Session 4

GKS - THE FIRST GRAPHICS STANDARD

(Copyright FRA Hopgood 1981) F.R.A. Hopgood

1. Introduction

Standards in computer graphics are long overdue. Whereas de facto
standards in programming languages were common very early on (FORTRAN
and ALGOL 60) and international standards soon followed, there has
been a long period of graphics history where, at best, regional de
facto standards have existed and no international standards have

evolved.

1.1 Early History

It may be thought that this is due to the relative youth of the
subject area but this can soon be dispelled. Dual 16 inch displays
were available on the MIT Whirlwind as early as 1951, plotters weve
in regular use by 1953 and high speed microfilm recorders such as
the SC4020 were available in 1958, It is true that the more exotic
input peripherals and higher quality displays did not appear until
later. Even so, lightpens existed as early as 1958, the RAND tablet
in 1964 and colour displays appeared in 1962. By 1965, most of the

hardware facilities used today were already in existence.

One clue to the delay can be seen if we look at the number of displays
installed world-wide. A recent survey indicated that as late as 1964
there were only about 100 refresh displays in the world. These were
developed by a number of different companies with quite different
order codes and inevitably different graphics packages were

developed that were oriented towards a particular display. To some
extent, the same occurred in the early history of programming with
languages such as Mercury Autocode and Jovial being developed.
However, the availability of FORTRAN on a range of IBM machines

which sold in large quantities was the main reason for the appearance
of FORTRAN as a de facto standard.

By the late 1960s, common techniques for use with stand-alone or
satellite refresh display systems were beginning to appear. It is
possible that if graphics had continued developing in this way,
standards would have appeared. Similarly, there was beginning to

appear a certain amount of standardisation in the packages used for

plotters. TFor example, GINO and GHOST began to gain acceptance in
the UK in the early 1970s.

Two factors emerged which tended to upset the conventional way of
working and significantly changed the population of graphics users.
Until the late 1960s, the only way to do interactive graphics was

to use a dedicated host computer with an expensive refresh display.
A typical system might cost as much as $400K. However, by the late
1960s time sharing systems began to appear which allowed a large
user population to use a mainframe host interactively. Project

MAC at MIT is a good example of the pioneering work in this area.
This alone would not have made a large impact due to the high cost
of displays (typically $80K at that time). However, at approximately
the same time, the Tektronix storage tube appeared which was only a
fraction of the cost of the refresh display (typically $4K when it
first appeared). Consequently, the door was open for a large number
of people to do interactive graphics. These users had little in
common with the earlier users of interactive graphics and developed
new teéhniques more applicablé to the new storage tubes. The device
itself was unable to do immediate updatés without completely
redrawing the picture and the slow line speeds to the host computer

made redrawing unattractive.

1.3 Current Situation

To some extent, this continual change in the economics of computer
graphics is still with us. Over the last few years, the appearance
of low cost raster displays and plotters (Versatec etc) has meant
that the storage tube now has a low cost rival capable of mimicking
the storage tube but also being capable of selective erasure and
additional functions such as area fill. Low cost colour displays
and plotters are beginning to appear so that no longer is it
feasible to ignore colour graphics as an expensive luxury for the
few.

1.4 The Future

The question may be asked 'Is now the time for standardisation' or
are more advances over the horizon that will completely change the
way of working. We shall probably not get the same rapid changes
in usage and hardware in the future. One change which is clearly

coming is the appearance of high powered single user systems at low

4.2

cost. Effectively, we have come full circle and the dedicated
graphics workstation that started the graphics evolution may
triumph as the standard future workstation. We will see changes

in the input/output devices but they are more likely to be
orthogonal to the current set. In particular, voice input/output
will clearly have an effect in the future. The advent of low

cost devices controlled by microprocessors gives us the opportunity
to put more functionality in the hardware. The main question is
what functionality do we firm up in the hardware. The appearance

of standards for computer graphics clearly will help in this area.

