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ABSTRACT

In recent years, there has been increasing interest in the use of
normal mode techniques in numerical weather prediction. Most of
this interest has been generated by the success of these techniques
when applied to the long-standing problem of the initialization of
primitive equation models. However, the model normal mode methodol-
ogy also has potential as a diagnostic tool for understanding the

behavior of primitive equation models.

In the following sections, we will review recent developments in
this field. We will progress logically through the construction of
the model normal modes, their properties and their use in initial-
ization procedures. We will also discuss the relationship of normal
mode initialization to quasi-geostrophic theory and outline the con-

cept of the slow manifold.
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1. INTRODUCTION

Primitive equation models, unlike quasi-geostrophic models, generally
admit high frequency gravity wave solutions, as well as the slower
moving Rossby wave solutions. Although there are gravity waves in
the atmosphere, they are generally of much smaller amplitude than
the gravity waves which appear in primitive equation models. Since
it is primarily the low frequency part of the flow which is of inter
est, model gravity modes are at best a nuisance and at worst can
seriously compromise the forecast procedure. First of all, gravity
waves generally require short computational timesteps; secondly,
they can interfere seriously with very short period forecasts (< 12
hours); and thirdly, they can impair the precipitation and vertical
motion calculations. Consequently, it is advantageous if they can

be suppressed from PE model integrations.

Gravity wave oscillations arise primarily from initial imbalances
between the wind and mass fields. These imbalances exist partially
because the observed or analyzed mass and wind fields contain error
and partially because the model equations do not exactly describe
the atmosphere. Gravity wave oscillations can be controlled to some
extent by the addition of time or space dissipation terms to the
model equations. However, the primary way of suppressing gravity
waves is by balancing the initial state through an initialization

procedure.

Classical static initialization procedures such as the linear and
non-linear balance equations and variational techniques have been
widely used. Dynamic initialization procedures, in which the model
equations are integrated forward and backward in time with large
damping factors, have succeeded in suppressing many of the gravity
waves. However, like the classical static techniques they have not

worked well for the larger scales or in the tropics.

The use of model normal modes for initialization i1s attractive be-
cause the normal modes each have an associated frequency and onecan,
in principle, suppress only the high frequency gravity modes.
Flattery (1970) developed an analysis/initialization procedure based
on the Laplace tidal equations. Williamson (1976) and Williamson

and Dickinson (197€¢) found the normal modes of the NCAR general
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circulation model. Their initialization procedure simply set the
initial amplitudes of the high frequency gravity modes equal to zero.
This procedure was only partially successful because the initial
projection of the non-linear and forcing terms of the equations onto
these high frequency modes rapidly re-excited them. Machenhauer ‘
(1977) and Baer (1977) independently overcame this problem with
non-linear normal mode initialization which took some account of the
non-linearities. Their procedures have been applied to several dif-

ferent models with considerable success.

In the following sections, we will progress logically through the
construction of the model normal modes, their properties and their
use in initialization procedures. We shall then consider the rela-
tionship of normal mode initialization to quasi-geostrophic theories
aﬁd outline the theory of the slow manifold. We shall then discuss
unresolved problems with normal mode initialization and finish by
briefly covering related applications of model normal modes in numer-

ical weather prediction.

2. THE FORECAST MODEL

The first step in normal mode initialization is to find the free
normal modes of the forecast model. (We shall distinguish between
the free and forced normal mode problems, later.) The model we shall
use here is a baroclinic‘primitive equations model in pressure co-
ordinates. This is a slightly simpler model than the usual sigma
coordinate-model, but the derivation of the normal modes is virtually
the same. The normal mode problem for a pressure coordinate model
was first solved by Flattery (1967), but we shall use an approach
similar to that of Kasahara and Puri (1980). The equations of mo-

tion, thermodynamic and continuity equations for this model are

ov :

T +kx fv+ Ve = RZ (1)

230, Ryw _ ‘

st ap TP "R : (2)

3w

2 +vey =0 | (3)
where
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R, = -_lstyf%Vz*x-:%, (4)
Ry = -y Vg - MER
T = k *Vxuy,
y - -188 _ RT _ar
6 3P cCP oP?
Y* = horizontal average of vy, y' = deviation,

R, Cp P, & are the gas constant, specific heat at constant

pressure, pressure and geopotential,

dp , . .
= —— and k is the vertical unit vector.

dt
The vertical boundary conditions for this model are w = 0 at P = 0,
and w = %% = 0 at the ground (z = 0).
3. LINEARIZATION

The next step in generating the normal modes is to define a basic
state and then linearize the model about it. We will define a very
simple basic state - no flow and with a basic state static stability
Y* which is a function only of P. The structures and frequencies of
the high frequency gravity modes are largely unaffected by the impo-
sition of & more realistic basic state (see Kasahara, 1980). Since,
in the initialization problem, it is the high frequency modes which

are of primary concern, a basic state at rest is sufficient.

We shall write the model equations in spherical polar coordinates
with the linearized terms on the left hand side and the non-linear

terms on the right hand side:

du . 1 3% _

P 20 sind v +a————cos¢ S Ru (5)
av . 109 _

et 2Qsindu +—;—-—¢ = Rv (6)



3t 3P P ) (7)

9w 1 du 9

—_— + — 2 = .

0P  acosd A+3¢VC°S¢ = 0 (8)
where a = earth radius, @ = earth rotation rate, A, ¢ longitude
and latitude, and u, v = zonal and meridional velocity components.

The linearized forms

R. = R, = 0.

We can eliminate the

form of equation (7)

2 03 P 301 [Bu,d _
ot 9P RY* 3P  acosd |3 A acbvcosd) = 0.
4. THE VERTICAL STRUCTURE EQUATION

of the equations are obtained by setting Ru =

variable w by differentiating the linearized

with respect to P and introducing equation (8).

(9)

We will now attempt to separate the horizontal and vertical depen-

dence of the linearized equations (5, 6 and 9) by assuming that the

dependent model variables u, v and ¢ can be written as follows:

up =14, ¢, t)

vi=}lv0G, ¢, t) | Z(P) (10)

Sd =13, ¢, t)
where Z(P) gives the vertical structure and ﬁ, v and & give the
horizontal and temporal structure. Using the normal techniques of
separation of variables, Eqs. 5, 6 and 9 (with Ru = RV = R® = 0) can
be written as three horizontal equations

38 -~ 2Q0sin¢ ¥+ ﬁ’— 0

9t M cos¢d A (11)

3% + ZQsin¢G+l§§—0

3t a 3¢ (12)

3% g |ad , 9 .

ot acos ¢ ——>\+ﬂvcos¢ =0 (13)

and a vertical structure equation which is a function of P only
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[«%
jav]

+-g%=0 (14)

where g is the gravitational constant, H is called the equivalent
depth and (gﬁ)~1 is the separation constant. We note that Eqs. (11 -
13) are analagous to the linearized shallow water equations of a

fluid with mean depth ﬁ, a fact first noted by Taylor (1936).

5. THE HORIZONTAL STRUCTURE EQUATION
The horizontal equations can be further separated by assuming an ex-
ponential behavior in time and longitude. Thus
A i)
u u
g1 =11 " exp(imA - 2R i0t) (15)
3 20 am

where m is the zonal wavenumber, ¢ is a non-dimensional frequency

and i = /—1. Substituting expansion (15) into Egs. (11 - 13) gives

2m

o™ = -—sin(b\’}m+—n—l-g—-— (16)

acos ¢

Al , I 1 9 o™
== — e s memm—— 17
ov sin ¢ U 2 3% (17)

7~ ﬁ AT 2 m

gem = —pBl + ¢ } 18
4923COS¢) mu aq)v cos Q@ ( )

The elimination of 4™ and V" between Eqs. (16, 17 and 18) leads to

the so-called horizontal structure equation

49232 am
H(™) + o F o = 0 (19)
where
_ l 3 cos ¢ 1 m (c? + 51n o) m? |
o= ¢ 99 [ sin” ¢ Scb] 0% - sin® ¢ lo (0° - sin® @) " cosZ ¢ ')

is known as the horizontal structure operator.

Equation (14) - the vertical structure equation and Equation (19)

are eigenvalue problems. The eigenvalue for the vertical structure
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equation is (gﬁ)_l while the eigenvalue for the horizontal problem
is the frequency ¢. We shall distinguish here between the forced
and free normal mode problems. In the forced problem, a forcing
function and forcing frequency o are imposed. In this case the
horizontal equation (with o specified) is solved to find the equiva-
lent depth H and then this H is inserted in equation (14) to find

the vertical structure.

