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Abstract

Numerical weather prediction (NWP) is an initial-value
problem forva system of nonlinear partial differential
equations (PDEs) in which the initial values are known
only incompletely and inaccurately. Data at initial time
can be supplemented, however, by observations of the system
distributed over a time interval preceding it. Estimation
theory has been successful in approaching such problems
for models governed by systems of ordinary differential
equations and of linear PDFs. We develop methods of
sequential estimation for NWP.

A model exhibiting many features of large-scale
atmospheric flow important in NWP is the one governed by
the shallow-fluid equations. We study first the estimation
problem for a linearized version of these equations. The
vector of observations corresponds to the different
atmospheric quantities measured and space-time patterns
associated with conventional and satellite-borne meteorological
observing systems. A discrete Kalman-Bucy (K-B) filter
is applied to a finite-difference version of the equations,
which simulates the numerical models used in NWP,

The specific character of the equations' dynamics
gives rise to the necessity of modifying the usual K-B filter.
The modification consists in eliminating the high-frequency
inertia-gravity waves which would otherwise be generated

by the insertion of observational data. The modified filtering

250



procedure developed here combines in an optimal way dynamic
initialization (i.e., elimination of fast waves) and
four-dimensional (space-time) assimilation of observational
data, two procedures which traditionally have been carried
out separately in NWP. Comparisons between the modified
filter and the standard K-B filter have been made.

The matrix of weighting coefficients, or filter,
applied to the observational corrections of stéte variables
converges rapidly to an asymptotic, éonstant matrix. Using
realistic values of observational noise and system noise,
this convergence has bheen shown to occur in numerical experi-
ments with the linear system studied; it has also been
analyzed theoretically in a simplified, scalar case.

The relatively rapid convergence of the filter in our simula-
tions leads us to expect that the filter will be efficiently
computable for operational NWP models and real observation
patterns.

Our program calls for the study of the asymptotic filter's
dependence on observation patterns, noise levels, and the
system's dynamics. Furthermore, the covariance matrices of
system noise and observational noise will be determined
from the data themselves in the process of sequential estima-
tion, rather than be assigned predetermined, heuristic values.
Finally, the es

full, nonlinear shallow-fluid eguations.
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1. INTRODUCTION

One of the main reasons we cannot tell what the weather
will be tomorrow is that we do not know what the weather is
today. In other words, numerical weather prediction (NWP)
is an initial=-value problem for which initial data are not
available in sufficient quantity and with sufficient
accuracy.

Numerical forecasts are produced now routinely on a
daily basis by a number of weather services in different
countries. The models used in NWP are discretized versions
of the partial differential equations (PDEs) governing large-
scale atmospheric flow. The discretization is performed by
finite differencing, finite element or spectral representa-
tions. The number of degrees of freedom of the discretized
models is typically of the order of 105-=106° The spatial
domain of the models is the entire globe or at least an entire
hemisphere.

A large number of observations is made by the conven-
tional, ground-based meteorological network, coordinated
by the World Weather Watch (WWW). They consist of point
values of temperature, humidity, pressure and horizontal
velocity. These observations, of the order of 105 in number,
are produced at the so-called synoptic times, 0000 GMT and

1200 GMT. It is customary therefore to choose a synoptic

time ag initial time for a numerical forecast. Conventional

observations are insufficient in number in order to determine
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the initial stateof the model atmosphere. Furthermore,
they are very unevenly distributea in space, being
concentrated over the continents of the Northern Hemisphere,
and much sparser over the oceans and over the Soutﬁern
Hemisphere (Fig. 1).

A number of additional observations are made at the
so-called subsynoptic times, 0600 GMT and 1800 GMT. A still
larger number of observations, exceeding by now that given
by the WWW network, is gathered in an essentiallv time-
continuous manner from polar-orbiting satellites and other

non~-conventional measuring platforms (Fleminc et al., 1979 a,b,

and references therein). All these observations together
form a rather bewildering array by their uneven distribution
in space and time, as well as by their different error
characteristics.

In order to obtain the best possible estimate of the
model state at the initial instant, NWP centers use the
data available over a time interval preceding that instant.
The most common procedure to use such data, called updating,
was suggested by Charney et al. (1969). The model is provided
the best available data at some preceding instant, e.g., 24 h
or 48 h earlier, and is integrated forward in time.
Additional data replace the model values as they become
available: the model is updated. When the model integration
reaches the initial instant for the next scheduled forecast,
its guess of the initial state is blended with the data
available at that instant to produce the desired estimate.

Thus the model itself is used to assimilate the data
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available up to the initial instant. Variations of this
procedure, as well as other procedures for the four-
dimensional (4-D), space-time assimilation of meteorological
observations are reviewed in Bengtsson (1975).

The blending of observations and model forecast values
has been made most recently using in an explicit manner
the error structure of the data (Phillips, 1976; Rutherford,
1972) . This error structure is determined from past data
and the resulting linear regression coefficients are computed
once and for all, their constant values being used all along
the assimilation cycle of the model (McPherson et al., 1979;
Schlatter et al., 1976). A modification of this approach,
which combines more intimately the dynamics of the model with
the time-continuously changing observation patterns, appears
in Ghil et al. (1979).

Clearly, a mathematical framework well suited for the 4-D

assimilation problem of NWP is the state-space approach

of estimation theory. It deals with the estimation of
stochastic processes which are generated by randomly perturbed
differential or difference equations. This approach was

first formulated for processes governed by linear systems of
ordinary differential equations (ODEs: Kalman, 1960; Kalman
and Bucy, 1961); its results are widely known as the Kalman

or the Kalman-Bucy (K-B) filter. We expect that applications’

of the K-B filter, with suitable modifications, to 4-D data

assimilation will provide additional physical insight into
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this field's outstanding problems and eventually lead to
better practical algorithms for solving themn.

The purpose of the present article is to apply the
K-B filter to the linearized shallow-water equations and
to learn as much as possible from this application about
the properties of the filter relevant to operational 4-D
data assimilation. This linear system already contains
important features of the equations used in operational
NWP models, and our application should be instructive.

We present a brief review of the K-B filter in Section 2.
The dynamical model and observing pattern studied are presented
in Section 3, along with the modification of the K-B filter
suggested by the system's dynamics. Numerical results
and some analytical ones follow in Section 4. A discus-
sion of the results, comparison with operational practice

and conclusions follow in Section 5.
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2. A REVIEW OF THE STATE-SPACE APPROACH TO ESTIMATION

The intent of this section is to familiarize the
reader with the ideas and methods of sequential estimation.
Systematic, more or less rigorous expositions of the theory
are in existeﬁce for the interested reader (Bucy and Joseph,
1968; Curtain and Pritchard, 1978; Davis, 1977; Gelb, 1974;
Jazwinski, 1970). Here we shall stay on the purely formal,

and hopefully intuitive, level.

2.1 Statistical Considerations in Estimation: A Simple Illustration

Given a quantity X, suppose that two independent measure-
ments of this quantity, X and X, s+ are available. For

instance x could be the temperature in a room and X and X,
the readings of two thermometers placed in the room. 1In
the absence of any additional information about x, it is natural to

] ~ . 1]
seek an estimate of x, X say, as a linear function of Xy and Xy 7

A

X = alxl + a2x2 . (2.1a)

The function itself is called an estimator; the estimate is
its value.

We wish to determine oy and 0. so that the estimate x will
be optimal in some sense. The conditions to achieve such
optimality depend on the nature of the measurements.

Let us assume first of all that there are no systematic

errors in the measurements Xy and x i.e. that if we

2 ’
repeat our measurements many times then their average would
equal the true value x. In terms of the expectation operator

E, this is written as
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E(xl - X) = E(x2 - x)' =0 ,

and we say the measurements are unbiased. It is natural to
require that the estimate x also be unbiased:
E(X - x) =0 ;

this requirement is eguivalent to

a; *oa, = 1 (2.1b)

so that (2.la) becomes

X = x; *+ uz(xz-—xl) . (2.1c)

Next it is assumed that the measurement errors Xx;-X

and Xy= X are uncorrelated:

E(Xl - X) (X2 = X) = 0 12

and that their variances 012 and 022,
2 _ 02 2 _ N2
o] = E(xq )7 . o, = E(x2 x)

are known from previous measurements, viz. from instrument cali=-
bration. Then the variance of the estimation error,

82 = E(X - x)2 ., is given by

~2
g g

2
5 (2.2)

_ 2.2 2
—-Ochil-%-OL 5
suppose for the moment that in addition to satisfyving
Egq. (2.1b), oy and a, are nonnegative but otherwise arbitrary:
the linear combination in Eq. (2.la) is then said to be
convex. Convexity will imply that % always lies between

2y and Xy and furthermore that

32 < max {Gi,cg} . (2.3a)
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While property (2.3a) is reassuring, one should be able to

do better. We expect to be able to achieve

6% < min {02,062} ; (2.3b)
otherwise there would be no point in making more than one
measurement. The assumed knowledge of oi and og will in
fact yield (2.3b); it is accomplished by our optimality
requirement.

This requirement can now be formulated precisely:

~ 2 . » . 3 .
x should be a minimum variance estimate, which in our case
2

means that o° in Eq. (2.2) should be minimized with respect
to ay and Oy subject to (2.1b). The resulting optimal

weights are

0% 32
(]l = 3 3 = —2‘ (2.4a)
g, + 0© o1
1 5 2
and o 82
o, = = -, (2.4b)
2 02 + O2 c2
1 2 2
where the optimal error variance ¢ is given by
~=-2 =2 -2
=0," + o," . (2.4c)

Notice that ay and a, are nonnegative, so that the optimal

estimator,
02 02
R= 2y o+ L
-2 271 2 2 727
oy + o5 o1 + o5

is, in fact, convex. Moreover, the optimal weights (2.4a,b)
satisfy the intuitive requirement that they should reflect

our relative confidence in x; and Xy 3 if o is smaller than Oy
for example, then X is weighted more heavily.
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Notice also that formula (2.4c) for the optimal error
variance immediately implies property (2.3b). In particular,

when gy = 0, = 0, one obtains G = o/vY2 , which generalizes

to 0 = 6//N for N independent measurements of equal variance.

