

0

216.2

216.2

223.2

234.2

244.2

253.2

260.9

267.6

272.4

272.5

277.6

281.8

281.6
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temperature 6 of the E-model mixed layer to be 0.5 K higher than that in the
ECMWF model, and consequently the net transfer of sensible heat from the
surface to the atmosphere is only 1.58 MJ m~2 for the E-model compared with
1;65 MJ m~2 for the ECMWF model. However, the transfer of total (sensible
plus latent) heét is almost identical for the two cases: 2.11 MJ m™2 for the
E-model and 2.08 MJ m~2 for the ECMWF model. The difference in latent heat
fluxes arises because entrainment causes g in the E-model mixed layer to be

about 0.7 g kg‘1 less than that for the ECMWF model.

It is clear from Fig.4 that the predicted values of the friction velocity u,
are comparable for the two models. On the other hand the dissipation of
kinetic energy for the ECMWF model is 0.058 MJ m~2, which is about three times
the dissipation of the ECMWF model (0.022 MJ m~2). The increased dissipation
of the ECMWF model is associated with friction at high levels in the

atmosphere, where weak inertial oscillations are established.

If the surface values of KQ and KM are given by the simple equation (5.5)
rather than the ECMWF representation then the E-model still produces a mixed
layer comparable with that shown in Fig.3b. However, the surface transports
of heat and moisture are grossly different, primarily because of the behaviour
of (5.5) in strongly stable conditions. Thé diffusivity for momentum KM
approaches zero with increasing Ri much more rapidly than does KM in the ECMWF
formulation. TIf the ECMWF scheme, which is based on studies of the surface
layer, is correct then u, is markedly underestimated by (5.5) during the night
and the total dissipation of kinetic energy is only 0.016 MJ m~2 over 24

hours. On the other hand the ECMWF parameterization has K_ decreasing more

Q

rapidly with Ri than does KM. This process allows a substantial shear stress
to be maintained while the fluxes of heat and moisture are negligible in

strongly stable conditions. Since (5.5) has KQ equal to KM we find that

18



there is considerable flux of heat and moisture to the surface during night-
time and so the net transports of sensible and latent heat are found to be

only 1.24 and 0.40 MJ m~2 over the 24-hour period.

8. TRUNCATION ERROR IN VERTICAL DIFFUSION

The differences found in Sect.7 between the ECMWF model and the E-model are
caused either by the physical differences in the turbulence parameterizations
or by differing effects of truncation error. To estimate the effects of
truncation error the models are integrated at increased spatial and temporal
resolution. Fig.5 shows the variation of water mass fraction g with time for
each model with a 90~-level uniform grid and a time step At of 225 s.
(Increasing the number of levels to 145 or decreasing At to 112.5 s has little
effect on the results. We note that increasing the resolution on the ECMWF
grid (6.1) does not produce convergent results). It is apparent that not only
do the models produce different solutions but also each suffers from

truncation error when the usual ECMWF resolution is used.

Table 2 lists the values of u,v,9 and g in the mixed layer at t = 18 hr for
each model; po is the pressure at the top of the mixed layer. The E-model is
found to produce a deeper and more uniform mixed layer than the ECMWF model.
Thus the extra entrainment of warm dry air causes the mixed layer to be warmer
and drier. On the other hand the velocity is similar for each case because
the initial profile is essentially uniform up to 860 mb. Both models produce

a sharp interface at the top of the mixed layer.

Although the mixed-layer properties differ, the net flux of heat from fhe
surface into the atmosphere is equivalent. The sensible heat transfer is 1.71
MJ m~2 and the latent heat transfer is 0.41 MJ m~2 for the ECMWF model over 24

hrs while the corresponding values for the E-model are 1.70 and 0.44 MJ m=2.