2. SEILLAC I

Most of the current activities in standardisation have their
origins in a Workshop organised by IFIP WG5.2 in Seillac, France.
At an IFIP WG5.2 meeting in Malmo, Sweden in August 1974, Richard
Guedj was asked to initiate an active programme directed towards
establishing standards for computer graphics. A Committee was set
up to consider what should be done. After several meetings, this
Committee, consisting of designers, implementers and users, came to
the conclusion that no known computer graphics system could be
considered suitable as a basis for a standard. Furthermore, it was
realised that a major problem was the lack of a clear understanding
of many of the major concepts involved in graphics systems.
Consequently, after a meeting at Bellinglise, it was agreed that it
would be premature to initiate specific recommendations on standards
but, instead, a workshop should be organised of experts in the
computer graphics field to see if the underlying concepts of
computer graphics could be uncovered. This Workshop, later given
the name Seillac I, took place in May 1976 (1). A subsequent
workshop looked specifically at the problems of interaction and

was given the name Seillac II (2). The intention is to hold a
third workshop when the time is right to consider the next bottle-
neck to our understanding in the area of man-machine interaction.
It is still unclear what that topic should be especially as we are
still digesting the conclusions of Seillac I and II. The
importance of Seillac I did not become clear until considerably
later. Originally, there had been no intention to publish the
proceedings but, at the urging of IFIP, the working papers were
edited nearly two years later and published. The Seillac I volume
is, therefore, not a polished document but it gives the seeds of

future activities.

2.1 Motivation for a Standard - Why, What and How

Some time was spent at Seillac I looking at the reasons for
standardisation. It was generally agreed that a major reason

was that standardisation improved communication from the user
point of view. The ability to move software from one installation
to another was of fundamental importance for a wide range of users.
Portability meant that software costs reduced and the cost of
training personnel decreased. From the point of view of the
manufacturer, improved portability increases the size of the
market. The standard itself gives guidance as to the right

directions for hardware innovation.

The scope of a standard was less clear in 1976 than it is today.
Considerable discussion was had over whether the standard should
restrict itself to just considering output which was reasonably

well understood and ignore interactive graphics until more work

had been done in understanding the basic concepts of interaction

and, in particular, the overlap with psychology and skill acquisition.
The view of the majority was that standardisation of output would

be easy and input should also be considered.

The requirements of a standard were also considered in some detail.
It was clear that a well defined area of applicability needed to

be agreed. While most people accepted that, say, schematics,
engineering drawing, cartography and animation shouid be valid

areas in which to use the standard, it was less clear that the

more fringe activities of image processing and high quality
typesetting should be accommodated. A standard must meet the needs
of the user population (once that has been established) and should
rationalise current practice as well as providing a significant
advance over existing systems. Widespread acceptance is only

likely if the standard is defined with a high level of expertise

(a poor standard is worse than no standard) and it must not conflict
with other standards in related areas (character sets, communications,

programming languages).

2.2 Interface Level

The standard must be defined at such a level that it meets the needs
of most users. Standardisation at the application level, for example,
may be highly desirable but may not be of general use. For example,
ORTEP is a standard for molecular drawing but it has little applic-
ability outside its own field. If the standard is at too low a

level then it will become device dependent and suffer for similar

reasons.

Two candidates for standardisation levels are the user level and
the code generator level (dividing line between device-independent
and device-dependent often called DIDD). The user level
corresponds to the graphics subroutine package such as GINO-F
while the DIDD level corresponds to the GINO-F device driver

interface.

Subsidiary standards are also required. A major one is the metafile
for storing or transmitting information from one location to another.
Closely associated with it are the relevant communications protocols
for the transmission of graphical information. Again, metafiles can
be defined at a variety of levels from the DIDD to the virtual

terminal level.

2.3 Virtual Devices

By 1976, it was generally accepted that any standard would not inter-
face directly to specific devices but would define a set of virtual
input and output devices or primitives which would be simulated by

actual devices (3).

It was generally agreed that line drawings and text output would be
essential primitives of any standard. There was also strong support
for a primitive to mark a point (later called marker). There was
less agreement over the form and attributes to be associated with

each primitive.

On the input side, STRING, LOCATOR, PICK and VALUATOR were accepted

as virtual input devices with the following characteristics:

STRING : input a text string

LOCATOR : input a position on the display

PICK : input the name of an item pointed at on the display
VALUATOR : input a real value

There was some discussion over the need for additional virtual input
devices. Strong candidates were a CHOICE device which simulated the
input of a logical value using pushbuttons and a STROKE device which
input a complete set of positions - particularly useful for digitisers
and free-hand drawing.

Over the years, changes in hardware and usage have seen the appearance
of new virtual devices and primitives together with modifications in
the meanings of the original definitions. However, by and large, the
virtual device model used today closely resembles the proposals put
forward in 1976.

