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1. INTRODUCTION

Multiple Discriminant Analysis (MDA) is a linear statistical procedure to provide

an objective basis for categorising a predictand into one of several groups
according to given predictor values. In meteorology the method is ideally suited

to those applications where the predictand meteorological variable is character-
istically non-continuous, or is usually categorised for operational reasons.
Examples of meteorological elements which are suited to prediction by discriminant
analysis are precipitation type and amount, cloud amount,; ceiling and visibility.
MDA may be applied to these elements using the perfect prog or Model Output Statistics

(MOS)formulation,orwicombinationof'these,depending(nlthepredictoréthat are offered.

MDA may be applied to meteorological problems in a manner similar to regression

or any other statistical forecasting procedure. Equations are developed using a
dependent sample which should be as large as possible, then tested on an independent
sample to estimate the forecast skill obtainable. As there is very much overlap

in the information content of meteorological variables, predictor screening is
advisable to choose the best subset of a large number of available predictors.
Screening methods employed in MDA are the same as those used in regression although
the statistic used to test for accepfance or rejection is different. The program

described below uses the Forward Selection screening method (Draper and Smith, 1981).

Two separate programs are available at ECMWF for the use of MDA: a program called
FORWMDA and a program called MDARUN. The former carries out a screening MDA and
produces diagnostic output based on the dependent dataset while the latter is
designed to produce and verify probability forecasts using the output of the
development program. MDARUN can be used on either dependent or independent data
samples providing the input data is supplied in the required formats. Details of
the required input data formats, and procedures to access the programs are
contained in a user guide available from ECMWF. This report describes the
development program FORWMDA and demonstrates the use of its output by means of an

example.

2. GENERAL DESCRIPTION OF PROCEDURE

The final output of a Multiple Discriminant Analysis is the probability of
occurrence of each predictand category. The procedure may be divided into the

following main steps:



1. . -Read and prepare input data for analysis

2. Screen for predictors

3. 1 Calculate discriminant functionskfor the aependent data

4. (Compute all coefficients required for application to independent
data

5. Determine probabilities (application{

The analysis is complete after the fourth step, but the program continues with the
fiffh step using the dependent dataset. The method was first described by Fisher,
1936, and the meteorological application and screening procedure are well documented
in Miller, 196Z. The program FORWMDA closely follows the parametric procedure
described in the Miller publication. The non-parametric procedure requires fewer
assumptions, but necessitates re-analysis of the dependent dataset each time a
forecast is wanted and is therefore impractical for operational meteorological

applications.

2.1 Read and prepare input data for analysis

Unlike regression, the MDA procedure does not explicitly use the predictand in

the formulation of the equations. The predictand values are required only to
partition the data into categories. The input dataset must be physically
reorganised into categories, ‘and it is therefore necessary to store the ‘original
dataset in memory, while the database is rearranged. The procedures for data input

i

are described in detail in the user guide.

2.2 Screenigg for_gfedictors

The screening procedure used in the program follows that suggested by Miller, 1962,
with the exception that no explicit statistical test is carried out to discontinue
selection Instead, selectlon is dlscontlnued when the addition of the best new

predictor increases the value of the test statlstlc by less than 10%.

The test statistic is the Mahalanobis D2 value, a multivariate generalisation of
the student's T-statistic which measures the discriminating power of the predictors
in terms of separation of category means. Use of a percentage increase in the test
statistic as a cutoff criterion ensures that selection will always occur, but does
not guarantee a statistically significant equation; It is therefore worthwhile to

do a formal test on the final equation that results.

2.3 Calculation of discriminanz_functions

Discriminant functions are linear combinations of the predictors for which the

separation of the group means is maximised and the within-group dispersion is



minimised. They are obtained through an eigenvalue analysis of the within- and
between-group dispersion matrices formed from the dependent data. The number of
discriminant functions obtained will be one fewer than the number of groups, and

they are independent but not orthogonal. They are ordered so that the first contains
most of the discriminant power; in fact, the eigenvalues can be used directly in
significance tests of the discriminant power contained in the predictors. The
eigenvectors obtained from the analysis are the coefficients of the predictors in

the discriminant functions.

2.4 Calculation of coefficients required for application to independent data

The parametric procedure requires that certain parameters derived from the dependent

data be stored for later application to independent data. These parameters are:

a. The a priori frequencies of occurrence of the groups. These are
estimated simply by using the frequencies of occurrence in the dependent

sample.
b. The coefficients of the predictors (the discriminant functions).

c. The group means of the discriminant function values in the dependent
sample. To obtain these, all the dependent data is transformed to
discriminant function values ("discriminant space") by applying the
discriminant function equations to each event. Then means are calculated

over the dependent data for each category and each discriminant function.

d. The inverse of the within-groups dispersionﬂmatrix'fdr the dependent data
in discriminant space. The transférmed dataset is subjected to the same
dispersion computation that was used for the original dataset. The
resulting matrix is diagonal to within roundoff error because the

discriminant functions are independent.

2,5 Calculation of probabilities

The discriminant functions are used to estimate probabilities of occurrence of each
predicted category given a set of predictor values. To make this possible, two

assumptions are made:
a. The dependent data is normally distributed within groups.

b. The within-group dispersions are equal among all groups.



If these assumptions are made, the multivariate normal distribution may be used in
the computation of probabilities. The parameters of the distribution -are the
standard variance matrix, and the vector of group means, estimated from the
dependent data using the within-groups dispersion matrix in discriminant space

and the discriminant function means, respectively. The probabilities are calculated
using Bayes' rule, with a priori probabilities also estimated‘from the dependent

dataset (see Appendix A).

3. DESCRIPTION OF THE PROGRAM
3.1 Input
a. Dependent dataset - the program expects error-free dependent dataset of,

at present, up to 200 events, consisting of one predictand and up to 99 predictors.
This array is prefaced with two records, the first of which includes the number of
observations, number of variables, latitude and longitude of statidp, number of
predictands, and starting and ending dates of the dataset. The second record gives
a description of the dataset in alphanumeric form. The third rand subsequent records
contain the data, one event for each record. The program reads the data from a

disc file, one record at a time, all predictors for one event.

b. Card image input - by means of the card image input, the user controls the
number and specification of the predictand categories and the variables offered for
screening. Two levels of predictor formulation are available, the raw predictor set
contained in the database and a set of up to 50 predictors derived from the raw
predictors. The specifications of-the derived predictors are controlled by the

card image input, described in the user guide, and any combination of raw and

derived predictors may be offered, subject to the limitations described below.
Appendix B is a list of the available compositions for the derived predictors.