2.2 Estimation for Stochastic-Dynamic Systems

The purpose of sequential estimation theory for dynamic
systems is to extend the simple ideas outlined above to the
case in which the guantity x of intefest evolves in time
according to a given (system of ordinary or partial)
differential or difference equation(s). In this case, X
will represent the state of the system as determined from
previous observations {measurements), while X, represents
observations at the current time.

To stress the analogy, let us consider here a system of

randomly perturbed difference eguations for the state vector X:

X1 = U tE s k=0,1.2,..0 05 (2.5a)

~

x and g have dimension n, and ¥ is a constant nXn matrix.
(Ssee Appendix A for a list of recurring symbols.) In our
application, Xy will stand for the meteorological variables
at time k at the grid points of a global atmospheric predic-
tion model; ¥ stands for the finite-difference operator

which advances the variables by one time step. The random
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vector seqdence'{5k= k =0,1,2,...} is assumed to be a

-~

white noise sequence with mean zero and covariance matrix Q,

T

Egk =0, Egkg2 = stl . (2.5b,c)
The transpose of a vector or matrix ( ) 1is indicated
by ()7 and 6, is the Kronecker delta, S q = 0 if k # 2

and le =1 if k = £. The white noise § represents
dynamical and physical processes not described by the model
¥, especially smaller-scale phenomena not resolved by
the grid.

Suppose for the moment that an initial unbiased estimate
%O = Ex, is available from observations at time zero, and

that no further observations are available at later times.

~

In this case the best estimate of X o+ Xy

mean of X o+ X = Exk , and is computed according to (2.5),

say, would be the

by the recursion
A ~ ~

Xpp1 =YX o Xy = EXg o
this estimate can be improved if further observations become

available.

We have seen in the introduction that the description of
the atmospheric state at a given synoptic time from observations
at that time is entirely inadequate and that we are interested
in using observations at other times as well. This situation
is modeled by assuming a continuous stream of observations

z, = Hx + 4, k=1,2,3,... ; (2.6a)
Tx models observational errors and is also assumed to be a

white noise sequence,

EC, = 0, Egkci = RS, (2.6b,c)
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uncorrelated with § ’

E§k§2 =0 . (2.64)
The zero-mean assumptions (2.5b, 2.6b) are made for convenience
only; they are not essential for the theory we describe here.

The observation vectors z have dimension p < n,
and H is a pxXn matrix. This formulation describes in
particular the meteorological situation in which the
observations at any time k are incomplete; measurements
are made over some areas (continents) and not over others
(oceans); at a given location some variables are measured
and not others, e.g., geostationary satellites determine
winds but not temperatures. Finally, some functional of
the variables may be observed rather +han a variable itself,
e.g., polar-orbiting satellites measure radiances, which
depend on vertical temperature profiles. Thus the entries
of H need not be only zero or one, i.e., H is not necessarily
a permutation matrix.

In fact, H, as well as Y, 0, and R, need not be
constant in time; they are only taken constant here for
simplicity. 1In particular, the rank of H, i.e., the effective
dimension of Z, . can change from one time to the next:
the largest number of observations are available at synoptic
times, with fewer observations provided at subsynoptic times,
and even fewer in between, at intermediate times.

The linearity assumption that Y and H are independent of x
is, however, important for the theory we shall use here. This assump-
tion is essential in guaranteeing the optimality of the filtering
algorithm (2.11) below. Extensions to the nonlinear case will be
discussed in Sec. 5.

Having described our stochastic-dynamical model (¥,4),

263



Egs. (2.5, 2.6), we are now in a position to make the
connection with (2.1-2.4). Given an estimate x (+) based
on all the observations up to and including the time k,

the best prediction at time k+1, §k+1(—), is simply

Xy (<) = ¥R (4) (2.7)

~

§k+l(—) will be the analogue of ¥, in (2.1). The analogue

of X, is the actual observation =z at time k+l. We

~k+1

wish to combine §k+1(—) and z in order to obtain an

k+1
estimate %k+1(+)’ which we require

to be: (a) linear, (b) unbiased, and (c) optimal in
some suitable :sense.

In Sec. 2.1, we discussed the simple illustrative
example of estimating the room temperature x from the
readings Xy and X, of two thermometers. In that situation,
the requirements (a) and (b) lead to formulae (2.1).

The optimality condition was expressed in (2.4), which
yields the minimum q among all linear, unbiased estimators.

For our dynamic system (Y¥,H), requirement (a) leads

to the formula

(=) + K (2.8a)

Xpa1 ) = D1 ¥pa k+1%Kk+1

which is analogous to (2.la), while requirement (b) leads to

2.8b
k+1 Ho ( )
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which is analogous to (2.1b). Our estimator is therefore

of the form
a1 () = Xy () + Ky (Zpgg = Hxgegq (51 5 (2.9)

the analogy with (2.lc) 1is obvious. It remains for the

gain matrix Kk+l to reflect the relative uncertainties in
Zp 41 and §k+1(—)° This will be achieved by imposing the
optimality requirement (c), and will yield formulae analogous
to (2.4).

In order to formulate the optimality criterion, we

define first the estimation error covariance matrices

- " o - T |
Prar (B) =BG (8) = ) GG, (B) = Xpeg) 0
. 2 . ~2
Pk+l(~) is the counterpart of Gl and Pk+l(+) is that of o .

Using Egs. (2.5) and (2.7), one finds that Pk(+) is advanced

by one time step to Pk+l(-) according to

b= E T °
Pk+l( ) WPk(+)W + Q (2.10a)
the derivation of (2.10a) depends on the fact that
~ T _
EEy (¥ =% )" = 0

(cf. (2.5¢c)). Egs. (2.6) and (2.9) imply that, in the presence

of observations Zyg1 ” Pk+l(+) is found from Pk+1(~) by the formula

- ~ _ _ T T
Pk+l(+) (T Kk+lH)Pk+l( ) (T Kk+lH) + Kk+lRKk+l;(2.lOb)

in the total absence of observations at time k+l, we have instead
Bag (F) = Xy () and Ppy (1) = Py ()
The estimation error covariance matrices

explicitly contain all relevant information

about the error structure of the current estimate.

265



The statistics of all errors committed up to énd including
time k are accumulated in Pk(+). Formula (2.10a) shows how
this information is advanced to the next time step. For
example, this equation determines how the presumably small
errors committed over a continent, or other data-rich region,
propagate over an ocean, or other data-sparse region.
Equation (2.10b) then determines precisely the extent to which
the estimate is improved by the new observations.

We have defined the estimation error covariance matrices
and considered their changes in time. We are ready now to
derive the optimal gain matrix by imposing the optimality
requirement (c): it is required that %k+1(+) be a minimum

variance estimate in the sense that

- 5k ; T (2 )
I= B (M) 7 )T SO () - X))

be minimized with respect to each element of Kk+l , For all
symmetric, positive definite matrices S. In particular,
for S = I, we see from the definition of Pk+1(+) that the
trace, or sum of the diagonal elements, of Pk+l(+) is to be

minimized. The trace of Pk+l(+) is the expected mean-square

(m-s) estimation error.

We recall that a symmetric matrix S, ST = 5, is positive

definite if, for any vector x # 0, the scalar product xTSx > 0.
Since every such matrix has a factorization S = CTC, one finds

that in general
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— T
J = trace CPk+1(+)C .

Using Pk+l(+) from Egq. (2.10b) and setting the derivative
of J with respect to each element of Kk+l equal to zero,

one finds that a unique, absolute minimum is attained at

1

K (-) HY(HP (-)ET +R) ™

k+1 = P+l k+1

This result is valid independently of C, and hence is the
same for all possible positive definiﬁe matrices S. In
other words, Kk+l above minimizes simultaneously all reason-=
able measures, or norms, of the expected estimation error.

The formula above gives the so-called Kalman-Bucy (K-B)

optimal gain matrix, or filter. Substituting this into (2.10b)

yields the optimal error covariance matrix
Pryp (1) = (=K g H) Pyyp ()
Assuming the availability of an unbiased initial estimate

Xo = Xp(#) = Exq

and an initial estimation error covariance matrix

T

Pg = Pol+) = Elxg =X%g) (g =%o)

the description of the Kalman filtering algorithm is now

complete: for k = 0,1,2,..., one computes in order

§k+l(_) = W§k(+) ’ (2.11a)
_ T

Pk+1(-—) = ka(+)\y + 0, (2.11b)
. _ T T -1

Kyp1 = Pk+1( } H (HPk+l( YJH™ +R) (2.11c)

267



Pk+1(+) = (I-Kk+lH) Pk+l(—) P (2.114)

Ker1 (P = Xpg (0) 4 Koy (Byg —HEQ (D) (2.11e)

In the absence of observations at time k+l1, Egs. (2.1llc,d,e)

are replaced by

Kk+l =0, (2.11c")
Pryp(F) = B (5) (2.11a")
Kepp (H) = X () .  (2.11le")

Actually, the gain matrix sequence {Kk: k=1,2,3,...} may be
precomputed once and for all, i.e., for all realizations of the
state and noise processes, X v gk’ Ek' Indeed, (2.1lb,c,d) do not
depend on the estimates (2.1lla,e). This is a result of the assumed
linearity of the model (¥,H).

To complete the analogy with our earlier illustrative example,

notice that Egs. (2.1llc,d) can be rewritten as

-1 _ -1 - T -1
Pk+l(+) = Pk+1( ) + HR "H , (2.12a)
_ T -1
Ki 1 = Pk+l(+)H R . (2.12b)

In our analogy, (Pk+l(—),R,Pk+l(+),Kk+l) correspond to
(ci,cg,Gz,aZ); Egs. (2.12a,b) are analogous to (2.4c) and
(2.4b ), respectively.

Some intuitively appealing results follow, as in the

simple example. For instance, Eq. (2.12a) implies that

Py () S P (=)
the matrix inequality A < B means that C = B - A is
nonnegative semidefinite, §TCx > 0 for all x. Eg. (2.12b)

implies that if R is small (large) then the observations Zys1
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are weighted more (less) heavily than the predictions %k+l(—).

