TROPICAL ASSIMILATION PROBLEMS:
CROSS-EQUATORIAL FLOW,
FRICTION AND EQUATORIAL WAVES

John A. Young

Department of Meteorology
University of Wisconsin - Madison, U.S.A.

1. INTRODUCTION

Presentations and discussions in this workshop have made clear the difficult
but important problem of improving our 'techniques of data assimilation in the
tropics. Current normal mode techniques are not able to fully represent the
physics of many tropical systems; this is especially true for the monsoon, where
the strong mean flow in low levels is inertially accelerated and subject to com-
plex frictional forces, and where there are regions of strong, moist convective
heating. These processes also cause mass adjustments and time dependence which

are different from those expected for idealized linear waves near the equator.

The work reported in this paper is aimed at improving our understanding of the
ways in which cross-equatorial advection and friction can influence low latitude
flows in which both mass and momentum adjust. The simplest approach of linearized

dynamics is chosen as an appropriate starting point, and yields (a) altered wave

dispersion characteristics and (b) distortions:in the wind and pressure structures

for the gravest equatorial wave modes. From this free mode information, one can
begin to assess the modified wind?pressure spatial relations expected when data
is inserted into a tropical model. k '

The beginning point is the linearized system of non-dimensional equations

for transient perturbations in a one-layer model on an equatorial beta plane:
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Here F is a constant Froude number Vyc for mean meridional flow V (positive
is northward) and b 1is a non-dimensional Rayleigh damping coefficient which
approximates frictional drag in the layer. Assumption of traveling wave solutions
with argument (kx + pt), ® being non-dimensional frequency and k

being zonal wavenumber, defines an eigenvalue problem to be solved for the complex
non-dimensional wave variables u(Y), v(y), $(y). For simplicity, the combined

problem (non-zero F,b) 1is split into two parts, each treated separately in the

following section.

2. EFFECT OF FRICTION ON EQUATORIAL WAVES

Here, F is set equal to zero, and the resulting equations are combined to yield:
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where Q=w-ib is a frequency modified by damping. Eq. (2) can be put into a
form analogousto its frictionless (b=0) form by making a complex coordinate

stretching Y
g = (w/)y (3)

in which case trapped waves satisfy the dispersion relation
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For given k and n, this is a sixth degree polynomial for w, for which three
spurious roots may be rejected. The dispersion and damping curves for Yanai (n=0),
Rossby (n=1), and Kelvin (n=-1) waves are shown for the case of strong (b=1)
damping in Fig. 1. The Yanai (also known as "mixed Rossby-gravity') and Rossby
modes damp rapidly,but slower than simple damping would give, with small wavenumber
dependence. The Yanai mode propagates only slightly more slowly and with slightly
less dispersion than in the frictionless case. The Rossby mode is slowed consider-
ably at long zonal wavelengths, and its group velocity dispersion is altered
strongly, a< <een by the slope of the curve Re(w). The Kelvin mode is ﬁoderately
damped for k>0.5, but is only slightly damped for longer zonal wavelengths.
Interestingly, in the latter case, the waves are stationary, and there is a strong

modification from frictionless dispersion for 0.5 < k< 1.0.
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Fig. 1 Dispersion curves Re(w) and frictional damping Im(w) for three key
equatorial wave modes for b=1., The frictionless (b=0) dispersion
is also shown for comparison.
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The eigenfunctions for these modes are mathematically analogous in form to
those for the frictionless case. For example, v($)=C Hn(?)e'%y . However,
since ¥ is complex, the exponential function may introduce latitudinal phase
shifts as well as damping, while the Hermite function Hn(?) may alter both phase
and amplitude. Fig. 2 shows frictional eigenfunctions for two modes. The Yanai
mode has been changed, as Vps Ups ¢I have been 'produced", and ¢R is now
weak compared to Up- The phase of ¢ varies significantly with latitude, in
contrast to the frictionless case. The magnitudes are not radically different
from the frictionless case. The Kelvin modes retain v=0 even in the presence of
friction. The phases of u and ¢ are significantly different near the equator
due to friction. The Rossby mode is not shown in Fig. 2, for it has been sub-
stantially untrapped and oscillates more rapidly with latitude: it has essentially

become a damped mid-latitude wave.
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Fig. 2: Frictional eigenfunctions for the Yanai and Kelvin modes for
b=1. Dotted lines show local Ekman relations for the geopotential
field shown.

In summary, it appears that, of the three gravest equatorial modes, the Yanai
wave is least affected by friction (apart from its temporal decay). The struc-
ture of the Kelvin wave isnot strongly affected, but its time evolution is a
slower decay which is dispersive at longer wavelengths. Finally, the Rossby wave
is strongly altered in structure and dispersive characteristics at longer wave-
lengths. Thus, data inserted at larger zonal scales is likely to follow
‘different routes during assimilation in the presence of friction compared

to frictionless flows aloft.
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3. EFFECT OF MEAN CROSS-EQUATORIAL FLOW ON EQUATORIAL WAVES

Here, b is set equal to zero and we examine the dependence on F. In most
cases the equations from (1) are too complex to render analytical treatment, and
so the eigensolutions have been determined using finite differences and QR itera-
tions with a 21 point grid (Ay=0.5) which staggers ¢ a half interval from u and
v points. Tests for the case F=0 showed good agreement with the known analytical
results.  Results for non-zero F were obtained by identifying analytic continuity
as F was changed by small increments. These results also confirmed the expectation
(derived from the equations) that a reversal of mean meridional flow (sign
change in F) changes only the wind and geopotential phases; their frequencies
and amplitude distributions are unchanged by a reversal in V. Thus, the influence

of V is far more complex than that of a simple Doppler shifting.

Fig. 3 shows the effect of V on wave frequencies. (Note that the sign of
the frequency is opposite that used earlier.) It is seen that as ’Fl increases:
(a) the eastward propagating modes (K, EO, El) have a
have a reduction in frequency;
(b) the Rossby mode has its frequency increased;
(c) the Yanai mode has its frequency increased, except
at long zonal wavelengths;
(d) the distinction between Rossby and Yanai frequencies

tends to disappear.
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Fiy. 3: Dispersion curves for equatorial waves in the absence

(F=0) and presence (F=0.5) of mean cross-equatorial flow. (K is
Kelvin, Y is Yanai, R1 is Rossby, and E (W) imply eastward (westward)
propagating inertia-gravity waves.)




The eigenfunctions showed considerable alteration by V, especially for the
Rossby, Yanai and Kelvin modes. For example, it can be shown analytically that
V causes increased (decreased) trapping of the Kelvin mode when |F|<1 (|F [>1).
The Yanai and Rossby modes were less trapped when V was introduced. Fig. 4 shows
that these two modes are strongly distorted in response to the mean cross-equa-
torial flow, as judged by their streamline and geopotential patterns. The Kelvin
distortion is a comparatively simple tilt of unidirectional wind and geopotential.

The Yanai modification is more complex. It is seen that the mean flow V induces

a net momentum transport u' v' which is opposite for the two modes; this

transport is zero in the absence of V.
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Fig. 4: Wind vectors and geopotential patterns for Yanai and Kelvin
modes for the case of northward (F >0) and southward (F< 0)
mean cross-equatorial motion.
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