When choosing derived predictors and assigning predictors to be screened, care must

be exercised to avoid offering linearly dependent predictors. For example, if two
variables and their sum (function 3) are all offered, the screening program may select
any two of the three without difficulty. On the next screening sequence, however, the
programkwill fail when the third predictor is tried due to the linear dependence.
Also, when the discontinuous linear and binary deviations are used, the threshold must
be chosen so that not all the derived values are zero. If all the values of any

predictor are zero, the screening program will fail on the first cycle.

3.2 Limitations on input

Efforts have been made to keep the dimensions of the variables consistent
throughout the program and all subroutines to facilitate changes if desired. The

limitations are as follows:



1. All variables dimensioned (150) are used to handle input data and derived
predictor values. The total set of input and derived predictors must

not exceed 150.

2. All variables dimensioned (50) are associated with input of derived

predictors. The number of derived variables cannot exceed 50.

3. All variables dimensioned (100) are used to handle the full dataset that
is input to screening. No more than 100 variables may be offered for

screening.

4. All variables with dimension (10) are used to carry information concerning
the predictors which have been selected by the screening program.
Screening stops when 10 predictors have been selected even if the cutoff

criterion has not yet been reached.

5. All variables with dimension (6) are used to carry information for the

different categories. A maximum of 6 categories is permitted.

6. At present, a maximum of 200 events may be handled. This can be enlarged

by increasing the dimension of ARRAY throughout the program and subroutines.
ARRAY carries the data, reorganised into categories, which is offered to

the MDA. The dimension of the predictand array Y should also be changed.

Major Steps of the Program

Main Program

Read data control variable from disc and read alphanumeric record. Read in

category definitions.

Read in data, store predictand values, and count category sizes. Check that
sample size 1in each category is reasonable. If any category has less than

two events, the program stops.

Rewind dataset, read over first two records. Read card input data to end of
predictor modification cards. Print out changes as requested. Read sequence

numbers of variables to be included in MDA, print them out (MINDV).

Main loop for making changes as requested and selecting predictors to be
offered. Events are read from disc, one at a time, changes are made, and
requested predictors are selected. Each event is placed in array ARRAY such

that all category 1 events are first, category 2 events next, and so on.



10.

11.

call the screening program SDISCR. ARRAY is input and the program returns the
index numbers of the predictors chosen, the number of predictors chosen, the
within and between group matrices for predictors chosen, and the matrix product
(W—IB). SDISCR uses an IMSL matrix inversion routine. Step-by-step statistics

on the screening are printed by the screening program.:

Print out diagnostic information:
- Sample size, group sizes.

- Actual (input) index numbers of predictors chosen. Note that the index
numbers returned by the screening program are according to the seguence of

predictors offered, from 1 to the number of predictors offered.
- Climatological probabilities.
- Group means for prediétors chosen.
- Grand means for predictors chosen.

- Dependent sample predictor values for all events, for predictors chosen.

Calculate Eigenvalues and eigenvectors of (W_lB), using the IMSL routine

EIGRF. Eigenvalues are returned in WEIG and eigenvectors are in ZZz.
Calculate and print out statistical test information on the eigenvalues.

Check for collinearity of group means. If three or more of the group means
lie on or near a straight line, the number of independent discriminant
functions is reduced. Collinearity is indicated by a very small eigenvalue.
This is tested by comparing adjacent eigenvalues in the set. If the ratio

drops below .001, all subsequent eigenvalues are rejected.

At this point, the discriminant functions have been obtained for the predictors
screened into the equation. The coefficients are the eigenvectors. To save
space, the program from this point on overwrites data in the axrays used up

to this point.

Convert the dependent sample to discriminant space. Subroutine CONVERT is
called. ARRAY and the screening index numbers are input,- and the program
replaces the first IDM rows of ARRAY with the corresponding discriminant

function values where IDM is the number of discriminant functions used.

Calculate the pooled within-group dispersion matrix for the dependent sample

in discriminant space and invert it. Program WBMATX is used to calculate the



dispersion matrix and the discriminant functions'means, and the IMSL routine

LINVIF is called to invert the matrix.

At this point, all the output parameters of the MDA that are needed for

application to independent data have been calculated. They are:

a. The coefficients of the discriminant functions. (An array of size

number of predictors by number of functions.)

b. The dependent sample means of the discriminant functions. (An array of

size number of groups by number of funtions.)

c. The estimated climatological probabilities from the dependent sample.

(A vector of length number of groups.)

d. The inverse of the pooled within groups dispersion matrix for the
dependent sample in discriminant space. (An array of size number of

functions by number of functions.)

From this point on, the program carries out calculations on the dependent data

similar to those required in applications to independent data.

12. Calculate forecast probabilities for the dependent sample. Subroutine PROB
is called within the loop with one set of predictor values, and all the
dependent sample information outlined in (11) above. The output is a vector

of group probabilities.

13. Calculate dependent sample diagnostics:

~ Brier score
- Total variance (climate Brier score)

- Reduction of variance

Print out forecast probabilities and diagnostics.

B. Subroutine SDISCR

To determine the best predictors for discriminating among groups, the Mahalanobis D2
statistic must be computed. This involves calculation of the within- and between-
groups'dispersion matrices and inversion of the within-group's matrix. Much of the
discriminant analysis must be done simply to select the best predictors, and the
screening cannot therefore be separated completely from the discriminant analysis

if maximum efficiency is to be achieved.



The screening procedure is a forward-selection method in the sense that a predictor

that is entered remains for all subsequent, steps.  The main steps of the program are:

=
.

.

Calculate the within and between groups' dispersion matrices for .all
candidate predictors, calculate the group means and grand means for all

candidate predictors.

Begin screening. Enter all predictors one at a time, calculate the
Mahalanobis statistic for each, choose as firstjpredictor the one with the

highest value.

Search all predictors for the one which produces the highest Mahalanobis
value in combination with the predictors already in the equation. To do
this, the appropriate within and between. groups' matrix elements are
extracted from the matrices calculated in (1) above, and formed into

smaller W and B matrices. This step is repeated until no predictor
increases the Mahalanobis value by more . than 10%. As each predictor test
involves inversion of a matrix, computation time can be saved by restricting
the number of predictors offered and/or restricting the number of predictérs
to be screened in. It is this part of the program that consumes most of

the time.

At the conclusion of the screening, the output matrices W and B contain

the within- and between- groups' dispersion for the'selected predictors.

The screening routine provides for forcing of predictors into the equation.
If a predictor is to be forced in, the corresponding element of input vector
IDX should be set to: 1 to force the variable in

2 to delete the variable from consideration.

IDX is defined in a data statement in the main program.

C. Subroutine WBMATX

This program calculates within-group and between-group dispersion matrices, group

means and grand means. Input data is in array X, output matrices are in XW and XB,

group means are in XBAR and grand means are in XGM.. This program is used twice:

once to calculate dispersion matrices and means for all the predictors prior to

screening, and once to calculate the within group's matrix and means for the

discriminant functions for the dependent sample.