It is the free normal mode problem which is of interest here. In
the free case, the vertical structure equation is solved first to
obtain a set of vertical eigenvectors each with associated equiva-
lent depth H. We then have one horizontal eigenvalue problem to
solve for each equivalent depth. In principle, with H thus speci-
fied, we can solve the horizontal structure equation (14) obtaining
a set of horizontal eigenvectors, each with an associated eigen-
frequency o. In practice, it is easier to solve the eigenvalue
problem defined by equations (16 - 18) - which is equivalent to
equation (19). This is because the eigenvalue 0 appears in a com-

plicated form in euqation (19).

6. BOUNDARY CONDITIONS

Before going on to discuss the solution of the vertical and hori-
zontal structure equations, we must first discuss the spatial bound-

ary conditions for these equations.

In the horizontal, we have assumed spherical polar geometry and
there are no boundary conditions. In the case of a limited domain
model, we would of course need boundary conditions for equations
(16 - 18),

In the vertical, we need boundary conditions on Z at the top and
bottom of the atmosphere. We will make use of the vertical boundary
conditions discussed earlier, w = 0 at P = 0, and w = 0 at the

ground.

At the top, we have from the thermodynamic equation (7) that

(s3]
[aN]

0 at P =0 (20)

Q
+d
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We can find the appropriate condition on Z at the ground as follows.

We know that at the earth's surface (in the absence of topography)

w = 0

T dr

Linearizing and using the hydrostatic equation, we find
= 0

where Po is the mean pressure at the ground, from which it can be

shown that

3z L yT o_ g | 21
5p Tx = O 1)
where T* = horizontally averaged temperature at the ground.

7. VERTICAL STRUCTURE FUNCTIONS

The vertical structure equation (14) and horizontal structure equa-
tions (16 - 18) are converted into algebraic eigenvalue problems by
discretization. We shall concentrate on the discretization of the

vertical structure equation, as it is more straightforward.

Most NWP models use a gridpoint representation in the vertical.
Equation (14) with boundary conditions (21 and 22) would be solved
using exactly the same vertical levels and finite-differencirg used
in the models. Imagine that the model uses 2nd crder centered dif-
ferencing and has L vertical levels with £ = 1, L ranging from the
top to the bottom of the models, We would then find that equation
(14) would have a finite difference representation for an arbitrary

level % as follows:

: 2 [, 20 -2 20 -zen|,zom
(BBg + BPpy) | P32 bFp4 2% APy §  eH
(22)
where
A P2 = difference of pressure between levels,
Z2(2) = wvalue of Z at level &,
BM_I/2 = PSH_I/Q/R‘\(;{_}_I/2 and % indicates half level.
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All other levels would be similar except £ = 1 and & = L where the
boundary conditions (20 « 21) would be used, This particular dis-
cretization is_that used by Kasahara and Puri (1980). Other finite
difference or finite element discretizations are given in Kasahara

(1976), Daley (1979), and Temperton and Williamson (1979).

After discretization, equation (14) with boundary conditions (20 -

21) appears as the following algebraic eigenvalue problem:
-1
Az+ (gH) "z = 0 (23)
where

Z is the column vector of Z(4),

A is the matriz of finite difference coefficients defined in

equat?on (22).

Equationk(zs) can be solved by standard algebraic eigenvalue tech-
niques to give L eigenvectors Zk(p), k = 1 to L, each with an asso-

ciated eigenvalue (equivalent depth) ﬁk'

The vertical eigenvectors and associated equivalent depths for a
typical atmospheric model (Kasahara and Puri, 1980) can be seen in
Figure 1. There are 9 vertical levels and thus 9 eigenmodes. The
vertical levels are indicated roughly as a function of P/PO. The
modes are ordered by decreasing equivalent depth. The gravest ver-
tical mode (equivalent depth = 9750 m) is called the external mode,
the others are called first intermnal, second internal, -etc. The ex-
ternal mode has very little vertical structure. With decreasing
equivalent depth the modes have more and more of their structure

near the ground,.
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Figure 1 - after Kasahara and Puri (1980)
8. HORIZONTAL STRUCTURE FUNCTIONS

As mentioned in Section 5, the next step in the free normal mode
problem is to take each of the L equivalent depths ﬁk’ k =1 to L,
and solve the corresponding horizontal eigenproblem (19) or equa-
tions (16 - 18) for each ﬁk'
The horizontal eigenproblem can be turned into an algebraic eigen-
value problem by discretization. The traditional method for the
spherical case is to expand the dependent variables in a spherical
harmonic series. This ieads to an algebraic eigenvalue problem for
each zonal wavenumber. The solutions to this problem in the limit
of an infinite spherical harmonic expansion are known as the hori-
zontal structure functions or Hough functions (Hough, 1898; Longuet-
Higgins, 1968). With each horizontal structure functions is an as-

sociated real eigenfrequency.

In the present case, however, we are attempting to find the free
normal modes of atmospheric models which have only a finite number
of degrees of freedom. Therefore, we are not interested in the ac-

tual Hough functions themselves, but discrete approximations to
them.

In the case of a spectral model in which a truncated spherical har-
monic expansion is used for the horizontal discretization, the hori-
zontal structure functions would differ only slightly from the true

Hough functions on the large-scale, but would differ appreciably on
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the small scale. In the case of a finite difference model, a finite
difference approximation consistent with the discretization of the
model would be used in the discretization of equations (16 - 18).
The resulting horizontal structure functions would again be similar
to true Hough functions in the large scale, but differ for the small
scale. For limited area models with lateral boundaries, there would

also be boundary modes.

Let us suppose that our model has M zonal (east-west) degrees of
freedom and N meridional (north-south) degrees of freedom. Thus,
there are for each vertical mode k, MN horizontal degrees of freedom
for each of the 3 dependent variables (u, v, @). Thus, there will
be 3 MN horizontal structure functions for each vertical mode, each

having a u, v, & component denoted below
Ak Ak 2k
un(xs ¢)s Vn()\9 ¢), @n()\, d)) l £ n < MN

where n indicates the horizontal mode number. With each of the 3 MN

. . . . . k
horizontal structure functions is an associated eigenfrequency O

Now for the spherical case the modes can be classified by symmetry.

In the symmetric case the modes ﬁﬁ, $§ are symmetric with respect to

the equator, while Oﬁ is anti-symmetric. The symmetric modes would
be the appropriate set for a hemispheric model. There is also an
~k 2k ~k

anti-symmetric set in which u s, @h are anti-symmetric while v is

symmetric.

The horizontal structure functions can also be classified by their
eigenfrequencies. There are basically two classes of modes. The
first class consists of high frequency eastward and westward propa-
gating gravity modes while the second class consists of low frequency

westward propagating Rossby waves.
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It can be noticed from Figure 2 that the magnitudes of the eigen-
frequencies for the gravity mcdesvare much larger than for the Rossby
modes. For smaller equivalent depths, however, the absolute values
of the eigenfrequencies for all modes tend to decrease. This effect
can be seen in Table 1. 1In this table are plotted the non-
dimensional eigenfrequencies for zonal wavenumber 1 for 2 equivalent
depths, 10 km and .1 km. The frequencies of the 5 gravest symmetric
gravity and Rossby modes are shown. The frequencies do not quite
agree with those shown in Figure 2 because they correspond to the
horizontal structure functions of the shallow water spectral model

used by Daley (1978) which was rhomboidally truncated at wavenumber
31.
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Table 1

Non-dimensional Eigenfrequencies

Zonal Wavenumber 1

10 km .1 km

Eastward Westward Rossby Eastward Westward Rossby

Gravity Gravity Gravity Gravity
.3693 -.9066 -.0994 . .0339 -.3121 -.0112
1.2810 -1.3996 -.0406 .3246 -.4770 -.0049
1.9514 -1.9902 -.0215 .4833' -.5931 -.0032
2.6074 -2.6267 -.0131 .5980 ~-.6859 -.0024
3.2676 -3.2792 -.0087 .6903 -.7636 -.0019

It should be noted that some of the gravity modes for the .1 km
equivalent depth have frequencies almost as small as the Rossby

modes with equivalent depth 10 km.
For the spherical model, the Rossby modes for zonal wavenumber 0 are
degenerate in that they have zero eigenvalues. Kasahara (1978) has

considered this problem.