2.3 General Remarks on the K-B Filter.

Before proceeding with the description of our dynamical and
observational‘model (¥,H), a number of theoretical remarks are in order.
Recall first that %k+l(+) was chosen to be the optimal,
minimum variance, unbiased estimate among all estimators of
the form (2.8a). It is not clear that in computing %k+l(+)
all past observations §j , 3 =1,2,...,k, have been fully
utilized. Tt can be shown, however (e.g. Jazwinski, 1970,

Sec. 7.3), that our estimate is in fact the optimum unbiased
estimate among all estimators which are linear combinations

of all the available data

k+1

+ B.z. . {2.13)

= A
j=1 J~3

X1 (F) = BoXg
This wider optimality is due to assumptions (2.5c, 2.6c,d)
that system errors and observational errors are uncorrelated in
time. It can sometimes still be achieved without these assumptions
(Jazwinski, 1970, Sec. 7.3, Examples 7.5-7.7). Carrving the
estimation error covariance matrices along in the computation
makes it possible for the filtering algorithm to be sequential,
or recursive: each observation is discarded as soon as it is
processed. This sequential nature of the estimation makes the
algorithm conceptually simple, as well as having great practical
advantages. It is one of the major reasons for the broad
applicability of Kalman filtering.

Another important feature of the filtering algorithm (2.11)

is the fact that only first-order statistics, i.e., means,

and second-order statistics, 1i.e., covariance matrices, of the
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vector processes of interest are involved. 1In other words,

it suffices to know these statistics for the system noise § ’
observational noise Ty and initial error %0-§0 . These

will provide the estimate % as well as its error covariance
P at all future times. This property is important since in
practice it is usually difficult to obtain even this much
information about the random errors one wishes to filter; it
is well nigh impossible to obtain more, i.e., to prescribe
higher-order statistics. Moreover, the first-order and second-
order statistics of the error processes can be determined
adaptively, i.e., by the filtering algorithm itself (Cﬁin, 1979,
and references therein).

Gaussian processes are in fact completely determined by
their first and second-order statistics. Furthermore, the
Central Limit Theorem (e.g. Parzen, 1960, Sec. 8.5 and 10.4)
states, in its various forms, that the superposition of a
large number of random effects is approximately Gaussian,
regardless of the distribution of the individual effects. It
is reasonable, therefore, to expect our errors, which come from
a large number of sources, to be approximately Gaussian. It
follows that retention of only first and second-order statistics
in the filtering algorithm (2.11) should be rather satisfactory.

Actually, when g, E, and Xy are Gaussian, it is known
(e.g. Jazwinski, 1970, Sec. 5.2) that the best possible nonlinear
estimate of x, i.e., one which might depend nonlinearly on all

"~
the observations, is still our linear estimate x.
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The sequential nature of the filter implies in particular
that, in the absence of further observations at times k > N,

the best prediction is simply given by (2.11la, 2.11le'):

~

X1 = ¥E kK = N, N+l, N+2, ..., (2.14a)

S CO (2.14b)

~

N

i

The covariance of this predictor is then given by (2.11b, 2.114%) .
This corresponds roughly to what is done in operational
practice: an initial state %N is determined by 4-D data
assimilation from all observations up to and including the
synoptic time of interest. Then the forecast model is
integrated forward in time from the initial state obtained,
without further use of the deta. We intend therefore to study
only the assimilation and initialization problem, over an
assimilation interval k = 0,1,2,...,N.

The framework of estimation theory can provide also insight
into the nature of the system noise (E,Q) and ways to its
determination. It could lead to improvements in modeling
and hence forecasting, by helping to pinpoint deterministic
components of §- This, however, is not our purpose here. With
these remarks, we turn to the description of the dynamic

system to which the theory outlined in this section will be

applied.
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3. ESTIMATION FOR THE SHALLOW-WATER EQUATIONS N

3.1 The Equations

The shallow-water equations are a simple system whose
solutions exhibit some of the properties of large-scale
atmospheric flow. They have certain important characteristics
in common with the more complicated, three-dimensional systems
currently used in NWP models.

We shall study here a linear, spatially one-~dimensional
version of the equations, written in cartesian coordinates

for a plane tangent to the Earth at latitude 06,:

0
u, + qu + ¢x - fv =0, (3.1a)
Ve + va + fu=20, (3.1b)
¢t + U¢x + @ux—va =0 . (3.1c)

The coordinate x points eastward, in the zonal direction,
along the circle of latitude 6 = 60 , while y points north-
ward, in the meridional direction; u and v are velocity
components in the x and y directions, f = 2Q sin 60 is the
Coriolis parameter, with Q the angular velocity of the Earth.
The geopotential ¢ = gh measures the deviation of the height
h+H of the free surface from its equilibrium value H , with
® = g, U is a constant zonal mean flow velocity. All quantities
are independent of y.

These equations are derived from the full, nonlinear

shallow-water equations on a tangent plane,
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u, + uu + vuy + ¢X - fv = 0 , (3.2a)
Ve + uv, + vvy + ¢y + fu =0, (3.2b)
¢p + ud, * V¢y + qb(ux+vy)= 0, (3.2c)

by linearization around a solution (u =0, v = 0, ¢ = 9) satisfy-
ing fU = —®Y= const. We assume.in this derivation that
the perturbation quantities, i.e., the deviations from
equilibrium values of (u,v,¢), do not depend on y.

It is advantageous to work with a constant-coefficient
system, as long as the basic phenomena of interest are
not obscured by this simplification. Hence £, U and 9
in (3.1) are taken to be constants. The variation with
latitude of the Coriolis parameter
f, however, has an important effect on planetary flows. This
so~called B-effect, B = fy(eo) # 0, is equivalent to the
effect of bottom topography, @y # 0, in the tangent-plane
approximation (Pedlosky, 1979, Sec. 3.17 and Ch. 6) . The
term (- fuv) in (3.1c) introduces this effect into the
solutions of the system considered, without sacrificing the
simplicity of constant coefficients.

All the solutions W = (u,v,9) of (3.1) can be expressed

as a superposition of plane waves:

il(x—czt)
Wix,t) = ] w e , (3.3a)
~ [}
where % is the wave number. For each &, the speed of the

individual waves, c, , is given by the dispersion relation
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22(U—-c2){fb— (U-c£)2} - fzcz =0 . (3.3b)

This is a cubic equation for Cy which has three real roots,
(m
cy Z m=1,2,3. It turns out that (3.1) has two types of

solutions: slow waves, corresponding to
cél) ty-—Lf _uy ' (3.4a)
and fast waves, with

—
0952'3) U+ Jo+£2/2% 4 U . (3.4b)

2(8%6 + £2)
In the absence of the B-like term (-fUv) in (3.1lc), the last
term in (3.4a), as well as in (3.4b), would not be present.
The expressions in (3.4) are actually exact to first order in
tﬁe‘small nondimensional parameter U//®.

The slow waves are the meteorologically important ones,
which correspond to the slow traveling of planetary waves
on which synoptic weather systems are superimposed. Their
speed is comparable to that of the mean zonal current,

U = 0(10 m/sec), and they retrogress: their propagation
relative to the mean flow is westward. These slow, retro-
gressing waves are named after Rossby, and they are an
important feature of mid-latitude atmospheric dynamics.
Their frequency is always smaller than f = 0(10_4sec_l).

The speed of the fast waves is dominated by the second
term in (3.4b), being 0(102m/sec). They are called

inertia—~-gravity waves, since they are the familiar

gravity waves of shallow-water theory, for which Cy = U+ /%,
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modified by the presence of the Coriolis force. Their disper-
sion and dissipation plays a role in the mechanism of
geostrophic adjustment, which maintains the atmosphere in

a quasi-geostrophic state, in which the Coriolis force nearly

balances the pressure~-gradient force. But they carry very
little energy at any given time, and appear mostly as
higher frequency oscillations superimposed on the meteoro-

logically significant ones, i.e., as meteorological noise.

An important problem in NWP is the filtering of the

fast waves in large-scale numerical forecasts in order to
prevent their spurious growth to amplitudes larger than

those found in the atmosphere. The need for

this filtering is different‘from that discussed in the previ-
ous section: it stems from the two time scales of the
deterministic motion itself, rather than from the presence

of extraneous, random noise perturbing the deterministic
motion. In particular, the fast waves can be eliminated

or reduced at the initial time of the forecast by an

initialization procedure (Bengtsson, 1975;  Leith, 1980; and

references therein). Once such an initialization has been
performed, the fast waves will not grow excessively over
periods of time comparable to the evolution time of the slow

waves (Browning et al., 1979; Bube and Ghil, 1980).
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Clearly, the two problems of: a) determining a solution
to the forecast equations from a continuous stream of noisy
data (4-D data assimilation) and b) rendering this solution
as free of fast waves as possible (initialization) are
related. The connection was stressed and a first step in
the direction of their joint solution taken in Ghil (1980)
and Leith (1980), among others.

We shall present in the sequel a sysfematic way of
combining the two aspects of filtering within our framework.
This will involve a modification of the standard K-B filter
outlined in the previous section. Before proceeding with
this.modification, we éhall discretize the equations. This
corresponds to what is done in operational practice and will

bring the problem to the form (2.5a).

3.2 Discretization

The discretization chosen for (3.1) is in terms of finite
differences. Finite-difference models are still the most
widely used in NWP. They also facilitate somewhat the assimila-
tion of observations made in irregular patterns. Spectral
models, on the other hand, have certain advantages with regard
to the initialization aspect of our problem. An analysis
similar to the present one should be easy to reproduce for

spectral, finite-element or hybrid models.
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The grid

x) = jAx, 3 =1,2,...,M, t_=kit, k=0,1,2,... (3.52)

is introduced, with Wﬂ approximating W(ij,kAt). Then the

state vector Xy of Sec. 2 corresponds simply to W£ , with

1.1 .1 2 2
?Ek = (uklvkld)klukpvk’-o.,d)k) 7 (3-5b)

so that n = 3M.
We used the Richtmyer two-step formulation of the
Lax-Wendroff scheme (Richtmyer and Morton, 1967, Sec. 12.7

and 13.4). Let A and B denote the matrices of system (3.1),

Vgt=AVjX+B\'§'a

The scheme can then be written as

j+1/2
J41/2 _ 3+1/2 _ At
Wier1/2 = W T W
K
L Emad v wlth s fEad™t -w)h . Gee
wj - (At)W ‘
W+l Wy 41/2
_ Wj At j+1/2 j-1/2 At j-1/2 j+1/2

Wi + T AW 0 = Wy o) 5 By s+ Wieyn /o)
(3.6b)

Egs. (3.6) define the dynamics ¥ of our system for

the state vector x, which is given by (3.5) in terms of Wy v
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Xl = VEg o
The discrete system (3.6) has the same type of slow and fast
plane wave solutions as the continuous system (3.1). Their
dispersive properties are similar. The Lax-Wendroff (L-W)
scheme was used because its numerical dissipation is very
useful im our simple model in order to simulate the physical
dissipation mechanisms active in the atmosphere. Such
mechanisms are also present in more complex NWP models, and
they are essential for geostrophic adjustment to occur.