D. Subroutine CONVERT

This program transforms an input array of up to 100 predictors by 200 events to
discriminant space, using coefficients from array COEF. The transformed data are
put back into the input array in the first IDM rows where IDM is the number of

discriminant functions.

E. Subroutine PROB

This program does all necessary computations to obtain forecast probabilities from
discriminant functions. As input, it expects all‘of the MDA output parameters listed
after (11) above, and the predictor values. A switch is provided to indicate whetherxr
the predictor values have been transformed to discriminant space. The program first
computes discriminant functions from the predictor values if necessary, then:
determines deviations of the discriminant function values from themean of each group
(DEV(J)). Then the vector DEV pre- and post- multiplies the matrix W—1 for the
discriminant functions to obtain the exponent of the normal distribution (estimated).
Finally, Bayes' rule is applied to obtain the probabilities of membership in each

group.

F. Subroutine BRIER

This program calculates the Brier score (Brier, 1950) given a vector of
probabilities for NG groups and a verifying observation value (OBS). If the
veriinng‘category number is known, if is input in IGR. If not, IGR is set to 0 on
input and the programAcalculates tﬁe verifying category. The Brier score calculated

is added to SUM which must be predefined on input.

G. Subroutine PRINTPR

This program prints out the plain language description of the predictors offered to
the screening program. The input data (ITEXT) has been read from the second record

of the data file.

4, ° SAMPLE QUTPUT OF PROGRAM

The example shown below was set up for forecasting probability of precipitation
amount for Hannover, Germany in 3 categories, less than 0.5mm in 24 hours, 0.5mm to
5.0mm in 24 hours and more than 5.0mm in 24 hours. The dataset accessed by the
program contained 74 events during the winter of 1980-81. Model output parameters
were chosen for inclusion in the database specifically for the precipitation fore-
casting problem, then the raw parameters were composited in various ways to form a
final set of potential predictors that should be physically related to the

occurrence of precipitation.
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The various components of the program output are illustrated and discussed below:
A. Database description

The user-supplied heading is printed, followed by number of events, number of raw
predictors, latitude and longitude of the station and database starting and ending

dates. The last six items are read from the first record of the database file.

HOA-TESTRUN DN HANNOVER DATA WITH NEW FUNCTIONS ANI' NEW DATA
NO., OF EVENTS IS 74 .

ND OF INFUT FREDICTORS IS 108

STN COORDS ARE 52,47 9786

START ANDI ENI' DATES REQUESTED ARE 801209 818228

B. Derived predictor compositions

Each composition is listed, first in the form supplied on input, then in plain
language form, where the new predictor's sequence number is also identified. The
new predictors are added to the original input set, and sequencing starts with the
next integer. The example shown here contains the maximum 50 compositions and
demonstrates that it is possible to submit a second and higher level of composition.
For example, to obtain positive vorticity squared, the two components of vorticity,
gg- and %3- were combined using the subtraction function, then the resultant
predictors are passed through the discontinuous linear function to set all negative
vorticity values to 0, then the result is squared to produce a function which is
constant ﬁor all negative values of vorticity and steeply rising for positive

values. Through the use of such functions, it is possible to include non-linear

effects in the linear statistical screening procedure.

11
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cC. List of predictors to be offered to the MDA

It is not nécessary to offer all the available raQ and derived predictors to the
screening program. Predictors are selected for screening by the user by listiné
the sequence numbers of original and derived predictors wanted, 18 to a card in
the input stream. iThis input is simply prihted a£ this point for checking

purposes.

3 5 18 11 12 15 16 17 20 21 22 36 31 32 S

41 42 45 46 47 58 51 S2 S5 54 57 4B 61 42 g; 22 Z; gg
81 82 B85 B85 87 98 91 92 95 94 97 181 182 183 164 185 186 167
188 199 118 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
!1.’.;'.’1; 127 128 129 130 134.135 134 137 138 139 146 141 142 143 144 145 146

D. List of candidate predictors

Once the predictor selection hés been made via the input stream (C; above), only
those predictors that are to be offered are listed in plain language form. For

the raw predictors, the plain languége description has been taken from the second
record of the dataset file. For the derived:predictors, this information is not