2.4 Current Position

A major discussion arose at Seillac I over the specification of line
drawing output and the use of coordinate systems in existing computer
graphics packages. Almost invariably, the concept of a current
position existed in most packages and almost certainly it arose from
the plotter or display hardware which, after some output command,
left the pen or display beam at the last drawing position. The
standard primitive for drawing a line was of the form:

DRAW(X,Y)

which drew a line from the current position (XC,YC) to the point
(X,Y) and then redefined the current position to be the point (X,Y).

Also, facilities existed in most packages for redefining the
coordinate system being used by the applications programmer. He
would define a coordinate system applicable to his application and
define a rectangular area in that coordinate space (WINDOW) to be
mapped onto a particular area of the display device (VIEWPORT).
Changes in coordinate systems were used for two quite distinct
purposes. The first effectively provided a different view on the
display of the world scene while the second allowed graphics
information to be moved about the screen to compose a picture.
Often, the same routine in the package was used for both purposes
frequently causing confusion as to its real meaning. The problem
can be typified by this simple example:

TOXY (0,0)
DRAW (1,1)
TRANS (3,3)
DRAW (2,2)

The TOXY command defines the current position as being at the
origin of the defined coordinate system. The first DRAW command
draws a line between (0,0) and (1,1). The TRANS command redefines
the coordinate system so that the new origin is at the point (3,3).
The final DRAW command draws a line to the point (2,2) from the
current position. But where is the current position? It was left
at (1,1) by the previous DRAW command. At this stage, it is
necessary to take a closer look at the meaning of current position.
If current position is a point on the display screen, the new line
will join up with the old. 1If it is a syntactic abbreviation to
save writing out parameters, a line from (1,1) to (2,2) will be
drawn in the new coordinate system. Does it make sense to draw a
line between a point defined in one coordinate system and a point
in a different coordinate system? At some conceptual level, it is
clearly illegal and the change of coordinate system should

effectively destroy the current value of current position.

Packages existed with all variants discussed above and some not
described. The major problem was that existing packages had no
clear distinction between coordinate transformations being used
for altering the viewing of a picture and those used for modelling
a picture out of smaller items where the coordinate transformations

are moving sub-parts of an object on the screen to compose a picture.

A major resolution at Seillac I was that there should be a clear

distinction in any standard between those parts that dealt with

modelling and those parts dealing with viewing. Furthermore, an

initial goal should be to define a core graphics system for viewing

aspects of a picture already constructed in world coordinates.

3. GSPC AND GKS

Participants at Seillac I included Peter Bono, Jim Foley and Andy

van Dam of the USA and Jose Encarnacao and George Nees from Germany.
Jim Foley had been a founder member of a Graphics Standards Planning
Committee (GSPC) which had been formed after a Workshop on Machine-
Independent Graphics organised at the National Bureau of Standards

in 1974. Work by GSPC had proceeded slowly until Seillac I but the
enthusiasm generated at Seillac led GSPC to work towards the
specification of the core graphics system (identified as a major goal
at Seillac) as soon as possible. A considerable amount of work was
put in by GSPC under the auspices of ACM-SIGGRAPH which culminated

in two main drafts of a cofe graphics system GSPC77 (4) and
GSPC79 (5). A good overview of the GSPC core system is given in
an issue of ACM Computing Surveys (6). GSPC79 is a full 3D core
system and a number of implementations of different degrees of

completeness have been produced in the USA.

At the same time as the USA group were defining the GSPC core
system, the German DIN group were working on the Graphical Kernel
System (GKS) which was also aiming to define a core graphics system
for viewing. One major difference between the two proposals was
that GKS was only a 2D system and, initially, was significantly
smaller than the GSPC core system.

4. IS0

Some time in 1976, the Standards Committee of the Britiéh Computér
Society proposed that GINO-F should be put forward as an inter-
national standard to ISO. The relevant ISO group, ISO/TC97/SC5,
had no appropriate working group to consider such a proposal and

so a working party was organised by SC5 in London in February 1977.
This meeting of experts examined the draft of the GSPC core proposal,
had presentations from a number of experts, and came to the
conclusion that no existing graphics software package could be
considered suitable for recommendations as a graphics standard. The
meeting recommended to SC5 that a working group (later called WG2)
should be set up to review all material issued by GSPC, IFIP etc
in the general area of computer graphics standardisation. It urged

that an early specification of a core graphics system was desirable.