The plane waves of the continuous system (3.1) are better
approximated by those of thebRichtmyer two-step version of
the L-W scheme (3.6) than by those of the standard, one-step
versién. In pafticular, in the absence of the B-term, the
slow, quasi-geostrophic wave of (3.6) satisfies ug = 0 as
that of {3.1) satisfies u(x,t) = 0. This turned out to be a

useful check on the departure of solutions Wﬁ from geostrophy.

3.3 The Modified K-B Filter

In the absence of any constraints on the dynamics, it is
clear from Sec. 2 that the K-B filter corresponds to the

solution of an optimization problem: obtaining a minimum

variance estimator for the system (¥,H). We have seen in
Sec. 3.1 that, in the application of interest here, it is
desirable to select among the solutions of the discrete

evolution operator ¥ defined by (3.5, 3.6) a special subset —
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[R and G
are
scriptl]

solutions with fast components which are vanishing or small.
Obtaining a best estimate in the presence of such a

constraint corresponds to a constrained optimization problem.

We shall study in this subsection an appropriate modification
of the standard K-B filter described in Sec. 2.

All solutions of (3.6) can be represented as a super-
position of plane waves, similar to (3.3a). For the purposes
of this discussion it is actually more convenient to think

of X in its physical interpretation Wk , so that we write

k :
Wik, kae) = T ()T w™ exp tintiax - eMrar)}. (3.72)
- L,m e
. (1) _ifjbx _ .
For each wave number £, there is a slow wave Wy e with
speed cél), and two fast waves wé2’3) elszX with speeds céz’g)

of opposite signs. The decay factors Kém), ]xém){ < 1, are
present due to the dissipation in the difference
scheme (3.6).

Denote by R (for Rossby waves), the span of the real
parts of all compound n-vectors, n = 3M, of the form

( w(m) ithx )

Wy ©
Yém) elQZAx , (3.7b)

°
°

w,Sm) eleAx

N

for m = 1, as % ranges over all possible wave numbers.

This is the slow wave space. The fast wave space is denoted
by G (for gravity waves), and is defined as the span of the
real parts of all n-vectors of the form {3.7b) for m = 2,3,

as % again ranges over all possible wave numbers.
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The spaces R and G are subspaces of Euclidean n-space En,
and they span En, R®G=©g". Furthermore, R and G are
invariant under the matrix ¥, defined by (3.6), i.e., they
are invariant subspaces of the system's dynamics.

Indeed, the eigenvectors of ¥ are precisely the set of

all vectors of the form (3.7b). Hence any vector X in R will
be advanced by the unperturbed system (3.6) to:a vector W§

in R after a time step At. Similarly, a vector y in G will
evolve to ¥y in G. Notice, however, that R and G are not
orthogonal to each other.

Given any n-vector X, there is a unique vector y in
R which is closest to x in the sense that “g-—§“2 = (X-f)T(g-f)
is minimized. This vector y is called the orthogonal

-~

projection of x onto R, and is denoted by y = IIx.

The orthogonal projection operator 1T is a symmetric matrix,

HT = I, and satisfies H2 = II. The orthogonal projection

y = IIx is found in O(n log n) arithmetic operations by
performing three Fast Fourier Transforms (FFTs) on the
vector x (one for each component u, v, ¢), then multiplying
by a block diagonal matrix comprised of M 3x3 blocks, then

performing three inverse FFTs.

We assume in the sequel that

~ A

Xy = I X o (3.8)

i.e., that initialization has been performed and X, lies
in R already. These concepts are discussed and similar

notation is used in Leith (1980).
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Having defined the operator II, we are now ready to

describe the modified filter. Let
i R (3-92)

denote the innovation vector at time k. This vector

carries the new information contained in the observations
at time k; gk(—) carries all the previously accumulated
information, as propagated by the dynamic system.

The filtering step (2.1le) is now written
X1 () = Ko (50 + K iy (3.95)

What 1s desired is that, for all k, %k+l(+) lieg in R.

It is clear by inspection of Egs. (2.11 a,e,e') that, under
assumption (3.8), this will be the case provided that,

for all k, Ky t1 st lies in R. As the observation vector
Zpa1 is a noisy perturbation of the noisy true state Xpal *
cf. Egs. (2.5a, 2.6a), the correction vector K, 4T .q does

not, in general, lie in R.

What we seek, then, is a modified filter K;+l ; possibly
depending on Niery * which has the property that K;+1Dk+l
does lie in R. This filter is found by minimizing trace Pk+l(+)’
as before, but subject now to the constraint that the correction
vector lie in R. A Lagrange multiplier method was used
to solve this constrained optimization problem. The result is
simply that

%
K = I

k+1 (3.10a)

Keer 7

independently of ey where Kk+1 is the standard Kalman-Bucy
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filter. For the modified filter, therefore, we replace

Eg. (2.lle) by
Year (P = X (5 + T Ky q Ty (3.10b)

Since this filter is no longer optimal, we must also
replace (2.11 d) by (2.10 b), in which K.,y is replaced by
T Kypre

In the sequel we shall call the modified algorithm
the -filter, while the standard algorithm will be called
the K-filter. We shall see in Sec. 4 that the N-filter
produces optimal estimates of the slow waves at the expense

of estimation errors only slightly larger than the fast-wave

contaminated estimates produced by the K-filter.

3.4 Observational Pattern and Choice of Parameters.

In the present article we shall restrict ourselves to
the study of a "classical" observational pattern, corres-
ponding to the conventional meteorological upper-air network:
all gquantities (u,v, ¢) are observed over "land", and none over
the "ocean". This is only meant to serve as an illustra-
tion of K-B filtering in a meteorologically familiar situation.
Clearly, the power of this approach lies in its ability to
handle observations which are arbitrarily distributed in space

and time.
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Our physical domain is an interval of the x-axis of
length 2L. It is meant to correspond to a circle of latitude
near 45° N. Hence f = 10"4'sec:—l and L = 14000 km. The
actual distribution of land and ocean at this latitude has
been simplified to be 2-periodic, so that in each interval
of length L, half is covered by ocean (Pacific or Atlantic),

and half by land (North America or Eurasia). It is reasonable

to consider, therefore, only 2-periodic solutions of (3.1),

and consequently our computational domain is of length L.

We consider the left half of the computational L-domain
to be covered by land, and the right half to be covered by

ocean, so that our observation matrix is
H= (I 0)

The mean flow about which (3.2) is linearized was
taken to have U = 20 m/s and ¢ = 3X104m2/52, The value of U
is typical for mid-tropospheric flow at this latitude;

& corresponds to an equivalent depth for a homogeneous
atmosphere of H = 3 km, which gives realistic phase speeds
for inertia-gravity waves. The slow waves in the solution
of (3.1) which we wish to estimate will travel across the
fundamental L-domain of one continent and one ocean in a
time of approximately L/U; cf. (3.4a), the actual time, for

our choice of L, U, & and &, is roughly 12 days.
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For a single wave number 4, initial data for the
continuous system (3.1) which lead only to slow waves

are, to first order in the small parameter U/V®,

¢(x,0)v= ¢0 sin ix , (3.11a)
12y 22”%
u(x,0) = —=—=—— ¢(x,0) = -—— sin 2x , (3.11b)
250 + £ L0+ £
1 Lo
v(x,0) = F ¢X(x,0) = —— cos &x . (3.110)

The solution W(x,t) of (3.1) with initial data W(X,O) = Wo(x)
given by (3.11) is, to first order in U/vY%,
wix,t) = Wo(x-cél)t), with cél) given by (3.4a).

We chose initial data corresponding to a single Rossby
wave of wave length L/2, i.e., 2 = 47/L, and amplitude
¢0 = 2,5 % 103m2/sz; The latter is in accordance with a
typical ridge-to-trough difference of 500 m in the height
of the 500 mb pressure surface (Palmén and Newton, 1969,
Sec. 6.6). It follows that ¢0/¢ = 1/12, which partially
justifies the linearization of (3.2). It follows also that
the amplitude of vix,0), v = Z¢0/f, is roughly equal to U,

max

a realistig value. Note, however, that Uax = 22U¢0/(22®+f2)

li

is relatively small, u 0.053 Vi . for our choice of

max ax

parameters.

Initial data for the discrete estimation problem, %0(-)(
J

were computed by evaluating (3.11) at the grid points x- = jAx,
while go(+) = I %0(—), in accordance with (3.8). The projec-

tion is desirable because the slow waves of (3.6) are

slightly different from those of (3.1). To obtain Xq 7 random
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errors are added to %0(+) (cf. Egs. (3.12 b,c) below).

Due to the linearity of the problem, the gain matrices
Kk+l , or 1 Ky, ¢ are independent of both the "true®
atmospheric state x and the estimated state %: Egqs. (2.1l1la,e)
are decoupled from Egs. (2.11lb,c,d). In particular, the
gain matrices are independent of the initial data Xg s
%O(+). Thus the choice of initial data (3.11) has been
made only for orientation purposes, and similar results
will obtain for any initial estimate satisfying (3.8).

The discretization used the minimum number of grid
points which would resolve our wave, namely 16, for the
L-domain of interest. This left a computational problem
(2.11) of easily manageable size, and it was deemed suffi-
cient for a preliminary illustration of the method. One
numerical experiment was performed with a total of 32
points for the computational L-domain; such a spatial
resolution of 0(400 km) is close to that used in operational
NWP models. The results were quite similar to those of
the comparable experiment with 16 points.