available and the reader is referred to the preceding composition‘descriptions.
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H 1@ : GEOPOT. H 5a8  § 72 ¢+ 98 3 4POINTS i .NO INTERP ! NO DERIV. ! -3 STEPS 3 ND TREND “PREDICTOR -
1) I GEOFDT. i 588t @4 1 96 1 AFDINTS MO INTERP { ND DERIV. i 3 STEFS I ND TREND FPREDICTOR
: 21 GEOPOT. . i SBO ! . 94 I 94 1 4PDINTS f: NO INTERP : ND DERIV. 1 3 STEPS ¢ ND TREND PREDICTOR
t 15 1 GEQFOT. ¢ 18@B 1 72 1 946 { NO AVERAG. : NO INTERP : LAPLACIAN t 1 STEPS 1 NO TREND PREDICTOR
¢ 16 :GEOFOT. ' 1 1888 i B4 t 94 t ND AVERAG., ! NO INTERP 1 LAFLAGIAN - ! 1 STEPS 't NO TREND PREDICTOR
H 1?7 : GEDPOT. i 18ea ¢ v 1 $4 I NO AVERAG., § ND INTERP ! LAPLACIAN ¢ 1 STEPS ¢ NO TREND' PREDICTOR -
120 ¢ TEWPERAT, i 180 ! 72 3 94 1 AFOINTS | NOD INTERP i NO DERIV. { 3 STEPS | HD TREND PRENICTOR
t 21 TEWFERAT, ¢ 1888 1 BA t 94 1 4POINTS ¢ NO INTERP ! NO DERIV., ¢ 3 STEPS ¢ ND TREND PREDICTOR -
322 : TEWPERAT, i 1808 3 94 3 96 : 4POINTS : ND INTERP ; ND DERIV. ! 3 STEPS | NO TREND PREDICTOR
i 301 U-VELOCIT, @ 858} 72 1 95 i 4PDINTS 1 NO INTERP : NO DERIV. : 3 STEPS ' : NO TREND PREDICTOR
{31 1 U-VELDCIT. 3 8SB © B4 | 94 t 4POINTS : N INTERP ¢ MO DERIV, i 3 STEFS ! NO TREND PRENICTOR
¢ 32 3 U-VELDCIT. ¢ 858 3 96 & 96 t . 4PDINTS. :- ND INTERP { NO DERIV, { 3 STEPS ! NO TREND PREDICTOR
{35 & V-VELOCIT. : 858 1 72 { 94 i 4PDINTS { WO INTERP ¢ NO DERIV, ¢ 3 STEPS i NO TREND FPREDICTOR
t 36 V-VELOCIT. ! B35 ' 84 ! 96 1 APDINTE : NO INTERP t NO DERIV, : 3 STEPS i NO TREND PREDICTOR
37 : V-VELOGIT, § 85@ ¢ 96 ¢ P& ¢ APOINTS : ND INTERP ¢ NO DERIV, t 3 STEPS i Ng TREND PREDICTOR
t 4@ ! MIKING.R., } 858 ¢ 72 & 96 : AFOINTS ¢ NO INTERP 1 NO DERIV. ! 3 STEPS ¢ ND TREND PREDICTOR
t 41 : HIXING.R., & B58 ¢ 84 { 94 i AFDINTS : NO INTERP : WO DERIV. ! 3 STEPS 1§ ND TREND PRENICTOR
t 42t HIXING.R, t BS5® ¢ 96 t 94 t APOINTS ¢ ND INTERP 1 NO DEKIV. ! 3 STEPS ¢ ND TREND PREDICTOR
t A5 : VERTL.WIND ¢ 788 ¢ 72 § 96 1§ APOINTS t ND INTERP ! NO DERIV. : 3 STEPS | ND TREND PREDICTOR
¢ 46 ! VERTILMIND 1 788 t B4 § - 96 ! APDINTS ! NO INTERP t NO DERIV. : 3 STEPS ¢ ND TREND PREDICTOR
47 { VERTILMIND ¢ 788 f 96 t 94 & A4POINTS t ND INTERP : NO DERIV. t 3 STEPS ¢ NO TREND PREDICTOR
S6 § VERTILWIND @ 508 : 72 : 94 : APOINTS : MNO INTERP : NO DERIV. § 3 STEPS ¢ ND TREND PREDICTOR
51t VERTILWIND : 588 ¢ B4 f 94 ¢ AFDINTS ¢ ND INTERP t MO DERIV. 3 3 STEPS ¢ NO TREND PREDICTOR
.52 ¢ VERTILWIND ¢° 588 f 96 ¢ .96 3 4PDINTS ¢ HO INTERP t NO DERIV. ¢ 3 STEPS | NO TREND PREDICTOR
S5 i cCLOUDCOY ¢t 220 1 72 t 96 &t APDINTS ¢ NO INTERP ! NO DERIV, '{ 3 STEPS { ND TRENN PREDICTOR
S6 2 CLOUD COV & 228 1 BA ¢ 96 § A4FOINTS 1 ND INTERP 1 NO DERIV. ! 3 STEPS ! ND TREND PREDICTOR
57 1 CLOUD.COV ¢t 228 ¢ 96 & . 96 t 4POINTS : NO INTERP ¢ NO DERIV. t 3 STEPS ! NO TREND PREDICTOR
48 t V-VELOCIT. ¢ 1888 ¢ 72 § 96 © 4POINTS i NO INTERP ! W-E GRADI. : 3 STEPS | ND TREND PRERICTOR
61 1 V-VELOCIT. ! 1888 1. @4 t 96 1  AFOINTS 1 ND INTERP : W-E GRADI. ! 3 STEPS ! NO TREND PREDICTOR
42 1 V-VELOCIT, : 1808 t 96 3 96 : APOINTS ¢ ND INTERP : W-E GRADI, { 3 STEPS ! ND YREND PREDICTOR
85 :U-VELOCIT, ¢ S8@ ¢ 72 & 96 3 A4POINTS ¢ NO INTERP 4 U-E GRADI. ! 3 STEPS t NO TREND PREDICTOR
46 § U-VELOCIT, t 580 : 64 : 94 ¢ 4FOINTS : NO INTERP § W-E GRADI, ¢ 3 STEPS ! NO TREND PREDIETOR
47 ¢ V-VELOCIT, ¢ 588 : 96 ! 9& 1 APOINTS ¢ ND INTERP : W-E GRADI, ! 3 STEPS | NO TREND PREDICTOR
88 : TEMPERAT., § 858 t¢ 72 1 95 1 4POINTS ! NO INTERP ! W-E GRADI. ! 3 STEPS I NO TREND FREDICYOR
8L ¢ TEMPERAT. ¢ ©58 ¢ B4 : 96 I APOINTS ¢ NO INTERP { W-E GRADI., t 3 STEPS ¢ ND TREND PREDICTOR
82 ¢ TEMPERAT. & 858 : 9 t 94 t APOINTS ! ND INTERP ! W~E GRADI. § 3 STEPS 1 ND TREND PREDICTOR
85 : TEHFERAT, : BSB 1 72 ¢ 94 & APDINTS ¢ NO INTERP ¢ N-5 GRAD. ! 3 STEFS ! ND TREND PREDICTOR
B4 t TEMPERAT. ! ©BSB ! B4 t  9& t APOINTS : NO INTERP & N-S GRAD. i 3 STEPS 1§ NO TREND PREDICTOR
87 t TEMPERAT. ! 858 : 9 ¢ 96 & APOINTS : NO INTERP ! N-5 GRAB. i 3 STEPS ! NO TREND PREDICTOR
90 : LARGERAIN | 228 & B84 : 188 ¢ 4PDINTS ! NO INTERP ¢ NO DERIV, ! 2 STEPS i TREND  PREDICTOR
91 ¢ LARGERAIN ¢ 228 ¢ 94 & 188 : AFOINTS t MO INTERP : NO DERIV, ! 2 STEPS i TREND PREDICTOR
92 ¢ LARGERAIN t 228 ¢ 168 ¢ 188 : A4PDINTS ¢ ND INTERP ¢ NO DERIV. i 2 STEPS i TREND  PREDICTOR
95 : CONVECRAIN ¢ 220 ¢ BA ! 1B8 ! 4POINTS t NO INTERP ! ND DERIV, ¢ 2 STEPS ! TREND FREDICTOR
96 : CONVECRAIN ¢ 228 ! 964 3 188 : APDINTS ! NO INTERP ¢ NO DERIV. ¢ 2 STEPS § TREND PREDICTOR
97 § CONVECRAIN ¢ 228 ! 188 : 188 : 4POINTS : NO INTERP : ND DERIV, i 2 STEPS ! TREND PREDICTOR
181 ! DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
182 : DERIVED PREBICTOR-SEE DESCRIPTION ABOVE
"""{83 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"7 "1B4 t DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"7 185 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
186 ¢ DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
" 187 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
" 108 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"""Yo7 : DERIVED FREDICTOR-SEE DESCRIFTION ABOVE
118 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
“"511 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"""112 ! DERIVED PREDICTOR-SEE DESCRIFTION ABOVE
" 113 { DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
114 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
“77115 t DERIVED PREDICTOR-SEE DESCRIPTION ABOVE i
114 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"""117 t DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
118 : DERIVED FREDICTOR-SEE DESCRIPTION ABDVE
"7 119 1 DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
"7"128 : DERIVED PREDICTOR-SEE DESCRIPTION ABOVE
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E. Screening Diagnostics