9. NORMAL MODE PROPERTIES

We will designate a particular normal mode using the following nota-

tion:
K
a (A, ¢

T, 9,0 = |9

n
NN A (24)
ak »

3500, 9

for each Hk and eigenfrequency qﬁ.
The HE, being solutions to a linear problem, have an arbitrary am-
plitude. They are orthogonal, however, and can be normalized. We

will write the orthonormality condition using inner product notation

Ak AL 1 2,
< . J = J
i< -fid> 8 o~ (25)
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where 6? is the Kronecker delta. Equation (25) follows from the
fact that the horizontal and vertical structure functions are indi-

vidually orthogonal. Thus
= g
f Z, (®) Z () dP = & (26)

H
ff [fg-’-k (An G;+<}E AIE)+® @ZJ cosdpdddA

We have written these orthogonality conditions as if the vertical

62
n

and horizontal structure functions were analytic. In general,
these structure functions will only be defined at gridpoints and
equations (25 and 26) would be replaced by numerical quadrature ex-

pressions consistent with the model discretization.

Let us define II to be a vector of arbitrary wind and geopotential
fields

[uth, ¢, P)7)

v()\, ¢, P) (27)

®(A, ¢, P)

Then II can be expanded in a series of normal mode functions in the

same way one expands a field in a Fourier series. Thus
1= X 2xk kg, ¢, B (28)
n k &o°n
where
k _ on.0k
Yy = ST, (29)
xg is called the normal mode expansion coefficient. It can be ob-

tained in equation (29) by projecting the data (u, v, &) onto the
horizontal and vertical structure functions appropriate to that mode

and making use of the orthonormality conditions (26).
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10. NORMAL MODE FORM OF MODEL EQUATIONS

We can use equation (29) to write the linearized form of the model

equations (5 - 8) in normal mode form. Thus, with Ru = RV = R® = 0,
we have

k . ko

X, + 201 Gn X = 0, all k, n (30)

where xﬁ is the expansion coefficient corresponding to the normal
mode defined by (kn, n). This equation is produced from the linear-
ized form of equations (5 - 8) simply by multiplying by the appro-
priate horizontal and vertical structure functions and integrating

over the atmosphere as in equation (28).

Let us define X to be the vector of all normal mode expansion co-
efficients, i.e. each xﬁ is a member of X. Our real goal, here, is

to find the normal mode form of the full non-linear equations (Ru,

RV, R® # 0). Let us define RH to be the column vector (analogous
to II in equation 27) of R_, R_, Rgy. Thus,
u v
R (s 9, P)
R = |R.(A, ¢, P) (31)
Ry (A ¢, P)

Ry can be projected onto the normal modes through an expression

analogous to equation (29). Thus the full non-linear form of equa-
tions (5 - 8) can be written in normal mode form as
e N \32)
n n n n
where
RE) = <R« T (33)
n 1l n

Note that since Ru’ Rv, R, are non-linear terms, Ri is therefore a

0
function of all the normal mode expansion coefficients and not

simply of xg. Thus we write RE as a function of the column vector
X defined earlier., We can also write formally an equation for the

vector of normal mode expansion coefficients.
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X = - 200 A X+ R (X) (34)
. b'd X

where AX is a diagonal matrix whose elements are the non-dimensional
. . k . , .
eigenfrequencies o and RX(X) is a short-hand notation for the pro-

jection of the non-linear terms on each of the normal modes in turn.

Equation (34) is a symbolic equation and would haye the same form,

no matter what the original model equations had been.

11. FAST AND SLOW EQUATTONS

The next step is to divide the set of normal modes up into fast

modes and slow modes on the basis of their frequency. For many ap-
plications, it would be sufficient to define the fast modes simply
to be the set of all gravity modes and the slow modes to be the set
of all Rossby modes. Other applications require a more subtle dis-~

tinction between fast and slow modes.

We will refer to the set of fast modes as 7Z and the set of slow
modes as Y. Thus X = Z + Y. We can then re-write the normal mode

form of the equation (34) in terms of a fast equation and a slow

equation.
Z = - 201 h, 2+ Ré(Z, ) (35)
Y = - 20i by ¥ + Ry(Z, ¥) ' (36)

The non-linear projection onto the fast modes R, is a function of

Z

both fast and slow modes, and similarly for RY' In general, the
frequencies AY are small compared with the frequencies AZ.

12. LINEAR INITIALIZATION

We are now ready to consider the initialization problem., Suppose

the model equations were the linearized form of equations (5 - 8),

i.e. with R = R, = Ry = 0. Suppose we wish to eliminate high fre-
quency oscillations (which we identify with the fast modes Z)} from
the model integration. The fast equation for this model, then, is
s ogi A 7.
Z 201 7 Z
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To eliminate fast oscillations for all time, it suffices at initial

time to set

z = 0. ‘ (37)

However, if we have the full non-linear equations (Ru, RV, R® # 0)
then the appropriate fast equation is equation (35). In this case,
setting Z = 0 at t = 0 will not suppress fast oscillations for all

time as they will be re-excited by the non-linear term RZ' This
linear procedure was applied to the non-linear shallow water equa-
tions by Williamson (1976) and it was not capable of eliminating

the fast oscillations.

13, NON-LINEAR INITIALIZATION - MACHENHAUER'S SCHEME

In an experiment performed with the non-linear shallow water equa-
tions, Machenhauer (1977) plotted separately the linear and non-
linear contributions to the time tendencies of particular fast
modes during the integration of the model. Thus, for a particular
fast mode z from the set Z he would plot ZQiOi z and RZ(Z, Y) as a
function of time. We show in Figure 3 a slightly modified version
of Machenhauer's (1977) result.

R.(Z,Y) —2flioyz2 In this diagram is shown the

L T T T T T

time behavior of a particular

fast mode (the gravest gravity

mode of zonal wavenumber 0).

REAL PART
o
?
]
1

Both real and imaginary parts

are shown. The curves on the

left indicate the non-linear

term while those on the right

J\dhﬂAJVA indicate the linear term. It

-

14 L o L . .

g can be seen that the linear

E or 1 T 1 oscillations are large, and in
4

gr 1T T fact, have the same frequency
=

as would be given by the lin-

earized equations. The non-
L L L v L linear term, on the other hand,
0 2 24 0 12 24
HOURS has only a very low amplitude

Figure 3 - after Machenhauer (1977) high frequency oscillation.
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Furthermore, in a time-averaged sense, the linear and non-linear

terms nearly sum to zero.

This suggested to Machenhauer (1977) a scheme whereby the linear and
non-linear terms would be balanced at initial time. This would be

done by setting the initial time tendencies Z in equation (35) equal

to zero at time t = 0. This would give rise to a diagnostic equa-
tion which could be solved for Z. Note, however, that it is a non-
linear equation in Z and requires iteration to convergence. Machen-
hauer's scheme does not change the slow modes Y. The scheme is as
follows. ‘

Step 1 is to apply linear initialization. The subscript indicates

the iteration step.

Z. =0, Y =7Y (38)

3

Step 2 is to set Z = 0 in equation (35)

R ¥O) »
1 201 A (39)
Z
The next step is to repeat Step 2Z except using Z1 instead of ZO.
Thus
_ RZ(le YO)
"2 7 TR0 R, _ (40)

This procedure would be repeated until convergence when the Z on the
left hand side equalled the Z on the right hand side. The final
values of the fast modes Z we will denote ZB’ where the subscript B
stands for balanced. Thus
Ry(Zn, Yp)

SR (41)
Now a non-linear iteration procedure such as this can only be ex-
pected to converge when the non-linear terms RZ are small compared
to the linear terms. This will be the case when the frequencies AZ
are large compared to the slow mode frequencies AY’ Situations

where this 1s not the case will be covered later.
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14. NON-LINEAR INITIALIZATION - THE BAER-TRIBBIA SCHEME

Completely independently of Machenhauer, Baer and Tribbia developed
a non-linear normal mode initialization scheme. This work is cover-
ed in Baer (1977) and Baer and Tribbia (1978). See also Ballish
(1979).

The initialization scheme of Baer and Tribbia is more complex and
difficult to use in practice than that of Machenhauer. However, it

is also more general and powerful than Machenhauer's scheme.