With a resolution of Ax = L/16, the stability criterion
for the difference scheme (Richtmyer and Morton, 1967, Sec.
12.7) imposes a limit of approximately 47 min on the
time step, when using (3.4b) for the maximum wave speed.

A much more stringent limit on At, closer to the value of At

in most primitive-equation NWP models, in which inertia-

gravity waves are present, would be imposed if our spatial
resolution Ax were closer to the resolution of such models.
We actually took At = 30 min. This results in two time steps

per hour, or 24 steps per synoptic period.
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Observétions are made over the 8 grid points located
on "land" at every synoptic time, that is twice per day.
The observation error covariance matrix R 1is taken
diagonal, with equal entries at all gfid points. The
values assigned to the diagonal entries of R are based
on data from McPherson et al. (1979, Table 2). The standard
deviation of conventional temperature observations used
there is 1°C. This can be converted, based on the customary
hydrostatic assumption, to a 500 mb level geopotential error
of approximately 200 m2/sz. This value results, for our
choice of ¢0 . in an error of about 0.1 ¢0. A corresponding
10% error in the wind components is roughly 2 m/s; this is
slightly larger than the value of 1.5 m/s used by McPherson
et al. (1979). We took the standard deviation in observa-
tions of ¢ to be 200 mz/sz, and that in observations of u
and v to be 2 m/s. Relative errors in all observations are
thus about 10%.

The system noise covariance matrix Q is taken to be

the sum of a geostrophic and an ageostrophic part

2

Q=1I D1

1T + (1-1) D%(I—H)T , (3.12a)
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with Dy and D, diagonal. The choice of Dy and D, involves
further dynamical considerations, and will be discussed
after we describe first the experiments with a perfect,
noise-free model.

The initial error covariance matrix P, also has the form

P, =T D32HT + (I - 1) D42(I -mT, (3.12b)

which results from the assumption that geostrophic and
ageostrophic errors are uncorrelated. This assumption is

only made for convenience, and because of lack of information
on the cross-correlations of the two types of errors; it can
be easily removed as further information becomes available.
Let D be the diagonal matrix with the elements (v 'V r9q)

max max

repeated on the diagonal; then

Dy = 0.4 D, Dy = 0.1 D . {3.12c)

For simplicity, we have taken the initial error covariances
(cf. (3.12 b,c)) +to be uniform over the entire L-domain.
This choice results in initial errors which are much larger
+han the observational errors over land, although they are
approximately equal to the expected mean forecast errors
over the ocean. This uniform distribution of initial errors
makes it easier +to visualize the initial error reduction
by synoptic information over land and the propagation
of information from land to ocean, as

well as the effect of high errors over the ocean
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propagating inland. Eventually, we shall be interested in
the asymptotic state which corresponds to a stationary,
continuous assimilation cycle; hence, .the choice of initial

errors will ultimately be immaterial.

3.5 Previous Work

The realities of 4-D data assimilation have suggested
to practitioners, as well as theoreticians, ideas related
to those presented here. A number of authors have
preceded us on this ground, and we shall mention their work
at least briefly.

~ Jones (l1965a,b) seems to have been the first to bring
the formalism of K-B filtering to the attention of the
meteorological community. Jones (1965a) is an excellent
compendium of the formulae for the discrete-~time filter,
including results on the asymptotic filter. Jones (1965b)
is an attempt at nonlinear filtering for a single, scalar
quantity; an improvement over direct insertion obtains
when statistical ideas are included.

Petersen (1968, 1970, 1973a,b,c, 1976) offers the
most comprehensive treatment of estimation ideas in the
meteorological literature. He applied these ideas to a
linear form of the quasi-geostrophic barotropic potential
vorticity equation (Petersen, 1976), in which fast waves
do not appear. The estimation is carried out in terms of

spectral transforms and the dynamics incorporated. in the
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form of Green's functions. This approach to estimation
does not seem to extend easily to nonlinear dynamics. Its
implementation in linear cases is also hampered by not
exploiting the sequential aspect of K-B filtering, nor
the use ofvasymptotic filter values.

A variational approach to updating, which bears certain
similarities to sequential estimation, appears in Tadjbakhsh
(1969) and Phillips (1971). It was also implemented for
real satellite sounding data by Ghil and Mosebach (1978).
This approach, however, does not include explicitly the
statistical optimality considerations of K-B filtering.

Miyakoda and Talagrand (1971) discussed the
possibility of blending forecasts from previous synoptic
times with current observations, by averaging. They analyzed
this possiblity for the linear, one~dimensional vorticity
‘equation and carried out numerical experiments for the same
equation in its nonlinear, two-dimensional form. They did
not use a sequential filter or statistically determined
weights. Still their work showed the importance of using
past observations, as carried forward by the dynamical model
itself, in obtaining a better estimate for the current state
of the atmosphere.

Phillips (1976) developed an estimation procedure for
a one-dimensional, linear, two-level quasi-geostrophic
model. The model uses fairly realistic flow quantities,
observational patterns and error variances. This procedure,

1ike those of Petersen (1976) and of Miyakoda and Talagrand
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(1971) is not sequential; it requires, in particular, the
specification of the actual solutions' statistics; rather
than solely observational and forecast error
covariances. Since the model only admits slow waves, no
modifications were necessary to eliminate the fast waves
present in operational, primitive-equation models.

Phillips' work stressed the importance of statistical
concepts in 4-D data assimilation and had a considerable
influence in their operational implementation. We hope in turn
that our results will lead to a better theoretical understanding
of:.the interaction of statistics and dynamics in meteoro-
logical data assimilation and also help practitioners in

optimizing further its operational applications.
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4, RESULTS

We wish to stress here again that these results are
preliminary. They present an illustration of our estima-
tion approach for a very simple model with some
nontrivial features of operational NWP models. The main
feature of interest is the presence in the model of
travelling large-scale waves with different speeds.
Optimal estimates of the slow waves are obtained, while

eliminating the fast waves.

4.1 Estimation for a Perfect, Noise-Free Model

We study first the way in which the K-filter, using partial
observations over land, reduces the initial error in a system
without noise, QO = 0. Fig. 2 shows the components of the expected

k)1/2, over a 10

root-mean-square (rms) estimation error (trace P
day numerical experiment, or run. Fig. 2a shows the expected rms
error over "land", Fig. 2b over "the ocean", and Fig. 2c¢ over the
entire L-domain. The individual curves correspond to the errors
in w(m), v(V), ¢(P), and the total error (T).

Obviously, sharp error reduction occurs at the observation
times over land (Fig. 2a). The more interesting fact is that
noticeable error reduction occurs at synoptic times also over
the ocean (Fig. 2b). The latter reduction is due to the
corrections applied to ocean grid points by the filter. In this,

the K-filter acts like current objective analysis schemes, in

particular those using linear regression: the new information
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from observations over land is spread out over adjacent ocean
areas at the observation time itself. The difference between
our approach and conventional schemes will become more apparent
in the next subsection, inasmuch as the K-filter is capable
of discerning between data-sparse ocean areas upstream and
downstream from data-rich land.

Even in the present mse of a noise-free model, Q = 0,

the effects of advection of information are noticeable. In

between observations, the error over land grows (Fig. 2a).
This is due to the advection of error from over the ocean.
The total error (Fig. 2c) between observations decreases.
This decrease is due to the dissipation in the model, which
is conservative when O = 0, except for numerical dissipation.
The error over the ocean (Fig. 2b), however, decreases
considerably more than the total, due to the advection of
information from land.

The expected rms error over land falls below the
observational noise level at every observation; over the
ocean, this happens after approximately 4-5 days. In our
noise-free model, the total expected rms error eventually
decays to zero: no information is lost and the observational
errors can be eliminated entirely by repeating the observa-
tions as long as necessary for the expected estimation error
to become negligible. This is a result of the fact that our

system is completely observable (Bucy and Joseph, 1968,

Ch. 3 and Ch. 5).
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Components of the actual rms error in the estimation of
an individual realization of our system, with given initial
data X, and observation error‘{gk: k=1,2,...}, appear in
Fig. 3a. The corresponding components of relative m-s error,
nfk - %kﬂz/trace Pk + where lyl is the length of the vector Yy .
are given in Fig. 3b. For a different random choice of X
_and sequence Ek » the same plots appear in Figs. 3c, 3d.

It is easy to see that the rms error in an individual
realization decreases to the observational noise level in
about the same time as its expected value (compare Fig. 3a and 3c
with Fig. 2c). After that time, however, it continues to
fluctuate near zerb, rather than decaying monotonically to
zero. Our experimental results (Figs. 3b,d) show that the
spread of individual estimation errors about their expected
value is not too large. It would be interesting, in general,
to know a priori how large this spread is expected to be, and
we intend to study this question further.

We show in Fig. 4 the actual time histories at a number of
grid points for the estimated solution corresponding to the
realization in Figs. 3a,b; Q4 is shown in Fig. 4a, G in Fig. 4b
and 3 in Fig. 4c. We chose to show a point on the West Coast
of the continent, labeled SF (for San Francisco), one on the
East Coast, labeled NY (for New York), and one in the middle
of the ocean, labeled HA (for Hawaii). Note that "Tokyo" ‘

= "New York" by periodicity.

294



T iRl LAY LRIt

Ve TT3he

el

RMS ERROR OVER TOTAL REGION

a)

M oeatasartesasiasaadaseadteseslaraaterattaaiala

i v, FHl, @0 TOTRL RERESNs

RMS ERROR OVER TOTAL REGION

Y T ¥ ¥ T ¥ T v T T ¥ v ¥ T

1]

TTTTTTTT

F

5
;Ft

[

[¢]
Nt

P WY

TIRE (BAYS) |

WS ERROA / EXPELTED 83 ERAOR

% 5 -]
TIE [OATSI

THE (BAY3)

3 EFROR / EXFELTED M3 ERROM

fuesied

Fig. 3 Components of the actual root-mean-square (rms) estimation error and the
relative mean-square (m-s) estimation error, for two realizations of the
experiment whose Erms errors appear in Fig. 2. The two realizations
correspond to two different random choices of initial condition xg and
observational noise [y, sampled from the same respective probability

5
ns, with cov

ith covariance matrices Pg and R, respectively.

a) The rms errors for a realization of the run whose Erms errors are given
in Fig. 2. The curves have the same labels, and are plotted on the same

scale, as in Fig. 2.

b) Relative m-s8 errors for the same realization. The three panels give
the ratio of total m-s error over land, ocean, and the entire region,
respectively, to the corresponding expected m-s error.