The next section of output describesg the results of the screening. For the
purposes of screening, all predictors offered are resequenced according'tc the
order given in C. above. For example, predictor 40 is the 18th . in the list and

is therefore identified as number 18 by the screening program. The first two .
lines of output give the specifications for deletion of predictors and forcing

of predictors, as controlled by the IDX parameter described above. At each step

of screening, the best predictor is listed, along with the Mahalanobis test
statistic value associated with the best predictor .and the increment in the test..
statistic from the previous step. In the example shown, four predictors were
selected, and none of the others produced an increase of at least 10% in the

value of the test statistic. As the Mahalanobis statistic cbntainsrthe sample
size, the Mahalanobis values obtained, and therefore ﬁhe Mahalanobisjvalue
increment required for discontinuing selection depends on the sample size. A final
Mahalanobis value approcaching 1 for every case in the sample (74 in the example)
represents quite a good fit to the data and useful discriminant power. For larger
samples, it is worthwhile to lower (relax) the cutoff criterion to 5% for two
reasons: firstly, the larger sample provides greater confidence in the fit and can
withstand the addition of more predictors that would result from a relaxed cutoff
criterion; “‘secondly, a larger sample size means generally larger Mahalanobis values
and increased difficulty for new predictors to achieve a given percentage dincrease
in the statistic.  If the cutoff criterion is set too high, useful discriminant
information will be omitted from the analysis (underfit) and, if it is set too .low,
unreliable predictors may be chosen, thereby reducing the confidence in the fit by
fitting noise which is specific to the dependent sample (overfitting). The cutoff
criterion is set by the variable PCT in the screening program, in a statement near -

the end of ‘the program.

Following the screening information, the sample sizes are printed by category, the
predicted variable number is given for checking purposes and the selected predictors
are listed using the original sequence numbers and. the plain language descriptions

from the second record of the data file. .
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NUMBER OF VARIABRLES DELETEL
NO VARIARLES FORCED INTO ANA|

FOR 1 PREDICTORSy THE BEST
MAX MAHALANORIS [~S5BUARE IS

a
LYSIS

FREDICTORS ARE
37.44825

(4]

HDIFFERENCE D-SBUARE( 1) - D-SOUARE( 8) IS 37.44825
FOR 2 PREIMCTORSy THE BEST FPREDICTORS ARE S 89

HAX MAHALANOEIS L-SQUARE IS 53.57201

DIFFERENCE LI-SQUARE( 2) - L-SQUARE( 1) I8 16412376
FOR 3 FREDICTORS, THE REST FREDICTORS ARE S 89 78

MAX MAHALANDEBIS [-SOUARE IS 62,19718

NIFFEREMCE D-SRUAREC( 3) - D-SRUARE( 2) IS B8.,62517
FOR 4 PREDNICTORSs THE BEST FRENICTORS ARE .5 85 7@ 47
MAX HAHALANOEIS L[-SQUARE IS 69,28895 T
LIFFERENCE D-SBUARE( 4) - DI-SQUARE( 3) IS 7.89178

ALDITIONAL FREDICTORS FRODUCE NO. SIGNIFICANT IMFROVEMENT

TOTAL SAMPLE SIZE= 74 GROUF 1 37 : GROUP '2 28 BROUF -3 9 GROUP

FREDICTAND IS VARIABLE NUMBER i

FREDICTORS ARE

2 141 123 97 i

: 12 ¢ GEOFOT, {580 ¢ 96 ¢ 96 ¢  4FDINTS ¢ ND INTERF ! NO DERIV. ¢ 3 STEFS  NO TREND FREDNICTOR
141 ¢ DERIVED PREDICTOR-SEE DESCRIFTION ABOVE
123 § DERIVED FREDICTOR-SEE NESCRIFTION AEOVE

: 97  CONVECRAIN ¢ - 228°°f 188 i 188 ! . "4FDINTS ¢ NO INTERF ¢ NO DERIV. { 2 STEFS ~ ¢ TREND PREDICTOR
F. Dependent sample information
The climatological: frequencies of the categories. are given as estimated from the
dependent sample. -Then, the means of the predictors are listed by category. - This

information is very useful for a quick visual assessment of the analysis and:a check
that the selected predictors make sense from a meteorological point of view. For
example, the first predictor chosen, 500mb heiéht, shows the highest mean value for
dry cases and lowest mean for category 3 (wettest cases), with a noticeable spread in
the category means. Variable 141, the product of 850mb windspeed and cloud cover,
increases from dry to wet cases, probably relating to the presence of frontal
zones for heavier rain cases. Variable 123, a stability indicator in the form of
1000-500mb temperature difference in excess of'30oC, also shows greater values for the
precipitation cases than the dry cases but achieves highest mean values for the light
rain cases. A possible explanation for this distribution of group means is that, in
winter, heavy rain cases are associated with strong -frontal (relatively stable)
situations, while light rain cases are associated with weaker frontal situations or
air mass convective activity. The fourth predictor, the model's convective

precipitation, shows the expected relationship with the predictand.

The grand means are listed after the group means, followed by the predictor values

for the complete dataset. These may be used to study cases of misclassification in
the dependent sample, specifically to determine which predictors were responsible
for the error.
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CLIMATOLOGICAL FREWUENCIES (A FRIORI GROUP FREGUENCIES) ARE 5688 3784 1214

GROUF 1 MEANS : .
,5481E+B4 . 6B14E+81 L 121BE+61  ,3739E+08

GROUF 2 MEANS
2 5314E+D4 1169E+82 +ASRGE+B1 - 4 1452E+481

GROUF 3 MEANS
+GRG7E+B4 +1466E+82 +2747E+81 +3132E+01

GRAND MEANS

+I391E+B4 . .P4613E+61 «2652E+61 +1117E+01
FREDICTOR VALUES
12 141 123 s ?7
1 J9277E+H34 «3693E+B1 6, .1431E-61
2. +3258E+B4 +1854E+02 +1147E+81 «22B4E+01 -
3 «3467E+04 JP674E481 G, «?155E-01
4 «5370E+84 +1385E+02 1 2501E481 . 2B88E+61
[~} +3419E+84 «6473E+681 «2314E401 +1379E+81
& +S439E+04 »?144E+01 +3756E+81 1 2747E480
7 +5575E+04 +1097E+62 8. . v 2678BE-81
8 2 5525E+04 «1861E+82 .8701E+80 +1216E+BD1
? 2 S483E+84 «2248E+82 + 265BE+61 +16B2E+01
16 LS588E+B4 +3388E+681 @, : +9537E-02
11 +5241E+064 75156401 «P186E+81 +1187E+61
12 .528BE+04 +4592E4+81 »1466E401 124BBE+B8
13 5467E+04 «1123E4682 8. +54674E-81
14 +5A59E+84 38469E101 8. +1987E-01
15 «9421E+B4 «2282E4+81 8., a.
16 . .563BE+04 .AB44E+BL 8. +1431E-61
17 «5493E+64 .10B1E+82 8., +3328E+00
i8 5536E+04 16696E+81 8. «4768E-02
19 «5735E+84 .B156E+81° 8. 8.
28 +5497E+B4 +5817E481 B, «3471E+086
21 +543BE+684 W 7656E481 0. +2289E+08
22 1S656ETB4 +1441E482 6. +9632E-01
23 . 5641E+84 J1273E+082 8. »1278E+08
pel] +5682E+84 «1156E+B2 8. t 8.

