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These notes deal with a number of mathematical problems related to four-
dimensional data assimilation. They are based on a general criterion for
convergence of an assimilation procedure, which is derived in Sections 1 and 2,

and then applied to various cases.
The basis for the content of these notes has been described in detail in a
previous publication (Talagrand, 1977) which will be hereafter referred to as

T77.

1. MATHEMATICAL PRELIMINARIES

We will formalise the assimilation problem by assuming that we observe the
time evolution of a physical system (which will in applications be the
atmosphere, but no specific hypothesis is necessary at this stage). The
system will be assumed to be made of two parts: a first part X (e.g. the
mass field) which is observed at successive instants, and whose state at any
time is defined by the valuesof a finite number p of independent parameters;
and a second part Y (e.g. the wind field) which is to be reconstituted through
an assimilation process, and whose state at any time is defineg by the values

of g independent parameters.

The time evolution of the system is supposed to be described by a set of
r = p+q differential equations of first order with respect to time, which

can be summed up in the two vector equations

ax _
& = Flxv] (1a)
av _
% = 6lxv (1b)

where F and G are respectively a p~valued and a g-valued function of X and Y.
F and G could be assumed to depend also on time, without this resulting in any
modification to the sequel. Equations (1) can be thought of as being,

for instance, the meteorological primitive equations.

An arbitrary initial time t_ being chosen, any initial conditions [XO,YO]
at to define a unique solution to Equations (1). The values assumed by that
solution at time t will be noted [X(XO,YO;t), Y(XO,YO;t)]. Any initial

perturbations [AXO, AYO] on [Xo'Yo] define a solution
[X(x,¥_it) + 8X(t), Y(X_,¥ it) + Av(v)] ,

where the time evolution of AX and AY is described by the perturbation
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system in the vicinity of the solution [X(Xo'Yo;t)’ Y(XO,YO;t”

dAx
G —F [x(xo,yo;t) +AX, Y(X Y it)+ AY] - B[ X(XO,YO,‘t),Y(XO,'YO;t)] (2a)
QY L G R(X,Y 1t) + AX, V(X ,¥ :E)+ AY] - G[ X(X ,Y 3t),v(x ,¥ 2t)] (2b)
dt o o o o o, o o o

These equations are readily obtained from (l). Linearising them with respect to

AX and AY (and changing AX and AY to 8% and 8Y in order to avoid any confusion

with (3)) leads to

d§X _ DF DF
e " px (B 8X + oy (8) &Y 32)
asy _ DG DG
Tt “opx (B SX + oy (B &Y (38)

where g% (t) is the p x p jacobian matrix made up of the partial derivatives

of F with respect to the components of X. The argument t means that these
DF D DG

G

are similarly defined jacobian matrices, with respective dimensions P X d,

derivatives are taken at point [x(x ,v it), ¥Y(X ,¥Y ;8)],
o o o ©

g x pand g x g. System (3) is the linearised perturbation system in the

vicinity of the solution [X(XO,YO;t), Y(XO,YO;t)] . Unless the basic
equations (1) are themselves linear, there is one different such system for

every solution of (1).

The solution at any time t of system (3) depends linearly on the initial

conditions [6X0,6Y0] at time to' This is expressed by the following equations
§X(t) = R: (t,t) §X_ + R (t,t) &Y (4a)
x o o) x "o o )

SY (t)

X y
Ry (t,to) axo + Ry (t,to) SYD (4b)

x v X v . .
where RX (t,to), Rx (t,to), Ry (t,to), RY (t,to) are four matrices with
respective dimensions p X p, P Xx ¢, 9 X p, g x g, which together make up a

square matrix R(t,to) of order r



X y‘ .
Rx (t,to) Rx (t,to)
R(t,t ) = (5)
RS (t,t ) R (t,t)
y o Yy o

R(t,to) is called the resolvent matrix of the linearised system (3) between

times to and t.

We will be interested in the linearised perturbation system (3) for the following
reason: for "small" initial perturbations [AXO,AYO], the time evolution of the
resulting perturbation [ AX(t),AY(t)] is described to some approximation by

system (3). This vague statement is made precise by the following theorem

(for a proof, see e.g. Coddington and Levinson (1955)).