¢c) Same as Fig. 3a, for a different realization.

d) Same as Fig. 3b, for the run in Fig. 3c. Notice the difference between
Fig. 3a and Fig. 3c: the actual rms estimation error in two realiza-
tions of the filtering process can be quite different. Figs. 3b and 3d
show the variation of the relative m-s error: equality of absolute m-s

error and expected m-g error corresponds to a value of 1 in these figures.
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Fig. 4 Time history of the estimated solution without system noise, at three
locations, labeled HA (for Hawaii, a mid-ocean location), SF (for San
Francisco, a West Coast location), and NY (for New York, an East Coast
location).

a) u-component of velocity; b) v-component of velocity,
c) ¢, the geopotential

Notice the slow waves with a period of approximately 6 days, upon which
are superimposed smaller, fast waves with a period of approximately one-
half day.
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We see that for each curve, small, fast oscdillations
are superimposed on a smooth, slowly varying wave pattern.
The fast oscillations are caused by the ageostrophic
component of the initial error, cf. (3.12 b,c), and of
the observations. They are especially apparent in the
u-component of the estimated solutions. These oscillations’
are partially damped between synoptic times by the dissi-
pativity of the model. ‘

A run identical in every other respect to that in
Fig. 4 was made using the M-filter instead of the K-filter.
The time histories of the corresponding estimates at the same
points are shown in.Figs. 5a,b,c.- They are perfectly smooth,
except for the jumps due to observations, which are rather
large in the SF and NY curves and very small in the HA curve.
In other runs without the B-term (not shown) one had in
particular u = 0 , to within machine accuracy. Notice the
periodicity of approximately 6 days, due to the passage of
the 2-wave we are estimating.

The expected error reduction for the Il-filter (not shown)
was only slightly smaller thaﬁ that for the K-filter. Thus a
slowly varying eétimated solution was obtained without
sacrificing the optimality of the estimate.

We have thus studied error reduction, information
propagation and filtering of fast waves in the perfect model.
We shall turn our attention presently fo the more realistic

model with system noise in it.
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4.2 Estimation in the Presence of System Noise

\

In the previous subsection we saw that, for a perfect
model, the estimation error covariance matrix Pk(+) tends

to zero, and hence so does Ky (Eq. (2.12 b)).

We shall study now the case in which, due to the simultaneous
presence of system noise Q and observation noise R, the gain
matrix K will tend to a nonzero, asymptotic constant valﬁe.
4,2.1 Modeling_of system _noise, We shall

discuss at the beginning our Fformulation

of 0, cf. (3.12a), in particular the choice of the

diagonal matrices Dl and D2 , left open in Sec. 3.4, This
choice has to reflect the error growth properties of

NWP models. The overwhelming dynamical consideration in

this context is the inherent unpredictability of the

atmosphere.

Numerous studies (cf. Lorenz, 1969, and references
therein) have shown that realistic models of the
atmosphere, subject to a small random perturbation, will
evolve in a finite amount of time to a state which is

statistically independent of the corresponding unperturbed

state. This amount of time depends upon the scales of
motion of interest, and for synoptic scale motions is

about two weeks. Unpredictability is a decidedly nonlinear
effect: perturbations at any given scale of motion are
nonlinearly fed into all the scales and eventually grow

enough to completely contaminate the state.
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At that time, forecast efror growth levels off (Phillips,
1976). Energy conservation implies in fact that such leveling
off must occur in a nonlinear realistic model of the atmosphere.

In our linear model, the estimated state % is governed,

in the absence of observations, by

X1 = ¥xp ' k=0,1,2,..., (4.1a)
while X is the atmospheric state, goveined by
§k+l = ‘Y}fk + gk [4 k = 0’1’2'... (4-lb)

In this linear model, %k and Xy will never become actually
uncorrelated when théy start from the same initial state,
%0 =Xy v and hence have the éame mean. However, the
variance of their difference will grow with time due to

the system noise Ek'

We would like to choose Q, i.e., D, and D

1 2 in (3.12a),
so as to have
_ A_ TA_ =AA
trace PN = E(JjN §N) (EN EN) 2§N§N (4.2)

at time N, which would correspond to %, and Xy being

N
uncorrelated. We‘prescribed N, in rough agreement with
predictability estimates, to be N = 10 days. If the model

(4.1a) were conservative, (4.2) would be equivalent to

_ ATI\
trace PN = 2§0§0 -

In fact, we set D1 = YD, D2 = 0,25yD, similarly to Eq. (3.1l2c),

with vy chosen so as to satisfy
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_ ATI\ 4.3
trace PN = 2u§0§0 ’ ( )

and o 0.3. This was easily achieved by trial and error,

since P, evolves simply according to (2.1lb, 2.11d'). We

k
found y=0.028 when At = 30 min.

The reason a = 0.3 was chosen instead of the
a = 1 suggested by predictability theory, cf.
Eg. (4.2), is that trace Pk in the linear, observation-free
model (4.1) continues to grow after time N. It does
actually level off also, as a result of dissipation.
Its leveling-off time, however, is not related to the
predictability limit N and is in fact much larger. Our
attempt to account for loss of prédictability in our
experiments results, therefore, in a choice of Q which,
even with o = 0.3, is considerably larger than the O
which would appear in a nonlinear model.

We expect actually that the estimation-theoretical
framework, applied to experiments with a nonlinear model,
will lead to new insights into the nature of atmospheric
predictability. One possible approach is the adaptive
determination of Q, in which Q is actually determined from
the observations themselves (Chin, 1979:

Ohap and Stubberud, 1976).

4.2.2 Numerical resuitso Having prescribed 0, we turn now
to the actual experiments with a noisy system. Fig. 6 shows
the expected rms error for a run with the K-filter. As in
Fig. 2, (a) showé “land”, (b) the "ocean", and (c) the

entire region.
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At the first synoptic time, the total expected rms error
(T) over land drops below the observational error level, which
in our nondimensional units is 0.088. It grows much more sharply
between synoptic times than in Fig. 2a, due to the presence
of system noise, which is added to the error advected from
the ocean. However, the estimation error just after each
synoptic time is smaller than just after the previous synoptic
time; the same is true, moreover,of the error just before
successive synoptic times.

The monotone decrease of the components of (trace Pk(—))l/z,

as well as those of (trace P (+))l/2, from one synoptic period
to the next is even more striking in Figs. 6b,c. We notice,
however, that in contradistinction to Figs. 2b,c, neither the
total error (T) over the ocean, nor that over the entire region
ever drop below the observational error level. The expected rms
errors now increase between synoptic times instead of decreas-
ing: the effect of the system noise £ is stronger than the
effect of dissipation in V.

What does happen is that the expected rms errors very
quickly settle into an asymptotically periodic pattern
with the synoptic interval of 12 h as the period.
The convergence occurs within 1-2 days over land, and within
4-5 days over the ocean. In particular, the values of
trace Pk(i) at synoptic times tend to a constant. This
leads us to suspect that in fact the matrices P, (+) them-

selves, and hence the filter Kk’ tend to a constant.
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This figure and the following ones show the properties of the estimated

algorithm (2.11) in the presence of system noise, @ ¥ 0. This figure gives
the Erms estimation error, and is homologous to Fig. 2. Notice the sharper
increase of error over land between synoptic times, and the convergence of

each curve to a periodic, nonzero function.
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of all entries of the gain matrix K as a function of time
confirmed our conjecture. Moreover, the
asymptotic matrix K_ , to which K, tends, is banded. Recall
that P is an n x n matrix, with n=23M= 48, His a p X n
matrix, with p = n/2 = 24, and R is p x p:
Pz : Pz—o .
P=|-—- —--- , H=(110]. (4.4a)
Poz 1 Po

Here PZ is the submatrix of the auto-covariances for estima-

tion errors over land, PE

errors over the ocean, Pg = Po , while Pl-o is the cross-

Pz ' Po the autocovariance of

covariance of errors over land and over the ocean, with

T
Po—z = Pl-o . By (2.12b) and (4.4a),
-1
P,Q,R
K = _1 14 (4-4b)
P,..gR

which is n X p.

All entries away from the diagonal of the upper block
in K, become rapidly smaller with distance from the diagonal. Period-
icity in ¥ 1leads to the appearance of a few larger elements

in the corners of both blocks, the upper and the lower.
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To visualize better the behavior of K, in time and to
study the structure of K , we considered contour plots’of
the elements of K (not shown), and selected cross-sections
of these plots. The cross-sections correspond to the

influence functions of observations at the selected location.

In other words, they show the weight given to an observation
at such a location when updating a point situated a certain
distance away from it.

The chosen locations, or "upper-air stations”, were
SF, SL (for Saint Louis) and NY. There is no influence function
for mid-ocean points, like HA, since no observations are made
there. Cross-sections were plotted at every synoptic time,
i.e;g every 24 time steps. It was clear that convergence
occurred within 4-5 days, as it did for trace P, over the
entire region.

Figs.7 shows the influence functions for the selected
locations at the end of day 10. Fig. 7a marked (u-u) gives
the influence of a u observation at the selected stations
on u updates at any grid point in the L-domain. Fig. 7b,
marked (u-v), gives the weight of a v observation at a
station in a u update at every grid point, and so on:

Fig. 7i gives the influence of v on ¢.
All the weighting coefficients involving u are rather

small (Figs. 7a,b,c,e,h). This is due to our choice of the
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and NY (see Fig. 4). These functions are simply cross-sections of the K-B
algorithm's gain matrix K at day 10. They correspond to the weight given an
observation at station SF, say, when making a correction to the forecast field at
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system noise covariance matrix Q: its y-components were
chosen small, cf. (3.12a) and the 4-to-1 ratio of Dy to D,.
This choice entails relatively good predictions of u, which

have to be corrected only to a small extent by the observations. The
(u-u) coefficients (Fig. 7a) are the largest of the coefficients
involving u; they still do not exceed 0.125. The (u-u) influence
functions are approximately equal for SF, SL and NY, positive

and symmetric in the E-W direction. They are the only ones

to have the latter properties.