25 «542BE+04 2749E4+081 « 3383461 +8392E-61
26 +5445E+84 +5A98E+81 +46B22E4B0 6771E-61

27 +5319E484 4176E401 9, . +6771E+686
28 +5468E+84 .8082E+68 8. 104%9E-01
29 +S551E+04 .8734E1B6 @. ~,2B61E-82
£38. - /5546E104 +3380E+60 0. +P537E-83
31 +5487E+84 +2B4BETOB @, +476BE-B2

32 J5374E+404 . 41B5E+181 s 2743E4601 +1248E-B1
33 +5417E+84 +2684E481 «2154E400 » 2775E+88
34 +3334E+B4 +1582E+61 +4520E+01 +2003E-81
35 +5326E+64 +1094E481 - . 1816E+01 +2775E+008

36 »G557E+04 2 5222E+01 6. 1 6676E-02
37 +5516E+04 «S5571E+81 »5108E+00 +1344E4@8
38 +S2B2E+B4 +1782E+82 W 7437E+61 +926BE+B0

3? +54B5E+04 +7616E+01 +4463E4+81 +1116E+80
40 -.5327E+04 J4ABOE+B1 L 633BE+B1 +1887E£+80
41 +S213E404 +1263E+62 «S811E+481 +S5A97E+01
42 »5293E+04 «1137E+82 +B8383E+01 +3909E+81
43 «5306E+D4 +2039E+82 +5891E+01 +2136E401
44 «S5B92E+84 +1175E+B2 +»9758E+81 +2878E+01
45 +T162E404 «7490E+01 «6382E+01 +137GE+81
46 +5341E+04 J6913E+61 +5042E+481 +4892E+00
A7 1 5426E+64 +1565E+402 -8, +2134E+06
48 +5104E+84 «1789E+82 1 67B3E+81 +A563E+0L
49 «S144E+04 +1166E+02 +S5626E481 1 2626E401

Sa +3201E+04 J1721E4+02 +B8322E481 +3319£+01 .
51 +S257E+04 +B8535E+01 +5483E+81 «1439E+61
&2 «5285E+84 +21660E+01 +1566E481 +1252E+01
53 +GA2BE1B4 «1439E+82 8. +3204E+08
54 +5536E+84 .111BE+@2 8. 8.

S8 +I337E+84 »158BE+62 2 1207E+681 +v1820E+06
56 «5185E+04 «1444E402 » 2784E+481 »1424E401
§57 .5184E+84 . 1158E+82 .8871E+81 ,2978E+81
a8 «3305E+04 . 2831E+62 «3625E+81 . 9387E+00
59 J5356E+84 +1718E+62 +2855E+01 +1957E401
468 +3422E+D4 » 1445E+82 «1988E+@1 » 2947E+80
&1 +5486E+04 «2474E+61 J5278E401 J5B97E+00
&2 «5451E+84 «B902E+01 +1581E4081 « 2642E+60
63 «5385E+04 +5767E+81 » 2258E+01 . 188BE+008
&4 +5467E4+84 +3957E+01 + 464BE+06 +3548E+16B
65 +5503E+04 +4532E+61 +2501E+01 +4746BE-02 -
b6 «5344E+04 +1911E+B82 +1518E+81 «3218E+01
&7 «53B6E+B4 «94946E+461 +2917E401 +3662E+00
68 +534BE+64 + 2447E+02 . 1289E+81 . 3382E+81
69 +3255E+04 «1358E+82 «1837E+401 «7570E401
78 «5125E+84 +i941E402 ,5874E101 +3780E+01

71 +5256E+B4 +1657E+B2 «3589E+01 +3184E+81
72 «5854E+04 «1694E4+02 +4692E401 +5718E+01
73 +5238E+04 . 1888E+82 +2842E+81 +3097E+88
74 .5314E+04 «2329E+81 «1844E+01 +B202E+08
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G. Analysis results

Most of the information printed here is required for application to independent data-
sets. The values themselves do not mean very much in meteorological terms, but some
checks can be done on the analysis results, and some informationyéan be gléaned

regarding the relative importance of the discriminant functions.

The eigenvalues are listed in descending order df magnitude. The greater the
difference in magnitude, the greater the difference in discriminant power of the
assoclated discriminant functions. The following lines of output giVe fhe data
required to perform Bartlett's test on the significance of the discriminant functions.
The first is nearly always significant, the second and subsequent ones may be tested
by comparing the given chi-square with values listed in chi-square. tables for the
given degrees of freedom. Further details of this and other tests are contained in

Miller, 1962.

The MDA program automatically uses all the available functions in the dependent sample
analyses that follow. If one or more should prove insignificant after testing, the
program MDARUN can be used with the dependent data sample and a subset of the

discriminant functions to recalculate the probabilities and other diagnostics.

The eigenvectors, the coefficients of 1the predictors in the discriminant functions,

are listed in the same order as the order in which predictors werewselécted. The

group means of the discriminant functions are calculated after tranéformation of the
dependent data to discriminant space, “then the within ‘group dispefsion matrix and its
inverse are calculated for the data in discriminant space. The matrix should be
diagonal to within roundoff error. ‘An examination»of the magnitude of the off-diagonal
elements reveals arithmetic precision of the coméutationé. If the off-diagonal
elements rise much above 10_11 or so0 in magnitude (for a 60 bit computer word), this
indicates computational problems, either a near-singular dispersion matrix caused by

very highly or perfectly correlated input predictors, or nearly collinear group means.