19



Table 2 Mixed-layer properties for Wangara conditions at t=18 hrs

-1 « « -1 : -1

uo(m s7%) vo(m s™) 0(K) qo(g kg ) po(mb)
ECMWF 5.80 ' -0.53 285.75 3.44 868
E-model 5.95 -0.56 ' 286.11 3.16 845

20



0-4

0:6

0-8

1-0

0-4

0-8

1-0

a)
=
2.0
3.0 JjéE%i/r—____ﬁ_____——_—hﬁ——hf
-0 ff—‘“—ﬂé\j\\g\
12 24
Time (hours)
b)
120
E
20 ﬁ
30 _/’r"-jth
0 A\
0 12 24
Time (hours)
Fig. 5. Témporal variation of water mass fraction q for’

Wangara conditions for uniform grid with N=90
and At=225s; (a) ECMWF model; (b) E-model.

21



The value of the friction velocity u, is also similar over the 24-hr period.
These results imply that the main impedance in the transfer of momentum, heat
and moisture between the troposphere and the surface is in the atmospheric
surface layer. Using the same parameterization for the eddy diffusivity in
the surface layer produces similar results in the overall budgets of heat and
moisture for both models. The kinetic energy budget is different for each
model because the ECMWF model dissipates much more energy than the E-model;
in particular, the net dissipation is 0.054 MJ m~2 for the former and

0.019 MJ m~2 in the latter over 24 hrs. In both cases the net kinetic energy
increases owing to the work done by the pressure gradient being slightly
greater than the dissipation. At t=24 hrs the increase in kinetic energy is

0.003 MJ m~2 for the ECMWF model and 0.007 MJ m~2 for the E-model.

Comparing Figs. 3b and 5b we see that the main effect‘of truncation error on
the predictions of the E-model is the production of a diffuse interface at the
top of the mixed layer. Although the mixed layer is itself underestimated,
the total region affected by convection extends to aboﬁt 700 mb in the
standard resolution case; i.e. about 80 mb (or one grid-level) deeper than
that for the high-resolution case. This result is emphasized in Fig.6 which
shows the fields of dT/dt for each case. Figure 6 also indicates that the
high-resolution solution produces a steédy increase in the mixed=-layer depth
during the daytime, while the standard-resolution case causes the depth to
increase in bursts owing to the larger vertical grid size. Truncation

error also leads to the dissipation of kinetic energy being overestimated by
about 15% when the standard resolution is used. The surface transfer of
sensible heat is underestimated by the standard-resolution case (1.58 MJ m~2
compared with 1.70 m™2 over 24 hrs), although the transfer of total heat
across the surface is accurately predicted to be 2.10 MJ m~2 (cf 2.14 MJ m—2
for the high-resolution case). This dccurs because the standard-resolution
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case gives a mixed layer that is a little warmer and drier than the high-

resolution case.

It is apparent from Figs.3 and 5 that the ECMWF model does not suffer from
truncation error to the same extent as the E-model. Although the standard-
resolution model does not yield a sharp well-mixed layer, Fig.7 shows that the
depth of the boundary layer is accurately predicted. However, the intensity
of the changes in T and g are somewhat underestimated near the top of the
boundary layer in the standard-resolution case. Using the standard resolution
we find that the transfer of sensible heat across the surface is only slightly
underestimated (1.65 MJ m~2 rather than 1.71 MJ m~2 for 24 hrs) and the total
heaf transfer is 2.08_MJ m'z, compared with 2.12 MJ m~2 for the high-
resolution case. The dissipation of kinetic energy for the standard-
resolution case is 0.058 MT m‘z, which is 10% larger than the actual

dissipation.