The influence function for (¢=¢) centered at SL is the
smallest one shown in Fig. 7g. It is positive over land,
becoming nearly zero at SF and NY and slightly negative out
into the ocean. The relative small size and symmetry of
this function is due to its station, SL, being located
in the middle of a data-dense region: neighboring stations
receive almost equal weights and advection plays but a small role.

The peaks of the (¢-¢) influence functions centered at
NY and at SF are éonsiderably higher than the SI peak. This
is due to the absence of observations on the ocean side of
these stations. 1In fact, the peak for the SF influence func-
tion is slightly higher than the NY peak. Moreover, the former
is located one grid point West of SF, rather than at SF itself,

while the NY peak is at NY. Both data density and advection

thus play a role.
It makes sense for the point upstream of SF to give even

more weight to SF information than SF itself: SF is closer
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to inland points and their information is also weighted heavily.
Due to the advection of error, the forecast error at synoptic
time for this ocean point is considerably larger than that for
the point downstream from New York, although they are equi-
distant from land. Hence the larger weight given to adjacent
land observations for the Pacific point than for the Atlantic
point.

As in Fig. 79, the (v-v), (v=¢) and (¢-v) influence

functions (Figs. 7d4,f,i) all show strong inhomogeneity-

differences between the SF, SL and NY functions, as well

as anisotropy-differences in the East and the West direction.
The SL function for (w¢) and (¢~v) isg verf nearly
antisymmetric; This antisymmetry reminds us of the saﬁe

feature being exhibited by the (v=¢) and (¢~v) correlations

in Schlatter (1975, Fig. 3). The latter were based on assump-
tions of geostrophy and verified against the network of U. S.
radiosonde stations.

Notice from (4.4) that P_(+) and K_ have similar
symmetry properties, since we took R to be diagonal. The
diagqnal elements of R-l simply multiply the columns of P, and
Po—z , Yielding the influence functions in Fig. 7. Hence it is
legitimate to compare the symmetry properties of the asymptotic
influence functions in the case at hand with those of the
steady~state covariance matrices in some current objective

analysis schemes,
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Oour (v=¢) and (¢-v) influence functions for SF and NY,
however, are far from being antisymmetric: they do not even
equal zero at SF or NY, respectively. We conclude that it is
reasonable to use the geostrophy assumption for wind-height
correlations (cf. also Bergman, 197%) in data~dense regions,
where the estimation error covariance, i.e., the covariance
of forecast-minus-~observed fields, is nearly homogeneous
and isotropic. Close to the borderline of data-dense and
data-poor regions, this assumption will seriously distort
the optimal weighting coefficients.

In fact, the influence functions determined by the
filtering procedure at the first synoptic time (Fig. 8)
are either perfectly svmmetric ({(u-u), {(v-v) and ($-4}}) at
SL, or perfectly antisymmetric Ffor that station (all sixz
wind-wind and wind-height cross-sections). Furthermore,
in all nine panels of Fig. 8, the influence function of NY
is either the mirror image {{u-u}, {(v-v) and (¢-d)) of
the one of SF, or the inverted mirroy image thereof
{(all other cross—-sections).

The comparison of Fig. 8 with Fig. 7 allows us to
distinguish between the effect of inhomogeneous data density
and the effect of advection on the optimal K-B filter.

Fig. 8 shows the effect of data distribution only, since

at the first synoptic time no information has been advected
yvet from previous data insertions. Fig. 7 shows the combination
of the two effects.

Different data densities result in different influence

functions according to station location (Fig. 8): stations
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Fig. 8 Same as Fig. 7, but for K used at the first synoptic time.

here are much more symmetric than in Fig. 7.
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located in sharp gradients of observation availability, such

as SF and NY, have more influence than inland stations (SL);
their influence out to sea is also greater than their

influence inland. It is advection, however, which leads

to the difference between the influence functions of

stations on the West Coast (SF) and East Coast of continents
(NY = Tokyo). The latter difference was discussed in connection
with Fig. 7g, and can also be found in Figs. 7d4,f,1i.

4.2.4 Asymptotic_filter: results_

We used the gain matrix K at day 10 from this run
as a time-invariant gain matrix fo; another run which
was otherwise‘identical to the previous one. This
matrix is a very good approximation to the exact asymptotic
filter X ., Estimation errors after 1-2 days were practically
indistinguishable from those obtained when using the
time-varying K-B filter, Kk‘ There is therefore no need,
in our constant-coefficient system, to compute the filter K
at every synoptic time: the approximate computation of the
asymptotic filter K_ once and for all is sufficient for any
practical purposes. Fu:thermore, K, is independent of Pye As
indicated in Sec. 4.3, it depends only on ¥, Q and R.

The asymptotic filter is sometimes called the Wiener
filter (W-filter). Wiener (1949) in fact solved the
estimation problem for stationary time series, using all
past information. It was the contribution of Kalman (1960)

to devise a practical sequential filter for stochastic
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processes governed by differential equations and using only
past information over a finite time interval.

The individual rms errors in estimation for the
K-filter run with system noise, as well as for the W-filter
run (not shown), are even noisier than those in Fig. 3.
We plotted the ratios of individual m-s errors to the expected
m-s error (given in Fig. 6). A comparison of these ratios with
Figs. 3b,d showed that the system noise between observations
causes fluctuations of higher frequency than did the observa-
tional noise alone in the perfect model. The same remarks
as in Sec. 4.1 about the actual spread of estimation errors
around their mean apply.
histories of the estimated solution at HA, SF and NY.
System noise clearly excites the fast, inertia-gravity waves
in the solution even more than observational noise alone did
in Fig. 4. The time histories for a run with the NI-filter,
instead of the K-filter, are shown in Fig. 10. Clearly the
fast waves have been removed, and the evolution of the
estimated solution is perfectly smooth.

Expected rms errors (not shown) with the T-filter were, for the
v- and ¢-components, almost indistinguishable from those with
the K-filter. Expected rms errors for the u-component, however,
were significantly greater in the case of the IlI-filter: after
10 days, they were about twice the corresponding errors with
the K-filter. This is still well below the level of observa-

tional noise, though.

312



PHI

[ et
a

o

@

D ENOOMBENONLADODONHLBD O

i

a

i

i
[ N S |
M o

o O

| I B |
M N OMN OO WO N

I
fee]

{
o
o

TIME (DAYS)

Fig. 9 Same as Fig. 4, but for @ # 0. The fast oscillations are larger than in
the noise free case.

313



- bk b et b s s

R

N ON L OO ONPOO DNOOHBNONDPRIRDIONLD O

]

Jnn)i,anaxjgl'&n«na

Al
(NS B

Al

TIHME (DAYS]

10

Fig.10 Same as Fig. 9, but for a run using the [-filter, rather than the K-filter.

314

The fast oscillations have been eliminated.



The larger u-component errors for the H—filger are
explained by the fact that the I-filter allows almost no
observational correction to be performed on the u~components:
our slow wave subspace R has very small u-components
(cf. Eq. (3.11)). The estimation errors in u produced by
the system noise 4 cannot be counteracted therefore by
the observations.

A run with the asymptotic form of the I-filter, which
is simply IIK_ , gave practically the same results as the

M-filter itself.



4.3 Theoretical Analysis of the Scalar Case

In order to help explain some of the qualitative
features of the numerical results in Sec. 4.1 and 4.2,
we perform an asymptotic analysis of the filtering
equations for a scalar state x. The matrices of interest
will now actually be scalars, and we assume ¥ # 0,
H=1,Q>0, R>0, and Py > 0. The positivity
assumptions on Q, R, and P0 are due to the fact that
they are variances. We assume furthermore that the
observation is performed only every r time steps; in the
numerical experiments reported herein we would have
r = 24, as At = 30 min. and observations are taken at

the standard 12 hour synoptic intervals.

The filtering algorithm (2.11) yields in this case

P (-) = v (+) +0Q, (4.5a)

Pk(')R/(Pk(") + R) , when k=jrl j=11213,...,

Pk(+) = (4. 5b)
Pk(-) , otherwise,
Kjr = Pjr(+)/R. (4.5¢c)
From Eg. (4.5b), one immediately finds that
Pjr(+) < min {Pjr(-), R}, (4-5df
an analogue of Eq. (2.3b). 1In particular, the estimation

error variance drops below the observational noise level

at each observation time, although it may grow in between
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observation times.

Defining Sj ’

j o=

to be the estimation error variance after the jt

tion, and the quantities

Egs.

equation for Sj:

S. = g(S. ,
3 g 3_1)
where
(As + BO)R
g(s) = —————
As +BQ+ R

To determine the asymptotic behavior of

0,1,2,...,4

h observa-

(4.5a,b) can be converted into a nonlinear difference

(4.6a)

(4.6Db)

Eq. (4.6, and

hence of the filter K, we now distinguish between the two

cases Q = 0 and Q > 0.

0 = 0, the solution of (4.6) may be written

A?(A—l)soR
S, = : , if |¥| #
J A(A3-1)80 + (&-1}R
or
SR
ERECrEE i Je) -
As j 44w, therefore,

In the case of a perfect model,

explicitly as

1, (4.7a)
1. (4.7b)
1, (4.7c)



1 .
85 (1 - 2R, if |¥| > 1. (4.74)

Eq. (4.7c) states that for stable dynamics, i.e.,
IWI < 1, the estimation error variance, and hence the
filter Kjr = Sj/R, always tend to zero. System (3.1)
itself is conservative, while our difference scheme (3.6)
is dissipative. Hence all eigenvalueé of the difference
scheme matrix V¥ have modulus less than or equal to unity.
We are thus in the stable case (4.7c) and it is only to
be expected that our estimation error covariance matrices
and filter Kk approach zero in the absence of system noise.
This is in accordance with our discussion of Fig. 2
in Sec. 4.1.

We wish to determine now the asymptotic nature of Sj
in the case Q > 0, i.e., in case system noise is present.

The quadratic équation
s = g(s) (4.8)

has a positive discriminant, hence it has real roots.
Its free term is negative, hence the roots are of opposite
sign. Let S denote the unique positive root of (4.8).

Notice that

dg/ds = AR?/(As+BQ+R)2 > 0 .