EIGENVALUES +8188E+868 .3171E4600
ROOT(1)= .B1B8BlE+AH CHI-SQUARE ,41574E+482 DEGREES OF FREEDOM= 8
ROOT(2)= .317B7E+08 CHI-SRUARE ,19141E+482 DEGREES OF FREEDOM= &
EIGENVECTORS

1 ~.2395E-81 .412BE+B0 -,08884E-01 .3215E+BB

. 1683E-82 ,8775E-81 .7791E+BB -.1305E+81 |
MEANS DF DISCRIMINANT FUNCTIONS FOR DEFENDENT SAMPLE

~,1283E+83 -.1217E+B3 ~-.11746E+83
»1B31E+82 «1175E+62 +B502E+61

INVERSE OF FOOLED' WITHIN GROUF DISFERSION MATRIX IN DISCRIMINANT SPACE

«AF387E-81 +8B796E-15
+BB796E-15 «28381E£+88
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H. Application output

The results of application of the discriminant analysis output to the dependent data-
set are the last set of information printedif Probabilifies are caiéulated for each of
the events and are printed along with the actual predictand value and the group of its
membership. As the MDA rearranges the input data in order of categories, this output
is also organised according to categories, with all group one events followed by group
2 events, etc. This output can be quickly scanned to determine subjectively how good
a fit was achieved with the dependent sample. Usﬁally, the most interesting
information is the éccuracy of forecasts of the rarest category. In the given
example, it can be seen that the MDA successfullykfit 6 of the'9 category 3 events,
and those that were not fit lay closest to the threshold with category 2. Like
regression, MDA performs best on the dependent data, and the diagnostics presented

here represent the best that is likely to be achieved.

Finally, the Brier Score (Brier, 1950),for‘a climatological forecast and

the reduction of variance are printed. The Brier Score is acfually the mean squared
error of the probability forecast, compared with perfection as represented by an
always correct categorical forecast; " The Brie£ Score has a négative orientation,

that is, smaller values (lower mean squared error) mean better forecasts. Best values
are achieved by forecasting as close as possible to 100% probability . for the category
that occurs and as close as possible to 0% probability for the categories which do
not occur. Because the errors are squared; a forecast of close to 100% probability
for a category which does not occur is given a relatively high penalty. The climate
score is the Brier Score that would be obtained if the climatological probabilities
as estimated from the dependent sample were entered for every event. The reduction
of variance represents the percentage. improvement in the MDA forecasts over the
climate forecast used as a étandard of comparison and has the rstandard skill score form.
Score (F)

Score (C)

where Score(F) is the Brier Score for the forecast and Score(C) .is the Brier Score
for the standard of comparison (climatology). This skill score-is exactly analogous

to the reduction of variance used as a measure of goodness of fit in regression.

A Brier Score under 0,20 represents a quite useful product, especially if there are
more than 2 categories. Reduction of variances for probability forecasts over 25%
represent a useful forecast, but will depend to some extent on the difficulty of the
problem as represented by the original amount of variance given by the climate score.
Climatology is a good predictor, especially when the categories are distributed such
that one is very common and another is rare. In such cases, it is difficult to
obtain an MDA which successfully forecasts the rare events without sacrificing skill
in forecasting the common events and settling for a low reduction of variance. If
the rare events are the most important from the meteorological point of view, a high

average score can be sacrificed for extra skill in forecasting the rarer event.
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" FROBABILITY FORECASTS FOR LEFENDENT SAMFLE
EVENT FDCTAND ACT GROUP FCST PROBARILITIES

A0 -8.008 1 S+ 681 252 867
2 + 380 i +193 $232 876
3 1048 1 778 1284 .818
4 188 1 +382 0,464 154
9 . 368 1 299 1781 + 666
-] 8,080 i 1544 1451 B84
7 » 480 i 862 <132 885
8 « 280 i » 927 1414 857
? .106 1 139 . 759 182
18 a.808 1 932 1B44 + 804
i1 8,068 1 898 - 989 601
12 B8.0806 1 688 352 +B48
13 ~ 9.080 1 £ 732 «247 821
14 6.008 1 2218 .083 . 087
15 6.680 1 2975 B25 »661
16 8,600 1 276 v B29 681
17 . 208 1 +807 175 1818
.18 - B.0088 1. 286 4089 «805
19 8.888 i 19278 <038 860
20 6,008 i 975 16824 . 861
21 + 260 1 1953 843,084
22 1088 1 1863 131 10084
23 6.688 -1 885 112 883
24 108 1 $ 2235 874 6081
a5 . 2806 1 1 769 229 B8z
26 3600 1 +847 145 + 809
a7 .169 1 2725 187 » @88
28 8.088 1 241 855 +B84
29 2.008 1 9267 832 861
3a, - 208 1 1969 B30 081
31 . 260 1 753 044 883
32 {...408 1 1691 383 1BB4
33 + 3008 1 1884 +183 1813
34 8,608 i 613 + 384 +683
35 - 268 1 777 288 815
36 . 166 1 1936 862 «003
37 6.600 1 281 1095 604
38 1.4808 2 B35 - 1863
.39 2.606 2 1631 368 881
48 1,600 2 ©.285 713 681
41 3.0008 2 +838 166 2 797
42 1.488 2 148 +8681 +859
43 708 2 852 1987 841
44 1.1640 2 +820 2935 625
45 2.008 2 116 866 +025
46, + 686 2 . 388 » 687 805
47 1,200 2 4483 + 368 129
48 2,208 2 818 1334 1656
49 2.168 2 -B78 726 « 285
S50 2.8066 2 827 712 661
1 4.480 2 224 758 .826
52 1,108 "2 1487 2426 147
53 4,168 2 2543 1396 861
54 4,100 2 819 172 689
55 3.208 2 259 1683 1859
56 i.1688 2 816 «786. . 084
57 2.100 2 +@51 » 920 1829
o8 1,408 2 B74 882 +B45
S99 2,500 2 $ 222 543 236
456 2.500 2 1413 567 028
61 3.1688 2 1669 <329 . 8081
62 2.408 2 712 278 B11
43 1.208 2 682 « 368 818
b4 4,080 2 896 896 . 608
&5 1.168 2 849 156 .801
b6 8.160 3 185 219 1675
47 4.1080 3 +499 + 489 812
48 11.206 3 838 + 1468 882
69 22,480 3 .B881 + 0608 1799
78 19,2688 3 813 477 318
71 i10.908 3 1876 2393 +531
72 11.208 3 601 019 988
73 7 .8808 3 278 2657 074
74 7,706 3 731 +234 835

ERIER SCORE = .1857 'CLIMATE SCORE= 2968 REDUCTION OF VARIANCE= 3726
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APPENDIX A Definitions of terms used in discriminant analysis

1. A priori probability

The unconditional probability of occurrence of one of the predictand groups.
Usually refers to the natural frequency of occurrence of the predictand category,
without any reference to predictor information. These are usually estimated from

the frequencies of occurrence of the categories in the dependent sample.