There 1s a continuing tendency to increase the spatial resolution of NWP
models but at the same time to increase the integration time step At. We
Atherefore show in Fig.8 the behaviour of g on the standard ECMWF grid when At
is equal to 1350 s, which is éurrently used for the operational ECMWF spectrai
model. The representation of the mixed layer is apparently no worse in this
case than when At is 900 s. However, the net transfers of both sensible and
latent heat across the surface after 24 hrs are overestimated at 1.79 and

0.47 MJ m~2 respectively.

9. CONCLUSIONS
A parameterization of vertical diffusion, based on the turbulent energy model
of Manton (1980), is compared with the results of the ECMWF scheme, which uses

an explicit eddy diffusivity. Large-scale numerical models use large time
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steps that can be somewhat larger than the characteristic turbulent time
scale. Hence the discretization of the equation for the turbulent eﬁergy E
must be undertaken carefully. The tendency for E to approach its equilibrium
value within the typical time step of NWP models suggests £hat, unless
advection of E is found to be a dominant process, the value of E could be

diagnosed at each time step.

The present E-model is found to give a reasonable estimate of the surface
shear stress in near-neutral stability conditions, although the ECMWF model
yields a better representation of the velocity profile. A comparison of the
models over a diurnal cycle of the'surface temperature éhows that both models
using high spatial resolution produée a sharp interface at the top of a well-
mixed layer.  However, the E-model produces a deeper convection layer than the
ECMWF model. The extra entrainment causes the E-model mixed layer to be a
little warmer and drier. On the other hand the net transfer of sensible and
latent heat from the surface is the same for both models. This arises because
the same parameterization of the fluxes in the surface layer is used in each
case. The result also implies that the maip impedance in the energy transfers

between the troposphere and the surface occurs in the surface layer.

The deep convection layer generated by the E-model should allow it to extend
the transfer of heat and moisture further into the tropical troposphere than
does the ECMWF model. Although the behaviour of the models is generally
similar near the surface, the ECMWF model dissipates kinetic energy over the
whole atmosphere while dissipation in the E-model is restricted to the
boundary layer. The net dissipation of kinetic energy is therefore much less

in the E-model.
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Spatial truncation error in both numerical models leads to excessive
entrainment and so the mixed layer is a little too warm and dry when the
vertical resolution is low. Consequently the tiansport of sensible heat
across the surface is underestimated while the transport of latent heat is
overestimated. Thus the net flux of energy at the surface is not greatly
affected by spatial truncation error. A coarse spatial grid causes the
dissipation of kinetic energy to be overestimated in the models. The present
tests suggest that temporal truncation error is not excessive, except that the

surface fluxes are overestimated for time steps greater than about 103 s.

Using the standard ECMWF spatial resolution (N=15 in (6.1)) in the E-model
leads to truncation error such that the effects of the boundary layer extend
about 80 mb (i.e. one grid level) deeper than they ought. The effects of
truncation error are not so obvious in the ECMWF model, but the mixed layer
with the standard resolution is not well-defined and the intensity of the
changes in temperature and moisture is underestimated near the top of the
boundary layer. Thus truncation error causes the ECMWF model to underestimate
and the E-model to overestimate the transfer of heat, moisture amd momentum

between the boundary layer and the middle levels of the troposphere.
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APPENDIX A - ONE-DIMENSIONAL BOUNDARY-LAYER MODEL

The one~dimensional model equations are taken to be

du 19 du .
e f (V—Vg) + > 3z (p K.M az) + ua ,
v _ 13 dv .
Fre £ (ug u) + p 3z (e KM Bz) + Va ! (A1)
ar _ 13 Ra/Cpa 9 _ Ra/Cpa . .
3t  p oz {p KQ e (T/0 )} + Ta + (L/Cpa) q
g _ 13 g, Lo _
ot p 3z (p KQ az) + qa qf, ’
v ) is the (specified) geostrophic wind, £ is the Coriolis

where (u ,
g

frequency, T is the temperature, g in the mass fraction of water, ﬁa' %a' Ta
and q, represent the (specified) adiabatic forcing of velocity, temperature

and moisture, qp is the rate of loss of water due to large-scale

precipitation, and L is the latent heat of vaporization for water.