4.1 Toronto and Bologna

The inaugural meeting of ISO/SC5/WG2-Graphics was held in Toronto

in August 1977. The major item of discussion was the latest version
of the GSPC core project. However, other countries mentioned their
standards activities and, in particular, Jose Encarnacao for the
German DIN group indicated that DIN WG5.9 had been working towards

a functional specification of a core graphics system to be proposed
as a German standard. A major resolution of the Toronto meeting

was that DIN and ANSI should work towards a common specification of

a core graphics system.

The next WG2 meeting was in Bologna in September 1978. No official
USA representative attended, although Ketil Bo, who was resident in
the USA at that time, and Robin Williams of IBM acted as reporters

of GSPC activities. The DIN group presented the current state of

GKS and outlined timescales that would lead to a DIN standard by
1981. Norway also indicated that they would be proposing IDIGS, a
successor to GPGS, as a Norwegian standard. The working group
recommended that an Editorial Board of WG2 should be set up to
compare the various proposals for standardisation, note the main
areas of difference and recommend changes so that the three proposals

would converge towards a single draft standard proposal.

4.2 Editorial Board - Amsterdam 1979

The Editorial Board met in Amsterdam in February 1979 (7). The
expected IDIGS proposal did not appear in time and the meeting
compared GKS Version 4 and GSPC77 attempting to identify major
differences in concept and to point out minor changes that would
bring the two proposals closer together. A fundamental difference
between the two proposals was the lack of a current position in GKS
and the concept of a pen in GKS which could have quite different
attributes associated with it on different workstations. Thus a

pen could be a green thick line on one workstation while it appeared
black and dotted on another. The GSPC proposal had a more
conventional set of model attributes such as colour and linestyle
which had to be simulated by the implementor in the best way possible
on a specific device. The Editorial Board recommended a number of
changes to both GKS and GSPC which would bring the two proposals

closer together.

Both DIN and GSPC discussed the Editorial Board recommendations and

a joint meeting was held in Boulder, Colorado. By June 1979, it was
decided that the GSPC work should be wound up and passed over to

ANSI X3H3, the formal standards body in the USA equivalent to DIN and
BST.

4.3 Budapest 1979

The next ISO meeting took place in Budapest in October 1979 where DIN
presented a new version, GKS 5.1, which incorporated a large number
of the recommendations made by the Editorial Board. Much richer

input facilities were included and the ability to have several

displays active under the control of a single operator. ANSI
presented GSPC79 which included a pen concept on the lines of

GKS and text output had been changed extensively to allow quality
text production which was becoming more and more important as the
influence of business graphics expanded. A presentation was also
made of IDIGS.

The DIN group were keen that GKS should be submitted to ISO as a
standard proposal. On the other hand it was possible that standard
proposals would appear from the USA and Norway in due course,
although neither were at the same level of technical refinement as
GKS at this point in time. There was some discussion as to whether
it was feasible for the working group to evaluate two proposals in
parallel. Eventually it was decided that only GKS would be put for-
ward to ISO with the aim of GKS reaching the level of a draft
proposal in one year. Later events showed that this was over

optimistic!

4.4 Tiefenbach 1980

It was agreed that a Technical Meeting should be held in Tiefenbach,
Germany in June 1980 before which member nations would do a thorough
review of GKS bringing forward outstanding issues that needed to be
resolved with all alternatives and arguments for and against fully
documented. The major input to the Tiefenbach meeting was the ANSI
group who put forward over 200 issues while BSI and other national

bodies also contributed significant numbers of issues.

Issues tended to fall into a number of classes ranging from clarifi-
cation of the current version of GKS to proposals aimed either at
reducing the size of GKS or increasing its functionality. The major
set of issues resolved at Tiefenbach were in the area of clarifi-
cation. Thus, although on paper it appeared that the number of
issues resolved was high, the main substantive issues remained
unresolved. In the area of viewing, there was still discussion as
to whether a shielding facility should be built into GKS and whether
clipping should be defined by the bounds of the window or by a
separate rectangle. The quality of the text output increased
significantly after Tiefenbach with the ability to define character
orientation being added. There were still unresolved issues such as
should proportionally spaced fonts be provided and also text

alignment. There was a great deal of discussion as to whether

locator input should be returned in world or device coordinates.
GKS 5.2 was used as the basis for the discussion at Tiefenbach
although DIN had produced a new version GKS 6.0 which incorporated
many of the ANSI suggestions. The result of Tiefenbach was GKS
6.2 and it was agreed that this would be the basis for the next
round of technical discussion at Melbourne, Florida with an
editorial round proceeding in parallel to improve the quality of
language used and to adhere to the rigid formats defined by ISO for

a standard document.