The normal mode form of the model equation (39) has been derived
from the dimensional form of the model equations (1 - 3). The Baer-
Tribbia methodology can be best understood by considering the non-
dimensional form of the original model equations. Thus, if we had
first non-dimensionalized equations (1 - 3) using appropriate length
and time scales, equation (34) could be rewritten in the following

form:

@
=

= - 204 Ax X+ € RX(X) (42)

Q2

t

where € is a parameter which describes the strength of the non-
linearity in the system. If the original model equations had been
the shallow water.equations, for example, then € would correspond to
a Rossby number (ratio of the non-linear to the Coriolis terms).

For the planetary scales € is geﬁerally taken to be small 0(.1).

The analogues of the fast and slow equations (35 and 36) using this

non-dimensionalization are

97 _ . .
3Y _ _oni e Ao Y + € RL(Z, Y) (44)
ot Y RY ’

In these equations, all variables are 0(1) except &. Note that an
€ appears in the linear part of equation (44) because the frequen-
cies Ay and AZ are assumed here to be of order unity whereas in equa-

tions (35 and 36) they were not.

We assume Z and Y are expanded in a power series in €. Thus
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0 1 2
(45)
= 2
Y Y0 f Yl € + Y2 €
We also assume that local time changes g% can be represented by the

sum of local time changes due to a fast time scale T and a slow time

T, namely,

2.3 5 |
3t 5t T Eny (46)
We can now rephrase the initialization problem as follows. Without

changing Y, how can we adjust Z at initial time, so that there are

no fast time oscillations for all time. This requires that g% = 0.

We will omit the details of the analysis which can be seen in Baer
(1977) and Baer and Tribbia (1978) and give the results directly.

Thus to second order in €, the Baer-Tribbia scheme gives

= - 47
Z, 0, ¥, Y (47)
RZ(ZO, YO)
48
Zy miKZ (48)
Z = 1 R (Z., Y )_.Qﬁ
2 - m & %% Yo T3 (49)

where a small approximation has been made in the second term of

equation (49).

The first pass is simply linear initialization. The second pass is
equivalent to the second pass through Machenhauer's scheme. The
third pass is similar to the third pass through Machenhauer's scheme
except for the addition of an extra term. Machenhauer's scheme is
therefore not consistent to second order in €, as the neglected term

%%1 may be of the same order as the retained terms.

The practical difficulty with the Baer-Tribbia technique is in the
evaluation of the term %%1 in equation (49). It is possible, how-
ever, to evaluate this term by differentiating equation (48) with
respect to T and evaluating the result numerically (see Tribbia,

1979). Thus
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97 = 1 lim RZ(YO + Ag@, Zg) - Rz (Yq, Zg) (50)
aT 204 AZ A0 ;)
?l

where 0 is evaluated from equation (44). Ballish (1979) has shown

ot
that the inclusion of this extra term can be important under certain

circumstances.

15, SOME SUCCESSES OF NON-LINEAR NORMAL MODE INITIALIZATION

We shall now demonstrate that non-linear normal mode initialization
"works'" and that the effort expended is justified. We shall concen-
trate on the application of the Machenhauer scheme (Section 13) to
two baroclinic primitive equation models - the ECMWF model and the
Canadian Operational Spectral Model, The results in this section

are taken from Temperton and Williamson (1979) and Daley (1979).

T T T T T T T T T T T T T ¥ T T T T T T T T

996 -
8 994
E
&
5 992
2]
[42]
Wl
@ 990
a
8

288
T
a4
2
¥ 9ge

984

982 allD i L L

-0 6 12 18 24 0 ]
HOURS
Figure 4 - after Temperton and Williamson (1979)
The acid test of any initialization scheme is - does it suppress

high frequency gravity waves? We show in Figure 4 24-hour time
traces of surface pressure at a particular gridpoint of the ECMWF
model before and after linear and non-linear normal mode initializa-
tion. The solid lines (identical in both panels) indicate that
without initialization there were high frequency oscillations of
more than 10 millibars. The dashed line on the left panel indicates

that linear initialization (Section 12) is only partially successful
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in suppressing gravity waves. The dashed line on the right panel
indicates the almost complete success of non-linear normal mode ini-
tialization in eliminating the high frequencies., To put this result
in perspectivé, it should be stated that no other initialization
scheme is capable of such success when applied to a model of the

complexity of the ECMWF model.

o

Q

Figure 5 «~ after Daley (1979)

In addition to their ability to suppress high frequencies, initial-
ization schemes are often required to provide consistent information
to make up for deficiencies in the observation network. For exam-
ple, it is difficult to accurately observe the divergent wind field
or vertical motion, and the present initialization scheme has at
least the possibility of providing this information. Figure 5 is
taken from Daley (1979) and attempts to show the vertical motion
field provided by the application of the Machenhauer scheme to the
Canadian Operational Spectral Model. In the left panel is the sur-
face pressure field and in the right panel is the 850 mb vertical
motion field produced after non-linear initialization. The contours
on the right panel are in mb/hr and U indicates upward motion while
D indicates downward motion. It can be seen that the scheme pro-
duces upward motion ahead of the warm and cold fronts and downward

motion behind the cold front, consistent with synoptic theory.
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Figure 6 - after Daley (1979)

A second important question concerning the vertical motion field is:
does it evolve slowly in time or does it oscillate before settling
down? Figure 6 shows the vertical motion profiles as a function of
time at the point marked X (Labrador Coast) on the right panel of
Figure 5. The upper series is without initialization while the
lower is with inifialization. It can be seen that without initial-
ization the vertical motion profile goes through an oscillation be-
fore settling down, while initialization produces a smoothly evolv-

ing sequence of profiles,

Figure 7 ~ after Temperton and Williamson (1979)
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Non-linear normal mode initialization schemes are also capable of
generating cross-isobar flow in the model boundary layer. Figure 7
is taken from Temperton and Williamson (1979). The left panel shows
the 1000 mb geopotential height and winds without initialization.
Note that the wind flow is more or less geostrophic. In the center
panel is shown the same fields after application of the Machenhauer
scheme to an adiabatic version of the ECMWF model. The flow has
changed, but it is still more or less geostrophic. This is to be
expected, because cross isobar flow in the boundary layer is a func-
tion of non-adiabatic terms such as the surface stress. The panel
on the right shows the flow after applicatioh of the Machenhauer
method to a version of the ECMWF model containing surface stress

terms. Note the cross-isobar flow.

Figure 8 - after Daley (1979)

Non-linear normal mode initialization can also generate mountain in-
duced vertical motion. There are some inconsistencies in the normal
mode formulation in the presence of mountains (see Daley, 1979).
Nonetheless, realistic terrain induced vertical motions can still be
generated. Daley (1979) performed an experiment to demonstrate
this. Since the terrain induced vertical motion is smaller in am-
plitude than the synoptic vertical motion, he started with idealized
data in order to suppress the latter. An initially zonally averaged
flow in pressure coordinates was interpolated to the terrain follow-
ing coordinates of the Canadian Operational Spectral Model. Then
Machenhauer's scheme was applied, 1In Figure 8, left hand panel, is
shown the 500 mb geopotential height demonstrating the zonal averag-

ing. In the center panel is shown the topography field of the Rocky
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Mountain Range (dekameters) - the main axis of which is perpendicu-
lar to the flow. The right panel shows the resulting vertical mo-
tion (mb/hr). As hoped, the upstream vertical motion is upward (U)

and the downstream vertical motion is downward (D).

The application of non-linear normal mode initialization is not
without problems, however. These will be discussed in later sec-

tions.

16. THE SLOW MANIFOLD

Leith (1980) developed a graphical display which aids in the under-
standing of the initialization problem, The model normal modes can
be represented in a multi-dimensional vector space. The Rossby and
gravity modes each represent a subset or manifold of this vector
space. In addition, Leith (1980) introduces the slow manifold which
is defined to be the locus of all model states which are evolving

slowly in time (i.e. have no fast time oscillations),

We can consider an approximation to the slow manifold by consider-
ing the locus of all points where Z =0 (equation 41). Figure 9,
which is a modified version of Figure 1 of Leith (1980) is a simple
two-dimensional illustration of the slow manifold concept. The am-
plitude of the Rossby modes Y is the abscissa while the gravity
mode amplitude Z is the ordinate, The slow manifold M is the locus
of all model states where Z = ZB. As (Z, Y} - 0 the non-linear
terms (RZ, RY) + 0 and the slow manifold becomes coincident with
the Rossby manifold.