The adiabatic parts of (A1) are discretized by a centred time difference; for
example, the increment Gua in u due to adiabatic forcing is given by
Su = 28t u_ . : (a2)
a a
The increments (5ug, ﬁvg) due to geostrophic forcing are given by the centred
time-difference scheme

Su
g

il

2At £ (VT -v ),
g
(A3)

T
Sv 20t £ (v - u ).
g g
The increments in u,v,T and g due to vertical diffusion are found from the
implicit scheme used in the ECMWF model; for example; the increment qu in.q

at the 0-level k is given by the equation

T+1 T=1 T+1 T+1 T+1 T+1
Tage "% A (D upyq " Tay) "Gla,y mayq) (B4

T+1 -1
where qu gl P S
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Ak and Ck are defined in (4.3). Large-scale precipitation produces the

increments 5q2 and 5T2 in g and T such that
§q, = 0 = o1, £ 1y 6q + 6q <
QT 7T P or A QTG S

. -1
but if g + 6qa + qu > s then

5q2 s - (q":_1 + an + 5qv) ‘

5T2 = - (L/Cpa) 5ql ; (A5)

T—
where s is the saturation mass fraction of water at temperture T !

+ 6T +

a
GTV. Using (A2) - (A5) we see that the values of the dependent variables,
u,v,T and g at time t = (T+1)At are given by

T+1 T=1

u = u + 83 + 8u + 6u ’
a g v

‘ VT+1 = VT-1 + 8v + 6u + 6v ,
a g v

. (A6)

TTf1 =" L 8t + éT_ + ST, ,

a v L
T+1 T

q

-

1
q + an + qu‘+ an

Equations (A1) - (A6) can be used to derive the terms in the budgets of

T T T
kinetic energy X , sensible heat P and latent heat Q at time T, where

N
. T T-1 T T=-
KT = f 1 D(u2 + v2)dz = z l‘(p /g)y(u u + v v 1)AG ,
2 2 s k
k=1
N
p'=/pCc_Tdz= ) (C_ p /9T Adg_, (A7)
pa . pa ~s k k
k=1
N
T T
Q =S pLgdz= ) (Lp /9)q_ Mo .
k=1 s k

The rate of change of kinetic energy is found to be given by

N «
T+1 T _ 1 T o T °
(X - K )/24At = k£1 5 (ps/g) (uk ua,k + vy va'k)Aok
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N .
1 T T
+ ) - -
k£1 5 (ps/g)f(vk ug,k vk Vg,k)Aok
N 1 T T
+ k£1 3 (B /9) (u Guv'k+ vkﬁvv'k)éck/zAt , (a8)

where the first term on the right-hand side of (AB) accounts for the work done

locally by the adiabatic forcing, the second term is the work of the
horizontal pressure gradient and the last term is the dissipation of energy.

The equations for the rate of change of sensible and latent heat are

N
T+1 -1 B .
(P =P )/24t = k§1 (C, /DT, |
_ ot Ra/Cpa
+ (cpa ps/g) Ay (Ts Ty /°N )AGN/zAt
N _
- k; (p /q) 8q, | Ao, (A9)
T+1 T-1 N .
Q@ -Q /20t = § (Lp /9)g N
k=1 s ar
+ (L p_/q) (@ - q. ")Ao_/2At
Pg/a) By (o = gy N
N
+ ) (Ip_/g) 8q, , ho, (A10)
k=1 ’
where. g =W. s (p ,T ) + (1 - W) -1,
‘g s s'’s s’ %y !

the terms on the right-hand sides of . (A9) and (A10) refer respectively to

adiabatic forcing, surface fluxes and large-scale precipitation.

The numerical model can be run with up to 150 vertical levels on either a
uniform grid or the ECMWF standard grid (6.1). The geostrophic wind and the
adiabatic forcing terms are specified on the ECMWF grid with N=15. The
surface values of pressure Ps' temperature Ts and wetness Ws are specified
functions of time because no surface parameterization is provided in the

model.
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