4.5 Melbourne 1981

The major contributor to the Melbourne meeting in January 1981 was
BSI. There was still considerable disagreement as to the form that
input should take in GKS and this area continued to have the most
unresolved issues after Melbourne. The BSI proposed an extension
to the window/viewport definition to allow multiple window/viewports
to be active at one time. This indirectly made it much easier to
return locator positions in sensible world coordinates. The text
primitives became more exotic as a result of Melbourne allowing the
direction of text to be specified as well as orientation. There
was considerable discussion over whether attributes should be
defined by the GKS pen concept or by modal attributes. A much
cleaner pen facility was established in GKS. Considerable
discussion took place around the raster primitives and fill area.
The general direction was to provide more facilities for patterning
area fill and then query whether pixel array was still a valid
primitive especially as some operations such as rotation did not

easily get applied to pixel arrays.

4.6 Abingdon 1981

The decision was made at Tiefenbach that two more rounds of technical
comment would take place before the ISO TC97/SC5 meeting in London

in October 1981. The final technical meeting was organised at
Cosener's House, Abingdon, just prior to the SC5 meeting where the
aim was to resolve all remaining issues, rewrite the document and
present it to SC5 as the first draft standard proposal the following
week. The main areas of discussion were input, text, segmentation
and levels. A simpler input model was agreed upon which had the
capability of being extended to provide more exotic facilities on
top. The text facilities were extended even further and it was now

possible both to use the capability of hardware character generators

4.11

and to produce quality text by software. Considerable discussion
occurred around the INSERT SEGMENT facility which provided a degree
of modelling within GKS. A more precise description requiring
changes to the implementation technique was defined which also

improved the characteristics of general segment transformation.

All remaining issues were resolved at Abingdon with only two
facilities remaining outside GKS although carrying significant
support. These were text alignment aﬂd the possibility of adding
a STROKE input primitive. It is likely that these functions will
be raised again at later technical discussions after the draft
standard has been accepted.

On 9 October 1981, GKS 6.8 (to be GKS 7.0 after further editorial
work) was accepted by ISO TC97/SC5 as a draft proposal (DP).
Because full agreement had been reached within WG2 about the
technical contents of GKS, it was recommended that SC5 should
circulate the GKS-DP for letter ballot for approval as a Draft
International Standard. Six years had elapsed since the meeting
in Bellinglise and over five years from Seillac I where Richard

Guedj opened the Workshop by quoting:

I have long aspired to reach for the clouds
Again I come from afar
To climb Ching Kang Shan, our old haunt

But scenes are transformed

Mao Tse Tung,,May 1975

5. GKS

GKS had a long and intensive technical review which benefited
enormously from the earlier work of GSPC and the meeting at Seillac.
The final form of GKS can truly be claimed to be an international
standard. The influences of many national bodies can be seen in GKS.
It differs quite dramatically from the earlier versions and yet its
main concepts are still very evident and, if anything, have been
clarified and strengthened over the period. There is an almost
irresistible urge after this length of time for compromises to be
made so that the end result bears a close resemblance to a camel,
That GKS has survived the many redrafts and still clearly exhibits
its main methodology is to be commended.

4.12

5.1 GKS Workstation

The main objective of GKS was to allow easy portability of graphics
systems between different graphics installations. Although GKS
should be capable of being used in small stand-alone graphics
programs, it was also essential that large CAD suites of programs
could be written and moved from one installation to another,
possibly with quite different hardware, without modification of the

program structure.

It was likely that the characteristics of different graphics displays
would differ significantly and that it would be difficult to model a
wide range of facilities with close approximations on all devices.

It was felt that implementation defaults for unavailable facilities
would not always be applicable and there was a need for the
applications programmer to have some control over the mapping of

graphics primitives to a particular device.

Central to GKS is the concept of a graphics workstation with a single
display area and a number of input devices. It is assumed that the
workstation has a certain amount of intelligence either local to the
display or in the workstation driver. The workstation is defined as
belonging to one of a set of standard types (plotter, storage tube,
refresh display etc) with the ability for the applications

programmer to modify its overall behaviour to fit in with the

application area.

4n operator can have a number of GKS workstations under his control
at the same time. For example, he may be outputting a large CAD
drawing on a plotter while getting a quick-see view on a separate
storage tube. He may be interacting at a refresh display taking

occasional copies of output on a plotter.