Y4
4

\
Figure 9 - after Leith (1980)
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A particular point in this multi-dimensional space can have only a
single spatial‘configuration for each of the dependent variables
(geopotential, wind, etc.) of the model. Suppose, however, that "the
spatial structure of one of the model variables (geopotential, wind)
were held fixed while the other variables were allowed to vary. The
locus of model states which satisfy these conditions, Leith (1980)
refers to as a data manifold. This manifold is indicated in Fig-

ure 9 by the line D.

The attractiveness of the slow manifold concept is that, in princi-
ple, it can be used to provide a visual intefpretation of some prob-
lems in numerical weather prediction. The chief drawback is that
for most models, the Rossby, gravity, slow and data manifolds cannot
be visualized easily except in the schematic sense of Figure 9. One
way around this dilemma is to define integrated manifolds as was
done in Daley (1980). A second solution is to use a low order model
in which the model variables have only 2 or 3 degrees of freedom.
Tribbia (1980) developed such a model and we will examine his anal-

ysis in some detail.

17. THE GEOMETRY OF THE SLOW AND DATA MANIFOLDS

The model is of an isolated barotropic vortex on am f-plane. The
radius of the vortex is b and the governing equations are the radi-

cally symmetric shallow-water equations

du o= L[,0u  uv

3t TfO B b {Var + r]

v 1900 _ _1fw® _ _3v (51)
t T i T e T b[r Vor) :

99 , gH 3 - -1

5t  br or [vr} br [@vr}

~

where u, v are the tangential and radial velocity components, H is
the mean geopotential height of the free surface, r is a non-
dimensional radial distance and fO is the (constant) Coriolis para-

meter.

We assume u = U(t) Jl(Xr), v = V(t) Jl(Xr), & = 0(t) JO(Xr), where

JO’ J1 are Bessel functions of order 0, 1 and X is the first root

133



of Jl(r). The use of the Galerkin technique reduces equation (51)

to the following set of ordinary differential equations.

ot o b 1 (52)

3t "o T b b

90  AgH, _ W

t s VT T
where I1 - I4 are interaction coefficients (integrals of products
of Bessel functions) defined in Tribbia (1980). For example,

1 1
13 = .{ Jla()\r) d)%/; T le()\r) dr

The normal modes of the linearized version (left hand side) of equa-

tion (52) are found by assuming an exponential time behavior for U,

V and ® and inserting into the linearized equations. Thus
U 4
v = |i¥® exp (-if ot) (53)
o £
o

where o is the non-dimensional frequency.

This gives rise to an algebraic eigenvalue problem of order 3 and

there are thus 3 eigenvectors and corresponding eigenvalues. There
is a Rossby mode with frequency Op = 0 and eigenstructure
A A 2 1 -
[“R’ o @R] = [- w0, 1] (54)
/3 + K
and two 'gravity modes with frequency 0 =,/1 + Kand o_ = - 0, and
eigenstructure

-1 -1
" A X 1 Ab K
[u+, v, +]= [Ab 1 (55)

V- Lvk > Kk ﬁ‘]

134



where u = u,, v = - V¥ ® = & and

The normal modes have been orthonormalized, satisfying

N s o 5o .l
c(ui uj + v, vj) + >, @j ch (56)

where i, j indicates R, + or - and ¢ = gH f

We can expand U, V, ® as a linear combination of the three normal

mode structures in analogy with equation (28)

(57)

<>

where vy, z, and z are the expansion coefficients of the Rossby and
gravity modes respectively. vy, z, and z_can be computed from

(U, V, &) in analogy with equation (29)

(58)

Using these relationships, we can write the normal mode form of
equation (52). We will write these equations formally in analogy
with the slow and fast equations (35 and 36). The exact form of

the equations can be seen in Tribbia (i980). Thus

135



y = -i fo' OR y + Ry(y, z+, z-)

(59)

Ne
]

+ -i fo o, z, + R+(y, z,, z_)

z = -i f0 o_z +R_G, z, z ).

We can find the equation of the slow manifold by setting the time
tendencies of all gravity modes equal to zero and finding the balanc-

ing components. In this case i+ = z_ = 0. The resulting equation
is analogous to equation (41). It is convenient to write these bal-
anced equations, not in terms of y, z, and z_, but in terms of the
dependent variables U, V and &. 1In this form the equation of the

slow manifold for this model is

vV = 0

U? I+ X0 +bE U=0 (60)

Thus on the slow manifold of this model there is no radial velocity

and the tangential wind satisfies a discretized form of the gradient

wind equation.

Z .
ANTICYCLONIC ) CYCLONIC

‘\\\\5=Y

Figure 10 - after Daley (1980)
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In Figure 10 (after Daley, 1980) is plotted the slow manifold dia-
gram for this model. The abscissa is the amplitude of the Rossby
mode y and the ordinate is the amplitude of the gravity mode z, -

(The diagram would look the same if z_ had been used instead.) In

the present case, three parameters have to be specified. They are
H =1 km, b = 1000 km and fo = f(45°). Solutions can be obtained
for cyclonic and anticyclonic U. It is also possible to find the

data manifolds for each of the variables U, V and ®. Thus the

dashed lines marked U are the U manifolds (U = constant) and similar-
ly the solid lines marked H are the geopotential manifolds. The
equation:for the data manifolds are given by (57 and 58). We will
define the data manifolds by the angle at which they intersect the

Rossby axis (y) =~ the Rossby projection angle.

Figure 10 is really a projection on the y, z_ plane of a three-
dimensional space whose coordinates are y, 2z and z . In fact U =
constant is really a plane in this three-dimensional space. The di-
rection cosine of a line normal to the plane U = constant with re-

spect to the y (Rossby) axis is given by

b

u

cos BU = z
R [~z + 02 + g2
ap tu Ul

where Bg is the direction cosine and superscript U represents the U

data plane and subscript R represents the Rossby axis.

We will define the Rossby projection angle ug to be the complement

of Bg. Thus

U _ _ U
oy = /2 BR and

U i K
in? = R = (61)
sin® o —
R A2 ~2 ~AD 14+K
up + uy + u”
from equations (54 and 55). Similarly it can be shown
c 2 Vo L2 @ 1 9
sin® op = 0, sin® oy = 7% (62)
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The expressions on the right hand sides of equations (61 and 62) are
identical to those derived in geostrophic adjustment theory (Blumen,
1972). When K increases, ag increases and ui decreases. K is de-

fined in equation (55) and it can be seen that ag increases with de-
creasing horizontal scale, increasing vertical scale and decreasing
latitude. ui, on the other hand, increases with increasing horizon-

tal scale, decreasing vertical scale and increasing latitude.

ROSSBY PROJECTION ANGLE (°)

90 80 70 60 50 40 30 20 10 O
LATITUDE (°)

Figure 11 - after Daley (1980)

We see in Figure 11 the Rossby projection angle plotted as a func-

tion of latitude for three variables: geopotential (——), rotation-
al wind component (-~ — —), divergent wind component (—+—), and 3
equivalent depths (10 km, 1 km, .1 km). These calculations are

taken from Daley (1980) and apply to spherical geometry. The hori-
zontal scale is fixed at 1000 km. Variations of Rossby projection
angle on the sphere as a function of horizontal scale can be seen in
Daley (1980).

18. CONSTRAINED INITIALIZATION

The initialization procedures we have described up to this point
(both Machenhauer and Baer-Tribbia formulations) can be characteriz-

ed as unconstrained initialization procedures. We will now consider

138



another class of initialization techniques, which will be referred

to as constrained initialization procedures.

The concept of the slow manifold is very useful in graphically il-
lustrating these different types of initialization procedures. Fig-
ure 12 is a schematic slow manifold diagram which will be used to
illustrate constrained and unconstrained initialization. The Rossby
manifold Y, slow manifold M, gravity manifold Z, and data manifold

D are as in Figure 9.

Z
4

+Y

Figure 12

Suppose we have a model state at point O which lies on a data mani-
fold D. We note that this point does not lie on the slow manifold,
so that if used as an initial state for the model, gravity waves of

magnitude proportional to the distance of 0 from M would be excited.