Therefore g(s) is a monotone increasing function of s,

with g(0) > 0, while its derivative is monotone decreasing

318



and tending to zero as s =+ 4=, It follows that the root

3

ST of (4.8) is approached monotonically by the soclutions
of the recursion (4.6a) (Isaacson and Keller, 1966, Ch. 3.1,
Fig. 2a),

Sj - S+ as 3 +» + «

If S, is greater than (less than) S+ , then Sj will

0

decrease (increase) monctonically to §, . Since Kjrz Sj/Rg

we have also

Kip > S,/R as j + + =,

the convergence being monotone as well. This is in
accordance with the monotone decrease of trace Pjv(+)
in Fig. ©: in fact Pjr(ﬁ} decreases also monotonically.

Furthermore, S+ is independent of SO = ?O ; and hence the

asymptotic filter K = 5,/R is independent of P as well.

To find an approximate value for S+ ., we now assume that

< 1 and ¥ >> 1, so that A = WZr << 1. Then the quadratic

z

] v

term in Bg. (4.8) is negligible and we have, approximately,

g = —9R (4.9a)

oo+ (1-v9R
it follows in general, by analogy with (2.3b) and (4.5d4), that

s, < min {R, 0/(1-¥")} ,

at least approximately. In particular, when the observational

(€]

o

W0



error variance R is small enough, so that
2
(1-¥°)R << Q , (4.9b)

then S+ is roughly equal to R, and the size of Q has little
influence. If, on the other hand, the observational error

variance is large enough so that

Q << (1L-¥%)R , (4.9¢)

then S+ is roughly proportional to Q, and the size of R
has little influence.

The two extreme cases (4.9b,c) explain much of the
qualitative nature of the results in Sec. 4.2. 1Indeed,

a matrix version of Eg. {(4.9b) is sétisfied over land,
and we see that the expected m-s errors at observation
times are approximately equal to the observational error
variances. In fact, they are slightly smaller than R ;
this is in accordance with (4.5d), as well as (4.9a,b).
It also agrees with operational experience, as stated
in Sec. 3.4.

Over the ocean, we can write R = » , so that a matrix
version of (4.9c) is satisfied. Experiments with different
magnitudes of Q (not shown), have confirmed that the size
of Q is indeed the determining factor in the size of P
over the ocean. This also agrees with operational experi-
ence: analysis error in data-poor regions is essentially
equal to the error in forecasts from one analysis time

(synoptic or subsynoptic) to the next.
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The asymptotic properties of P and K discussed above
have counterparts in the full, vector-matrix case, under

the assumptions of complete observability and complete

controllability. These assumptions concern properties

of the matrices Y and H; they are satisfied for our model.
The interested reader is referred to Bucy and Joseph
(1968, Ch. 5) and to Jazwinski (1970, Sec. 7.6} for a full

discussion of the general results.
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5. CONCLUDING REMARKS

We have shown the ways in which the concepts and

formalism of sequential estimation theory are relevant to

the 4-D assimilation of meteorological data, by applying
them to a simple model. The stochastic-dynamic modei

used for the illustration of the theory was governed by
the linear shallow-water equations, including the B-effect
of latitudinal changes in planetary vorticity. The
dynamics of this model are similar to those of operational
NWP models in that they admit as solutions slow,
quasi-geostrophic Rossby waves, as well as fast
inertia-gravity waves.

We have modified the standard Kalman-Bucy (XK-B) filter
in order to obtain optimal estimates of the slow, meteorologically
significant waves, while eliminating entirely the fast,
undesirable waves. In this way, our modified K-B filter

achieves simultaneously the optimal 4-D assimilation of data

and the initialization of model states for the purpose of

noise-free forecasts.

It was shown that the optimalkfilter for the linear
problem converges rapidly to an asymptotic matrix, the
Wiener filter. Furthermore, the asymptotic filter (W-filter)
performs néarly as well as the exact, time~varying filter
(K-B filter). The Wiener filter depends on'system dynamics

¥, observational pattern H, system noise covariance Q and
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observational noise covariance R; it does not depend on the
initial errors, PO. The rapid convergence and good performance
of the W~filter for the linear problem hold hope for the
filtering of nonlinear problems with similar dynamic and
stochastic properties.

Nonlinear estimation theory is not completely understood
mathematically, at least not in a practically applicable
form. The filter which is most widely used in engineering
applications is the extended K-B filter (EKF: Bucy and Joseph,
1968, Ch. 8; Gelb, 1974, Ch. 6; Jazwinski, 1970, Ch. ©
and Ch. 9). The principle of the EKF is simple: linearize
the problem around an estimated state, and apply the
corresponding linear filter over a time interval, T say,
over which ﬁhe soclution of the nonlinear problem is not
expected to change much. In large-scale NWP this time could
equal 6 h to 24 h. After time T, relinearize around the new
state and proceed. Clearly, T is limited by the dynamics
of the system in the problem. When choosing T, a trade-off
between accuracy and expediency has to be made.

The EKF gives good results when the true characteristic
correlation time T of the perturbations, which we model
as white noise, i.e., T = 0, is actually short compared to T,
T << T, This is certainly thebcase in NWP, Moreover, it
appears from our experience with linear problems that:

a) the asymptotic filter for each one of the successive
linearizations will work sufficiently well, and there is no
need to compute time-varying filters over a time interval T;
b) the dependence of the W-filter on (linear) system

dynamics ¥ is rather weak.



We conclude that the W-filter for the succeeding T-interval
will be easily computable from the W-filter valid over the
preceding T-interval by a pertufbation procedure.

It is more realistic in NWP to let the observation matrix
H be a function of time, H = H(t), rather than a constant.
Different observations are made at the synoptic times,

0000 GMT and 1200 GMT, the subsynoptic times, 0600 GMT and
1800 GMT, and in between. The distribution of observations,
however, is not too far from being time-periodic. Let H* (t)
be a periodic matrix function of time, with period 24 h,

and assume that the actual observation matrix, H(t), differs
from H*(t) at every t only by a matrix of small rank, i.e.,
oniy by thé presence, absence or location of relatively

few observations.

The asymptotic filter corresponding to (¥(t),H”(t)),
K*(t) say, should also be periodic, with a period of 24 h,
rather than constant. We expect some easily computed modi-
fication of K*(t) to be a good approximation to the optimal
filter for (¥(t),H(t)). We plan to study, therefore,

time-periodic observation patterns and their modifications.

Sequential estimation accounts explicitly for the fact
that the system whose state we wish to estimate is governed
by certain dynamics. It is this aspect of the theory which
distinguishes it from the so-called "optimal interpolation”
currently used in operational NWP. The latter essentially

assumes that the system obeys trivial dynamics, ¥ = I.
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We saw already that taking into account the dynamics
allowed us to unify the assimilation and intialization
aspects of preparing initial data for numerical wéather
forecasts. Furthermore, it allows us to account in a

systematic way for the advection of information from data-rich

to data-poor areas, and of "negative information", i.e.,
large errors, from data-poor to data-rich regions.

In particular, the theory shows that weighting
coefficients for observations should be skewed in the
direction of the prevailing winds, with larger weights
upstream; the amount of skewness should depend on average
wind intensity, i.e., on season. Also weights used on
the Western edge of the continents should be different
from those used on the Eastern edge. The present results
on the anisotropy and inhomogeneity of estimation error
structure in the zonal direction should also be supplemented
by the results on inhomogeneity in the latitudinal direc-
tion of Ghil et al. (1980). It is this aspect of the
theory which we expect to have the largest impact in terms
of improving operational procedures.

One further aspect of the theory merits attention: the
covariance matrices Q0 and R do not need to be prescribed
a priori. They can be determined in the estimation process
itgself (e.g., Chin, 1979; Ohap and Stubberud, 1976) by using an
adaptive filter. The determination of system noise would
have important consequences for predictability theory, as
well as for stochastic modifications of numerical schemes
(Faller and Schemm, 1977). The determination of observational

noise, eliminating the well known problem of "ground truth",
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would also help greatly in improving operational objective

analysis and data assimilation.
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Appendix A. List of Major' Symbols

cém) for sblutions of the continuous system (3.1), the three
phase speeds, m = 1,2,3, corresponding to wave number &,
as defined by Eq. (3.3b). The same notation is used for
the phase speeds of solutions of the discrete system
(3.6), which agree with the phase speeds of solutions of
the continuous system to order (At)?.

E expectation, or ensemble averaging, operator

£ Coriolis parameter, £ = 10 %s™L 2 29 sin 45°

G fast wave subspace

g gravitational acceleration constant of the Earth

H ' observation matrix; defines the observed linear
combinations of state variables

.| superscript indicating the spatial grid point, xj = jAx

K Kalman gain matrix, defined by (2.1llc¢)

k subscript indicating the time, ty = kAt

L length of thé computational domain, about half the
circumference of the Earth at 45°N |

[} wave number; L/27 is an integer

M number of grid points in the L-~domain

n number of state variables, n = 3M; the

dimension of x

Pk(u) estimation error covariance matrix just prior to
observations at time k

Py (+) estimation error covariance matrix just after

observations. at time k
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p number of observations at a synoptic time;

the dimension of z

Q covariance matrix of the system noise

R slow wave subspace

R covariance matrix of the observational noise

t time

At temporal increment in the discrete system (3.6)

U mean zonal wind component in the linearization of (3.2)
u perturbation zonal wind component

7 perturbation meridional wind component

max initial amplitude of v

W a solution (u,vi¢)T of the continuous system (3.1)

@; a’solution (ua,vg,¢£) of the discrete system (3.6)
% distance along the spatial L-domain
Ax spatial increment in the discrete system (3.6)
"true" atmospheric state given by the stochastic model (2.5)
k(-=-) estimated atmospheric state just prior to observations
at time k
%k(+) estimated atmospheric state just after observations

at time k

z vector of observations, given by (2.6)

g observational noise, or random part of the observation
model (2.6)

£ system noise, or random part of the atmospheric model (2.55

I orthogonal projection operator onto the slow wave

subspace R
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mean geopotential at 45°N in the linearization of (3.2),
i.e., g times the mean equivalent atmospheric height

at 45°N

perturbation geopotentiai

initial amplitude of ¢

matrix defining the atmospheric dynamics, given for our
model by Eqs. (3.6)

angular rate of rotation of the Earth
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