The applications programmer has considerable flexibility in how he
uses each workstation. Different workstations may be set to view
different parts of the whole graphics picture. The frequency of

update may be different on different devices.

Moving from one installation to another will cause the applications
programmer to redefine his workstation definitions. These would
normally be defined at the start of a program and should not alter
the main control flow. For example, moving from a Tektronix 4010

to 4014 might cause the area of the picture in view to be expanded.

4,13

The lack of a tablet may necessitate a different method of entering
locator positions. The type of echoing may depend on the line speed
between display and computer.

5.2 GKS Pens

Graphics primitives such as line drawing can have attributes
associated with them such as colour, thickness, broken, etc. There
are basically two approaches to specifying such attributes. The
first is to have a set of modal attributes which are in effect until
the next setting of the attribute. This is the conventional method
of specifying attributes and is used in the GSPC core system. For

example:

COLOUR(RED)
THICKNESS(THICK)
BROKEN(SOLID)
DRAW LINE
COLOUR(GREEN)
BROKEN(DASHED)
DRAW LINE

This would draw a thick, red, solid line followed by a thick, green,
dashed line. The particular modal attribute remains in effect until

it is reset. Thus solid is an attribute applicable to both lines.

A disadvantage of this approach is the need to map this attribute
specification on to a number of devices that may not have the
capability to implement a particular attribute. How do you draw red
lines on a storage tube? It is usually left to the implementor of
the device driver to make an arbitrary decision. A second dis-
advantage of this approach is the specification of library routines
where differentiation of particular lines is required but it would
best be left to the application programmer to specify the particular
attribute to use. For example, a contour routine might wish to
highlight every third contour. The application programmer might
wish to use colour, thickness or broken lines to highlight the
effect. With modal attributes, the body of the algorithm becomes
quite complex with many attribute settings depending on the user's

requirements.

The solution adopted in GKS is not to have a number of modal
attributes but instead to have one major attribute per primitive
called the pen number. Each primitive may have one of a number
of pens associated with it running from 1 up to an implementation
maximum. The equivalent GKS program to the one above would look
like:

PEN(1)
DRAW LINE
PEN(2)
DRAW LINE

On a particular device this would draw the first line with pen 1

and the second with pen 2. The definitions of pen 1 and 2 are
workstation dependent and can be set by the application programmer.
Thus, he can set pen 1 as red, thick and solid while pen 2 is green,
thick and dashed. The advantage of making the pen specification
workstation dependent is that the characteristics of pen 1 and 2 can
be quite different on two workstations. For example, a user with a
large plotting table and a storage tube to give him an overall view
of the plotting could specify colour as the main attribute on the
plotter while defining the different pens as different types of

dashed lines on the storage tube.

GKS has defined six output primitives:

(1) POLYLINE

(2) POLYMARKER

(3) TEXT

(4) TFILL AREA

(5) PIXEL ARRAY

(6) GENERALISED DRAWING PRIMITIVE (GDP)

A major feature of GKS is that is has no concept of current position.
Each primitive has its coordinates fully defined within the primitive
itself. Furthermore, in the case of line drawing, a polyline, which
generates a set of connected lines given an array of points as

parameter, is the fundamental line drawing primitive. The motivation
for this is that very rarely are single lines drawn. Instead, it is
more common to output a set of lines to form some shape. Given that
polyline rather than line is the basic primitive, attributes such as

broken apply to the complete polyline rather than a single line segment.

4.15

Thus, dotted or dashed curves are easily drawn.

Polymarker is an obvious primitive once polyline has been defined.
Text similarly produces a string of characters rather than a single
character so that there is a degree of similarity of level between

the three main primitives.

The remaining three primitives are likely to be less commonly used

but show the influence of raster graphics and the need to allow
expensive hardware facilities to be used even within a standard.

Fill area defines a boundary which will be drawn and its interior

can be filled in with either a pattern or a hatching. Other functions
define the form of the shading. Pixel array is a means of specifying
an array of pixels and is particularly of use in image processing.

The final primitive, GDP, is an escape function to allow special
primitives such as circle or curve to be defined in a well defined

implementation specified way - a standard way of being non standard!