Now if we apply the unconstrained Machenhauer or Baer-Tribbia
schemes discussed earlier, we can find an initial state on the slow
manifold which will not excite gravity waves. In these schemes, it
is assumed that the Rossby mode projection Y remains fixed. This
corresponds to finding the point U (unconstrained) which is the in-
tersection of the stow manifold and a vertical straight line passing

through O.
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To fix ideas, let us suppose that the data manifold D is a geopoten-
tial manifold (i.e. the spatial structure of the geopotential field
would be invariant along the line D). Furthermore, we suppose that
our observations of the geopotential are everywhere very accurate,
but that our wind observations are very poor. If we performed uncon-
strained initialization, .thus arriving at the point U, the original
geopotential data would no longer be fitted. Since we had great
faith in our original geopotential observations, our initialized

state (U) would clearly be unsatisfactory.

A much more reasonable initial state could be obtained by finding the
intersection of the data manifold D and the slow manifold M. In the
present case, this would imply that the original geopotential obser-
vations were fitted and yet no high frequencies would be excited in
subsequent model integrations. This state is indicated by the point
C (constrained) in Figure 12. This type of initialization would be
referred to as geopotential constrained non-linear normal mode ini-

tialization.

In practice we have observations of both mass and wind, irregular in
space and time and with varying accuracies, Some of the data will
be inconsistent with other data, so we cannot expect to fit all data
and still be on the slow manifold. However, we might have more faith
in some observations than others, so we might desire that the adjust-
ed state (a) be on the slow manifold and (b) fit the good data as

well as possible and fit the poor.data less exactly.

The operational solution of this‘problem is very complex, because it
lies at the ill-defined interface between analysis (which attempts
to fit the data according to its presumed accuracy) and initializa-

tion (which attempts to suppress high frequency oscillations).

Formally, however, one can write solutions to the constrained ini-
tialization problem using the variational calculus, Daley (1978) de-
veloped the variational formalism for the constrained normal mode
initialization of the shallow water equations and solved it for some

simple cases. The variational problem can be posed as follows,

Consider the case where we have observations of the vector wind v

and geopotential ¢ and we indicate our confidence in the observations
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by means of weight functions wV(X, ¢, P), wé(k, ¢, P). Thus, where

we had completé confidence in @, but none in v, Wg would be large

and W= 0. This would correspond to remaining on a geopotential
manifold. Conversely, We = 0, W, large would correspond to remain-
ing on a wind manifold. The general solution, with both Wgs W, DOT-

zero would define a manifold somewhere in between the geopotential
and wind manifolds. We can pose the general problem of going from
model state 0 to model state c in Figure 12 as the minimization of

the following functional
I= - 2 3 - & 2 . 7
@,{: [ = 2w, + (9 - 0% w,] aa (63)

where jf [ 1dAis an integral over the atmosphere, loséo indicate
the obsérved values and Vs @c indicate the values after constrained

initialization.

In the variational formulation we wish to minimize (63) subject to
the constraint that the final state lie on the slow manifold. We

can do this approximately by demanding that the final state satisfy

Machenhauer's condition (41) - viz.
R.(Z , Y )
7 = 4 ¢’ e , (64)
¢ 201 Az :

where Yc and Zc are the projection of the Rossby and gravity modes
respectively after adjustment has taken place. Constraint (64) can
be applied to the functional (63) by means of Lagrange's Undetermin-
ed Multipliers. Thié new functional is then minimized, leading to a
set of Euler-Lagrange equations. We note that the projection on the
Rossby modes Y will change after a data constrained initialization
procedure. Unconstrained initialization is a special case of comn-
strained initialization with a particular choice of wg> v (see
Daley, 1978).

Tribbia's (1980) approach to the variational problem is more elegant
and direct than Daley's (1978) formulation, so we will sketch it

briefly here. Tribbia's approach is iterative, with each iteration
step containing 2 phases. The iteration procedure is shown schemat-

ically in Figure 13.
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Figure 13

We assume that the initial observations are at point 0 as before,
The first step is to use Machenhauer's unconstrained scheme to find
point 1, which is on the slow manifold, but has the same Rossby pro-=

jection as point 0, Thus

R, (Zgs Yp)

Z = = -
1 k. 0 1 Yo (65)

Z

The next step is to get back on the data manifold at point 2, This
is done by demanding that the projection on the gravity modes Z re-
main fixed while the projection on the 'Rosshy manifold changes
(horizontal straight line in Figure 13), This is the minimization
part. We attempt to minimize the functional (63) with respect to

the expansion coefficients of the Rossby modes, Thus

] 11,2
oy

]
o

for ally e Y (66)

h I - - 2 _ 2 .
where 1,2 -4' [(y_z y_l) WX + (@2 @1) Ve dA.
Performing the minimization (66) will pfoduce a series of linear al-

gebraic equations in which the unknowns are the amplitudes of the
Rossby modes Y at point 2,
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We can then repeat step 1, arriving again at the slow manifold at
point 3, and so on until convergence. The system of equations (65
and 66) is not difficult to solve if We and w, are at most functions
of latitude, but becomes more difficult when the weights have com-

plete spatial variability (see Daley and Puri, 1980).

19. NON-LINEAR NORMAL MODE INITIALIZATION AND QUASI-GEOSTROPHIC
THEORY

Leith (1980) showed the connection between non-linear normal mode
initialization and quasi-geostrophic theory. He confined his atten-
tion to the first 2 passes through Machenhauer's scheme (equations
38 and 39). His analysis is fairly detailed and parts of it are si-
milar to Section 17. Consequently, we shall omit many of the steps

and concentrate on the results.

The analysis starts with the Boussinesq adiabatic equations on a

f-plane
du _ 20 _ 67)
2t fov toax T Ru i
OV L ru+ %o g (68)
t o oy Y
9s . g 98% _ 69
t T w YR (69)
(o]
du v, dw _ 70
x Ty Tz O (79)
- 92 ‘ (71}
s oz
where
90 20 30
*0 U TV gy T VB (72)
. = R [1- 2 ¥ (73)
BK L
v o= & (74)
at
s = g 6/6O



pressure at bottom of atmosphere

o
3] = pdtential temperature

60 = horizontally and vertically averaged 6
0% = horizontally averaged 0

K =

R/c
P

These equations correspond exactly

tions (1 - 4) except for a
equation (70) near the top of the
which is close to the true height

It can be seen from equation (73)

To determine the normal modes, we

to the pressure coordinate equa-

minor approximation in the continuity

atmosphere, =z is a pseudo-height,

near the bottom of the atmosphere.
that at P 0, Reo/gK 28 km.

~

Z

proceed as in Section 17. We

first linearize the equations about a basic state at rest, with a

static stability profile ©6%(z) given by N? =

then set R. = R R =
u v [

are represented by harmonic solutions in x,

u 0
v = v
s N§

where A, u and n are the x, y and

dimensional frequency.

exp i[n £ N! (Ax + uy) + nz + £ ot]

g 30%
B 9z

constant. We

0 and assume that the 8ependent variables

z, t.

)

>

(75)

z wavenumbers and ¢ is non-

This procedure leads to a set of algebraic

eigenvalue problems of order 3 - one for each value of A, u or n.

There are 3 eigenvectors and corresponding eigenfrequencies, 1

Rossby mode and 2 gravity modes.
mode 1is op =
. 2 . 32
J1I + u + A

Rossby mode is

are 0 and ©
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The eigenfrequency of the Rossby

0, while the eigenfrequencies for the gravity modes

The eigenstructure of the



s

[Gps Ops 6] = (1 + 12 + 22)7% (76)
R* "R> °R H > S [ A, 1]
and similar expressions can be derived for the gravity modes.

We will define vy, z, and z_ (in the same notation as Section 17) to
be the values of the expansion coefficients for the Rossby and gravi-
ty modes before initialization commences. The first pass through
Machenhauer's scheme produces new values of the normal mode expan-
sion coefficients y(0), z+(0), z (0) and the second pass produces

y (1), z+(l), z (1) etc. Corresponding to y, z , z_ are correspond-
ing dependent variables u, v, s and their space discretized form

(equation 75) - U, V, &.
The first pass through Machenhauer's procedure (equation 38) gives

z+(0) = 0, Z_(O) =0, y(0) =y.

We can calculate y from U, V, S by using the analogue of equation
(58), viz.