2. Bayes' Rule

If there is a set of G mutually exclusive events that can occur, the probability
of a particular event g, conditional on the a priori probabilities of the events

qg,(g=1,———G) and, given the knowledge of t~predictors‘X1———xt, is:

P(Xl——-thg).qg

Plg ]xl———xt) G

D M I

3. Discriminant functions

A set of mutually uncorrelated (independent) linear combinations of a set of
predictors which maximises the ratio of the between~group dispersion to the within-

group dispersion for a given dataset.

4. Discriminant space

In MDA, the geometric counterpart to an observation is a point in space where the
coordinates are the values of the discriminant functions associated with that point.

Discriminant functions are the axes of the discriminant space.

5: Dispersion matrix

Thé term dispersion in this context refers to the spread or scatter of the
observations from the mean value. In multivariate statistics, the dispersion matrix
refers to the aggregate of variances and covariances of all variables. It is also
referred to as the variance-covariance matrix, correlation matrix or matrix of sums
of squares and crossproducts, depending on which statistic is used to measure the

dispersion. 1In MDA, two dispersion matrices are used:

a. Within-groups dispersion matrix

The diagonal of this matrix is made up of variances of the predictors with

respect to the individual group means, summed ("pooled") over all categories.
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G n
g

X o(x_ -X )Y p=1, — P
g=1 k=1 P9 P9

where E;g is the group g mean of predictor p.

The off-diagonal elements are cross-products of‘predictors, referenced to

the group means, summed ("pooled") over all categories.

{

G n
g

z % (X "3(— ) (X —-}Z ) qu=1r . Pl P#q
g=1 k=1 ‘ ‘

This is the (p,q) element (and the (q,p) element since the matrix is
gymmetric). ifg and iég are the group means of predictors p and q for

category g.

b. Between-groups dispersion matrix

The diagonal of this matrix is made up of the variances of the predictor
group means with respect to the overall ("grand") mean, summed over all

groups.

G

n (X - X)) p= (1, -——— P)
g P9 P
g:l

where iﬁ is the overall sample mean of predictor p.

The off-diagonal elements are the crossproducts of the predictor group means

referenced to the grand mean.

G — — —

T X -X X - X ,q=1, —--= P
2z n ( p) ( a9 q) (praq ) P#Q

This is the (p,q) element (and q,p element). .§§ and ié are the grand means

of predictors p and .

These two matrices have the property that their sum is the total dispersion

matrix that is used in regression analysis.
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6. Grand mean

The mean of all the values of a predictor in the sample. This term is used in-MDA

to distinguish the sample mean from the group means which are means over only the

values of the predictor in each specific group.

7. Multivariate normal distribution

The multivariate extension of the normal distribution, a frequency distribution of

the vector variable §K§;Xl———xp)

-1, ) -, P
R v exp [ - 3 @-]
(2m¥ 2

- < X < o

1

—'co<XP<oo

where E- is the population mean vector

and ¥ is the population variance-covariance matrix.

The multivariate normal distribution is a normal distribution in each of

dimensions.
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APPENDIX B Functions available to the MDA program

1. Binary Y =14if Xle(a,b)

Y = 0 otherwise

2.  Discontinuous linear Y = (Xl-—a) if >0

Y = 0 otherwise

3. Sum of 2 predictors or 1 ¥ = (Xl-%xz) or Y = (X14-a)
predictor and constant
4, Difference of 2 predictors Y = (Xl-Xz)
5. Product of 2 predictbrs or ) Y = X1X2 or Y = aX1
1 predictor and constant
6. Ratio of 2 predictors Y = X1
/x2
7. Sin (day of year)
8. Cos (day of year)
9. Sin 2 (day of year)
10. Cos 2 (day of year)
2 2. %
11. SORT of sum of squares of 2 Y = (X1 + X2)
variables . '
12. Discontinucus linear (negative Y = a--X1 if > 0
slope version) Y = 0 otherwise
b
13. Power Y = (X1 + a)
14. Exponential Y = exp(X1 + a)
15.  Exponential (negative argument) Y = exp(—x1 + a)
16. Natural logarithm Y = ,Q,n(X1 + a)

Where Y represents the derived predictor,
X1 and X2 are the input raw predictors
involved and a and b are constants specified

on input. ' _
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APPENDIX C Data flow in MDA program

2.

3.

Input

a. Array of NP potential predictors by
NP . N events

b. G ~ Number of groups

GB - Thresholds )

to partition data
d. Predictand into categories

)

Partitioned and reorganised into G sub-
arrays of size NP x Ng, laid side-by-side in
original array. ‘Sample sizes are nq,ny-=-Ng
and they must add up to N.

NP

" ‘VQ'Q"QV Group frequencies (1XG) vector

R/
KRRENX

Screening

NNV \\ Selects P predictors, usually <10 from the
| \ Ay \\ \\\ \ M original NP. Now have PXN array, still
\\\'\ \ \\ N\ \\ partitioned according to predictand
\ L\ L. categories. ' '

Analysis

Two dispersion matrices PXP are calculated
from original partitioned dataset.

Invert W and pre-multiply B. Matrix is
P still PXP.

WoiB

EIGENANALYSIS
G-1 (G-1) eigenvalues
m (G-1) eigenvectors of length P
P [If P < G~1, P eigenvalues and P eigenvectors result.
Usually, G-1 is < P]
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4. Data conversion

P
(G—lf o iy ’ , Convert original PXN
p dataset to discriminant
Eigenvectors space

\ / oy By By By

. (G-1) XN matrix of '‘transformed data
(G-1) overwrites first G-1 rows of original
o a o 5 dataset.
1 2 3 4
AT Y Y Calculate means, one for each group, for
(G-1)<X%€XX)( / each function— (G-1)X G array of means
= ‘g in discriminant space.
Calculate within-group dispersion matrix in discriminant
(G-1) space. It will be diagonal and (G~1) X (G-1)

Invert it

The program prints out arrays that are hatched. 'The cross-hatched arrays are
printed and are required ‘in ‘application to dependent or independent datasets
for calculation of probabilities. ’

27



5. Application

Input \C§><;§§§§§t 1 X P vector of predictor values
/ (G-1) . ‘
NN
P

Multiply by coefficients of all
discriminant functions —e Vector of
(G-1) discriminant function values.

1 s
/ (G-1) -
(G-1) :
1 - Subtract within group means for all
c discriminant functions from vector
(G-1) l ) ~..of discriminant function values
G (GXG~1) array of -deviations from
group means . .
(G-1)
group 1 (G-1) 1 Pre- and post- multiply within group
1 K. dispersion matrix in discriminant
space by vectors of deviations from
discriminant functions means
(G-1) (G-1) T
-1
group 2 (G-1) W ' 1 Each gives exponential term for
. K multivariate normal distribution
(G-1) . (G-1)
| (G-1)
|
G !
a priori
probabilities

Carry out Bayes' rule calculation

Vector of probabilities of group membership

END
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