5.4 Attributes

Polyline and polymarker have a single attribute, the pen number,

which can be defined as follows:

POLYLINE : LINETYPE, LINEWIDTH COLOUR
POLYMARKER : MARKERTYPE, MARKERSIZE, COLOUR

Text on the other hand has two sets of attributes, some of which are
set by the text pen table:

TEXT : FONT, PRECISION, COLOUR

while the geometric attributes are set modally. The motivation for
this split is that the overall form and shape of the text must fit
with the graphical output on all devices and so should be device
independent while the particular character forms and quality of
characters drawn may differ from workstation to workstation and

should, therefore, be part of the pen table.
The modal text attributes are:

1. HEIGHT: defines the required height of the character in the

user's coordinate system.

2. EXPANSION FACTOR: the font has a specified height/width ratio.
EXPANSION FACTOR defines how much larger than the specified width it is.

- 4.16

3. CHARUP VECTOR: defines the direction that the character height

should take. Characters can, therefore, be drawn at any orientation.

4. PATH: defines the direction in which characters are drawn.
The normal setting is LEFT while RIGHT draws them from left to
right. Similarly, UP and DOWN have their obvious meanings.

5. SPACING: additional space between characters.

It is recognised that some devices may have difficulty specifying
characters to that degree of sophistication. Consequently, the
PRECISION attribute in the text pen table defines the closeness of

the output to the specified requirements:

1. STRING: the position of the first character is all that is
guaranteed to be correct. Thus, a device's hardware character
generator can be used. If a different orientation or size is

requested, it can be ignored.

2. CHAR: the positions of the individual character boxes must be
correct. The form of the character within the box is workstation
dependent. Again, hardware characters could be used but they would

probably have to be output one at a time.

3. STROKE: all the text attributes have to be implemented
correctly. This will almost certainly require the hardware to have
a very flexible character generator or the text output to be

simulated in software using polylines or fill area primitives.

The current method of defining text in GKS does make it possible for
sophisticated hardware character generators to be used if available.
On the other hand, the workstation can choose a much simpler

representation for all but STROKE precision text.

5.5 Segments

It is possible to call output primitives so that they are displayed
on all active workstations. However, in an interactive environment,
it is frequently important that the complete display can be split
into a number of sub-objects or segments which can be manipulated
independently. You may wish to highlight a particular part of the
display or remove it for some reason. In working with a refresh
display, it is frequently required to move parts of a picture

around. This is achieved by having a transformation matrix

4.17

associated with a segment which may be altered after the segment is

defined.

Segments are stored on the workstations that are active when the
segment is defined. This is adequate for most purposes but
occasionally you need to have a segment appear on a workstation
that was not activated when the segment was created. For example,
the user may be defining a picture made up of segments on a refresh
display and then at some stage he may wish to copy the current
display to a plotter. This is achieved in GKS by having a device

independent segment storage which can keep copies of segments as

they are formed and apply the same transformations as are applied
to the segment on the workstation. When a copy is required, the
segments can be sent from device independent segment storage to a
specified workstation. Facilities are also provided for INSERTing
a segment into another segment. This modelling facility is only

allowed in the more complex GKS implementations.

5.6 Viewing

The standard graphical package tends to have a window/viewport
transformation which allows the applicationsprogrammer to define
his own coordinate system, some parts of which are mapped on to an
area of the display screen. The situation is complicated in GKS

by having several workstations active at the same time. Is it
sensible that all workstations are forced to use the same viewport
on to the world scene? An application might require one display to
give an overall view of the picture being displayed while another

looks at the detail of the picture.

This flexibility is achieved in GKS by having three different _
coordinate systems and two distinct window/viewport mappings. The
applications programmer defines his output in terms of a world
coordinate (WC) system which is mapped on to some part of the
normalised device coordinate (NDC) plane. The set of active
workstations can then take separate views of the NDC space mapping

these on to workstation dependent parts of the display.

For any complex picture, it is likely that it will be made up of
several distinct parts which are most appropriately defined in
different coordinate systems. A conventional package would do
this by allowing the user to continually redefine the window/
viewport mapping from world coordinates to NDC. For example:

4.18

SET WINDOW(XMIN,XMAX,YMIN,YMAX)
DRAW PICTUREA

SET WINDOW(X2MIN,X2MAX,Y2MIN,Y2MAX)
DRAW PICTUREB

Here, PICTUREA is drawn when the first coordinate system is defined
while the PICTUREB is drawn with the second coordinate system. The
user effectively sees a display made up of two parts with different
coordinate systems. The user's view of the system is that both
coordinate systems must be known to the system as pictures are being
displayed with respect to them. However, in reality, only the latter
of the two coordinate systéms is currently known. This often

causes confusion as the user expects to be able to point to a
particular position in either coordinate system and the system

should deliver the position in the correct coordinate system.