1

y=m(-—uU+)\V+S) (77)

The values of U(0), V(0), S(0) can be obtained byvusing the analogue
of equation (57) with z, = z_ = 0. Thus U(0) = y(0) GR’ V(0) =
y(O)vR, S(0) = y(0) Sp- We can combine these two expressions to-
gether and obtain directly a relation between U(o), v(0), S(0) and
u, v, S.

U(0)

wroo-
1
V(0) | = ~HA
J1+ p? + A%
\-

L scoyld

Au -l U

A2 A v (78)
A 1/ Lsd

U(0), V(0), S(0) are the new values of the dependent variables ob~

tained from the original values U, V, S after the first pass through

Machenhauer's scheme.
From the eigenstructure of the Rossby mode (76) it 1s easy to see

that y(0) = -p S(0), V(0) = A S(0) and A U(0) + u V(0) = 0. 1In real

space form using equation (75) these relationships correspond to
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£, u = - 220 £ o) -

3 9(0)
dy

(79)

du(0) 9 v(0)
9 x + ay

=0, w()=020

which are the f-plane geostrophic relationships.

It is also convenient to define a vorticity £ and streamfunction V¥

v24(0) = =0 _3u(@ _ 1
bO) =8 =5 S5 - o TR (80)
Thus the first pass through Machenhauer's scheme corresponds to geo-

strophic initialization for this simple model.

The second pass through Machenhauer's procedure (equation 34) can be

written formally as

R (y(0), 0, 0)
i f00+

Z__'(l) = R_(i}’(fo):j O’ 0)
Lo

y(1) = y(0) z, (1)

(81)

We will omit the details of this analysis and go directly to the
real space form of equation (81), involving relationships between
u(l), v(1), ®(1), s(l) etc. Thus

N? V2 w(l) + fg w (1) = £ 532[1(0)'%(0)] - V*[v(0)+Vs(0)] (82)
2 o2 2 - -1jfL 2 ' :

N VR EQ) + £7E (1) = 2 ey [0, (0) -2 (0 cbyy(o)] (83)
—1fy2 - -1

g [P + e 2w2e, @] =26y, @ v @ -2 @ Y

V) = - £ N 8, (1) (85)

Now u(l), v(1), w(l) etc. are to be interpreted as corrections to
the values of u(0), v(0), w(0) etc. obtained from the first pass
through Machenhauer's scheme. Thus at the end of 2 passes through
Machenhauer's scheme the adjusted fields would be u = u(9) + u(l),
v = v(0) + v(1), w = w(0) + w(l) etc.
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Equation (82) is a form of the quasi-geostrophic w equation with the
two terms on the right hand side corresponding to the thermal and
vorticity advection terms. This equation is linear in W = w(1l) with
the right hand side forcing function being calculated from the geo-

strophic solutions of the first pass.

By adding V2 (0) to both sides of equation (84) and using equation

(85) we can write
2 -1 2 -1 -
vip + 2 £ 7 [w  (0) by (0 = 2(0)] - £ quv =0 (86)

where Y (0) is the value of the streamfunction after one pass through
Machenhauer's scheme and { and ¢ are the corresponding stream-
function and geopotential at the end of the second pass. Equation
(86) will be recognized as a form of the classical non-linear bal-

ance equation.

Normally, the non-linear balance equation is either solved for ¥
given ® (the forward direction) or solved for @ given ¥ (the reverse
direction). In the former case with & specified - equation (86)
would correspond to determining a first guess of the streamfunction
Y(0) - equation (80) followed by the evaluation of the non-linear
terms using Y(0) and then obtaining a new value of‘w from equation
(86). 1In the reverse direction ¥ is specified so P(0) = ¥ amd P(1)
= 0, which leads to the much simpler problem of solving a Poisson

equation for 0.

In Machenhauer's unconstrained scheme there is no explicit direction
of solution for equation (86). We note, however, that when the
Rossby projection angle is large (mear 90°) for the streamfunction
then unconstrained initialization and streamfunction (or rotational
wind component) constrained initialization become almost the same.

From Section 17, this is likely to happen at large equivalent depth.

Thus, in the unconstrained situation, we are solving equation (86)
in the reverse direction for large equivalent depth. Conversely,
for small equivalent depth there would be a tendency to solve equa-

tion (86) in the forward (more difficult) direction.



20. SOME OUTSTANDING PROBLEMS WITH NON-LINEAR NORMAL MODE
INITTALIZATION

We will now examine four problems with the non-linear normal mode
initialization procedure. They are: (1) frequency sepération in
the tropics, (2) non-convergence in elliptic regions, (3) non-
convergence for small equivalent depths, (4) disappointing initial

rainfall rates.

20.1 Frequency separation in the tropics

Table 1 shows the clear separation in frequency between Rossby and
gravity modes of the same equivalent depth. For tropically trapped
modes, the separation is not so well defined and it is not clear
whether or not non-linear normal mode initialization will be effec-

tive.

Tribbia (1979) examined this problem using an equatorial beta plane
shallow water model. A model of this type is a reasonably good ap-
proximation to a spherical shallow water model in the ultra-long

waves.

Figure 14 - after Tribbia (1979)
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Figure 14 (from Tribbia, 1979) shows the non-dimensional frequency
(o) of the model normal modes as a function of zonal wavenumber m
for an equivalent depth of 8 km. The meridional wavenumber n is in-
dicated on the diagram, It can be seen that there is reasonably
good separation between Rossby and gravity modes except for zonal
wavenumbers 1 and 2. At these wavelengths the frequencies of the
mixed Rossby-gravity waves (gravest anti~symmetric Rossby mode) and
Kelvin wave (gravest eastward symmetric gravity mode) have similar

magnitudes,

Tribbia (1979) decided to choose an arbitrary frequency (indicated
by the horizontal dashed line in Figure 14) to separate the slow
(Rossby) and fast (gravity) modes. He then initialized a non-linear
equatorial beta plane model using the second order Baer-Tribbia
scheme. The results of an integration are shown in Figure 15. The
amplitude of a particular high frequency gravity mode is plotted

for 24 hours during the integration of the model. The dashed curve
is the integration corresponding to the initialization of equation
(47) (linear), the dotted curve to equation (48) (first order Baer-
Tribbia) and the solid curve to equation (49) (second order Baer-

Tribbia).

Figure 15 - after Tribbia (1979)

It can be seen that despite the relatively poor frequency separa-

tion, the Baer-Tribbia scheme works quite well.



20.2 Non-convergence in elliptic regions

Daley (1978) discovered that geopotential constrained Machenhauer
initialization for the spherical non-linear shallow water equations
did not converge. The regions of non-convergence coincided with the
so-called non-elliptic regions where the classical non-linear
balance equations (with geopotential specified) would not converge
(V20 + 2£% < 0).

Tribbia (1980) posed the question as to whether this apparent non-
convergence was due to a numerical problem associated with the
non-linear iterative scheme or whether, in fact, there was no solu-

tion at all under certain conditions.

Tribbia (1980) first constructed the simple isolated barotropic vor-
tex model described iﬁ Section 17.. It will be noted that in the
slow manifold diagram for this model (Figure 10) there are certain
geopotential data manifolds on the anti-cyclonic side which do not
intersect the slow manifold. On the other hand, for any given U
(tangential wind) manifold, there is always an intersection with

the slow manifold. For any geopotential manifolds which do not in-
tersect the slow manifold, no slowly varying solution is possible,

gravity waves will always be excited.

Tribbia (1980) was first able to show that non-convergence of geo-
potential constrained initialization in elliptic regions was not
due to faulty numerical iteration procedures. This was done as
follows. The model in Section 17 has an analytic solution for the
slow and data manifolds. However, Tribbia applied directly the
constrained initialization procedures of Section 18 to this model
and kept on iterating until he either got convergence or the solu-
tion started to diverge. Convergence was obtained for all geopo-
tential manifolds which intersected the slow manifold (as indicated
by the analytic solution), but there was no convergence for geopo-
tential manifolds which did not intersect the slow manifold. This
suggested that non-convergence of geopotential constrained initial-

ization was a fundamental and not a numerical problem.

Tribbia (1980) then repeated his experiments using a more realistic

model. This was a spherical non-linear shallow water model in
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which the initial geopotential perturbation was circular and local,
The amplitude, horizontal and vertical scales and central latitude
of this disturbance could be varied at will. In this way, by using
geopotential constrained Machenhauer initialization, Tribbia was
able to determine the critical geopotential amplitudes between con-
vergence and non-convergence as a function of latitude and scale.