To ensure that the user's view of the system is the correct one,
multiple window/viewports can be defined in GKS and they are all in
existence at the same time. The equivalent form of the above program
in GKS would look like:

DEF WINDOW (1,XMIN,XMAX,YMIN,YMAX)

DEF WINDOW (2,X2MIN,X2MAX,Y2MIN,Y2MAX)
SELECT (1)

DRAW PICTUREA

SELECT (2)

DRAW PICTUREB

Note that the form of the program in GKS will have a tendency to
define all the coordinate systems required at the start of execution
and then select the particular transformation as and when required.
The other program form will have transformation definitions

scattered throughout the program.

5.7 Input

Input in GKS is defined in terms of a set of logical devices which
may be implemented on a workstation in a number of ways. The

different types of input are:

(1) LOCATOR: provides a position in world coordinates. The
position indicated on the display will be within one of the window/
viewport transformations defined. This will be used to give the

correct world coordinate position.

4,19

(2) VALUATOR: provides a real number.
(3) CHOICE: provides an integer defining one of a set of choices.

(4) PICK: provides a segment name and a pick identifier
associated with a particular primitive.

(5) STRING: provides a character string

The implementation of the logical device on a workstation may be
done in a variety of ways. For exampie, it may be natural to input
a STRING using a keyboard, it could also be done by free hand
drawing on a tablet or by hitting a set of light buttons indicating
particular characters on a display. The exact form of the

implementation is up to the workstation.
Input can be obtained in three distinct ways:

(1) REQUEST: this is rather like a FORTRAN READ. The system
waits until the input event has taken place and then returns the

appropriate value. Only one input request is valid at a time.

(2) SAMPLE: the current value of a GKS input device is examined.
Most frequently used for devices which have a continuous read out
of their value. For example, the current position of the pen on
the digitiser can be sampied or the position of a potentiometer.

(3) EVENT: this mode is used for devices which would normally
cause interrupts on the workstation. For example, a light pen

hit or pressing the tip switch on a tablet would normally generate
an event. Such events are stored in a gqueue in the order they
arrive and functions are provided to take events off the queue and
deal with them.

Earlier versions of GKS had a much more complex input system with
non-sequential dequeueing. It was decided that such functions
should be built on top of GKS rather than be part of the kernel

system.

6. SUMMARY

This paper has given a summary of the main events leading up to the
appearance of GKS 7.0. The description of GKS in the previous
section is intended to give a flavour of the facilities and

methodology of GKS. It does not cover all features and over-

4.20

simplifies many of the facilities. No attempt has been made to
describe the GKS level structure which allows only some of the
functionality to be available in a particular implementation.
Nor has any attempt been made to describe the more device
dependent features which allow efficient working.on plotters and

storage tubes.

As the first international standard in computer graphics, GKS is
a landmark which should have a significant effect on the way
graphics is done over the next few years. Its structure is
sufficiently novel that GKS programs will look different from
the graphics programs using existing de facto standard packages.
Whether it will be a success will depend to some extent on the
way people adapt to this way of working but also to how good a
job has been done in defining the standard. A bad standard or
one that provides no significant advantage over current practice

is probably worse than no standard at all.

References:

1. "Methodology in Computer Graphics' edited by R A Gued] and

H A Tucker. North Holland 1979.

2. 'Methodology of Interaction' edited by R A Guedj, P J W ten
Hagen, F R A Hopgood, H A Tucker and D A Duce. North Holland
1980.

3. "The Semantics of Graphic Input Devices' by V L Wallace.

Computer Graphics, Vol 10 No 1 Spring 1976, pp 62-65.

[1n

'Status Report of the Graphics Standards Planning Committee
of ACM/SIGGRAPH'. Computer Graphics, Vol 11 No 3, Fall 1979.

5. 'Status Report of the Graphics Standards Planning Committee of
ACM/SIGGRAPH'. Computer Graphics, Vol 13 No 3, Fall 1979.

6. 'Special Issue: Graphics Standards' ACM Computing Surveys
Vol 10 No 4 December 1978.

7. "Towards Compatible Graphics Standards' by P J W ten Hagen and
F R A Hopgood. Mathematisch Centrum Amsterdam 17/79 February
1979.