These results could then be compared to the f-plane results.

In all cases there was a critical geopotential amplitude (positive)
for which geopotential constrained Machenhauer initialization would
not converge. It would appear, then, that there exist geopotential
fields for which the shallow water equations have no slowly varying
solution. In the atmosphere, however, tropical high pressure sys-
tems exist which violate the criterion and yet have relatively slow
time behavior. From this we must conclude that there are forcing
terms (latent heat release) which maintain these high pressure
areas in the real atmosphere. Consequently, the slow manifolds of
a shallow water model and the atmosphere are clearly different for

the case of strong tropical anti-cyclones.

20.3 Non-convergence for small equivalent depths

Daley (1979) and Temperton and Williamson (1979) both noticed that
in the application of the unconstrained Machenhauér scheme to baro-
clinic models, the scheme would not converge when applied to gravi-
ty modes of small equivalent depth. Furthermore, it has also been
noted that the application of Machenhauert's scheme to the ECMWF
model suppresses the Hadley Cell.

The decision as to which modes to initialize and which modes to
leave unadjusted (i.e. the division between fast and slow modes) 1is
very critical in a barcclinic model. This is b

ecause many of the
gravity modes with small equivalent dpeth (see Table 1) are of
rather low frequency. Both Daley (1979) and Temperton and William-
son (1979) chose to make the division purely on the basis of equiva-
lent depth. That is, they initialized all gravity modes with equi-
valent depth greater than some pre-specified critical equivalent

depth and left all other modes untouched.
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Temperton and Williamson (1979) investigated this effect using the
15 level ECMWF baroclinic model. They computed a quantity (BAL)

which measures the balance in the adjusted gravity modes. Thus

2
w -2
at
Z

This quantity (BAL) is an integrated measure of the time tendencies
of the fast modes. With no initialization this quantity would be
large, but if Machenhauer's scheme (38 - 41) worked perfectly, it
would approach zero. 1In any case if Machenhauer's scheme is con-

verging, BAL should decrease after each iteration step.
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Figure 16 - after Temperton and Williamson (1979)

In Figure 16 BAL is plotted as a function of vertical mode number
(external, first internal, etc.) for three different cases. The
lines marked (0, 1, 2 ...) are the balance (BAL) as a function of
iteration number. In Figure 16a BAL is plotted for the 15 level
adiabatic version of the model in which the gravity modes for the 5
largest equivalent depths only have been adjusted. By and large,
the scheme seems to be converging. Figure 16b is the same adiabatic
case, but with the gravity modes corresponding to the first 10
equivalent depths adjusted. It can be seen that by the third pass,
there is a diverging solution for small equivalent depths.

Figure 1l6c is the same as Figure 16a except that the model is



non-adiabatic (i.e. includes parameterized radiation, convection,

latent heat release etc.). It can be seen that even with only 5

modes, there is non-convergence in this case.

Why this should be so can be seen by examining equation (43). The
scaling of equation (43) implicitly assumes that the frequency of
the gravity modes AZ is an order one quantity while the non-linear
term RZ(Z, Y) has € << 1 multiplying it. For small equivalent

depth € is no longer small. In this case the two terms on the right
hand side of equation (43) might well be of the same oxrder, in which
case a non-linear iteration procedure such as Machenhauer's would

not be likely to converge.

We will attempt a heuristic physical interpretation of this pheno-
mena based on the f-plane quasi—geoétrophic equivalent to Machen-
hauer's scheme developed in Section 19. We will consider equations
(82 and 86) which are arrived at after the second pass through
Machenhauer's scheme. Suppose that after many passes through

Machenhauer's scheme, the equivalent equations to (86 and 82) are

2 -1 o2 Mo e T og2s
vy +2f 7 (o by q;xy] = £ v (87)
2 g2 2 - e O .. 2r .
N-V w+fO wzz—foaz[y_VE]~V[y_VS]
+ NL(w) + F(w) (88)

The first equation is a version of the non-linear balance equation,
while the second is a version of the w equation with the addition
of two extra terms. NL(w) symbolically indicates mnom-linear terms
in w or the divergent wind (the vertical advection of vorticity,

for example) which do not appear in equation (82). F(w) symbolical-
ly indicates physical effects such as latent heat release which de-
pend directly on w. Equations (87 and 88) have not been rigorously
derived, but we are only interested in them as analogues to investi-

gate the convergence process.
Consider first the balance equation (87). 1In Section 19 we sug-

gested that for unconstrained initialization, at large equivalent

depths this equation would essentially be solved in the reverse
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direction (@ from %), while for small equivalent depths it would be
solved in the forward direction (¢ from ®). Since the forward non-
linear balance equation is much more difficult to solve, we might

expect difficulties at small equivalent depths.

The real key to non-convergence at small equivalent depths probably
lies in the w equation (88), One pass through this equation with
NL(w) = F(w) = 0 and the remaining right hand sides calculated geo-
strophically is equivalent to equation (82) and will yield a w
field without any equivalent depth restriction. However, if w is
calculated in this manner and then inserted. into NL(w) and F{(w) of
equation (88) and an iteration attempted, it is not at all clear

that a convergent solution will be obtained.

If we examine the vertical structure functions (Figure 1) we find
that for very small equivalent depths there is more and more struc-
ture in the boundary layer, In the boundary layer, the normal free
atmospheric scaling in which the divergent wind is much smaller
than the rotational, is invalid, Consequently, for small equiva-
lent depth NL(w) and F(w) might be quite large and equation (88)

would not converge if solved iteratively,

There are practical remedies to this problem, Firstly, only for
gravity modes with relatively high frequencies should Machenhauer's
scheme be taken to convergence. Secondly, for gravity modes with
lower frequencies, it might be desirable to take only 2 passes
through the Machenhauer or Baer-Tribbia scheme, not.for the purpose
of suppressing rapid oscillations, but rather to provide comnsistent

vertical motions on these scales.

20.4 Disappointing initial rainfall rates

Figures 5 and 6 show the non-linear normal mode initialization is
capable of generating reasonable initial vertical motion fields
with good time continuity. It is then reasonable to ask if the
scheme can produce good initial precipitation rates. This question
is raised because primitive equation models are notorious for their

poor short-range precipitation forecasts.
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Figure 17 ~ after Daley (1979)

Figure 17 (from Daley, 1979) indicates that the short range precipi-
tation problem cannot be solved by normal mode initialization alomne.
The solid line indicates the rainfall rate at the point x in

Figure 5 without initialization. The x dash line in Figure 17 is
the same except after initialization. It can be seen that the ini-
tialization scheme has suppressed the high frequencies, but has not

made much improvement in the initial rainfall rate,

In order to get large rainfall rates, it is necessary that the ver-
tical column be saturated as well as having a significant upward
vertical motion. Since the initial upward vertical motion is large,
it is the initial moisture analysis which must be deficient and
must be modified before significant improvements can be expected in

short-range precipitation forecasts,

21. RECENT DEVELOPMENTS AND RELATED RESEARCH

This review has concentrated on the use of model normal mode proce-
dures in the initialization of primitive equation models, Recent
work, however, suggests that the normal mode procedures have comn-
siderably wider application in numerical weather prediction. We

will briefly discuss several of these more recent applications.

Daley and Puri (1980) have used normal mode procedures in an exami-

nation of the four-~dimensional data assimilation problem. The
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model normal modes were found to be particularly useful in diagnos-

ing and partially ameliorating the data rejection problem.

Williamson, Daley and Schlatter* have examined optimal interpolation
procedures using the model normal modes. They have shown that the
geostrophic constraint used in multi-variate optimal interpolation
procedures can both improve and degrade the analysis quality under
certain conditions. Some experiments have been made with more real-

istic and general constraintsthan geostrophic.

Daley, Tribbia and Williamson* have examined the spurious excitation
of large-scale external Rossby waves using the normal modes of baro-
tropic and baroclinic models. In particular, it has been found

that poor analysis methods in the tropics, or the imposition of an
equatorial wall can excite spuriously large free Rossby modes. An
attempt to initialize these modes using Machenhauer's technique was

successful.

Normal mode methods are being used in more and more of the world's
meteorological centers. We expect that these techniques will be
used to gain understanding of the complex primitive equation models
in use today and hopefully lead toward improvements in their per-

formance.
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