Theorem (p) Given initial perturbations [ AX ,AY ] at time t , the
7 A=) O

difference at any given time t between the corresponding solutions of the

exact and linearised perturbation systems (2) and (3) is an infinitesimal

of higher order than [AX ,AY .
- —-O0—0~
This can be expressed by’the following. equations

AX(t)

]

y : . ’% :
Rx (t,tO)Axo + Rx (t,to)éYo + o (AXO,AYO) (6a)

AY (t)

X : y ’ :
Ry (t,to)AXO + Ry (t,;O)AYo + o0 (AXO,AYO) (6b)

where, following a standard notation, O(AXO,AYO) denotes an infinitesimal

of higher order than [ AX ,AY ], i.e. a function of [AX ,AY ] such that the
o’'""o o’" o
lo(ax_,av ) |

AXO + IAYO

raﬁio tends to 0 when AXO and AYO tend to O.

Theorem (p) essentially means that the values [X(Xo,Yoft), Y(XO,YOft)]
assumed at time .t by a solution of the basic system (1) are continuous and
differentiable functions of the initial conditions [Xo'Yo]' and that the
corresponding partial derivatives are the entries of the resolvent

matrix R(t,to) of (5).

Some further properties of the resolvent matrix will be useful. Since the
choice of the initial time tO is arbitrary, R(t",t") is defined for any two
times t' and t" at which the solution [X(XO,Yo;t), Y(xo,Yo;t)] is itself

defined, whether t'< t" or t" 2 t'. Since integrating system (3) from t' to t",
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and then to a third time t"' will produce the same result as integrating
directly from t' to t™ , the corresponding resolvent matrices must satisfy

the following relationship

R(t'", t") R(t",t') . R(t"',t') ('7)
which, when t™ = t', reduces to
R(t',t") R(t",t") =1 (8)

where I is the unit matrix of order r.
Taking into account decomposition (5), each of the two above relationships
can be readily transformed into four relationships between the corresponding

. X
matrices R_,; Ry .....
X 4

2. CONVERGENCE OF AN ASSIMILATION PROCEDURE

For the sake of definiteness, we will make the following two hypotheses
about the assimilation process

a) The part X has been observed at N successive instants t1't2""' tN and
the assimilation is performed according to the simplest forwarxrd-backward
procedure: the numerical model is integrated alternatively forward and
backward in time over the time period [tl'tN]’ Whenever the model time
reaches an observation time ti, whether in a forward or in a backward integra-
tion, the values predicted for X are replaced with the observed values, while
the values predicted for Y are not modified. The model integration is then
resumed, and carried to the next introduction time, at which a new updating

is performed.

This procedure calls for an important remark. The nature of the parameters
which make up X is imposed by the observations, but the nature of the parameters
which make up Y is not imposed by the conditions of the problem. The

nature of Y can be chosen arbitrarily under the only condition that X and

Y together uniquely define the complete state of the system. For instance,

in the case of an atmospheric model, with X representing, say, the mass field,
one can choose for Y either the velocity field Y/, or the momentum field p\,

or any other combination of the mass and velocity field which, together with
the mass field, completely defines the state of the flow. These different
choices are obviously not equivalent for the assimilation. The nature of X
being given, there are infinitely many possible choices for the nature of Y.

For this reason, the hypothesis that ¥ is not modified at an introduction time
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is much less restrictive than could a priori seem. We will come back later
to this point and will assume for the time being that one particular arbitrary

choice has been made for Y.

b) Both the assimilating model and the observations are perfect. This
means that the observations X(tl)""’ X(tN) are exactly compatible with
one solution of the model equations. This solution will be called the

observed solution. The hypothesis made here is the classical "identical twin"

hypothesis. We will see later how the results to be derived below are

modified when this hypothesis is relaxed.

2.1 The amplification matrix over an assimilation cycle

We shall choose the latest observation time tN as the arbitrary origin of the
successive forward-backward assimilation cycles. Setting tN - t1 =T, it will
be convenient to introduce along each assimilation cycle an auxiliary time
variable 1T, defined modulo 2T. This variable will increase from O to T in
the backward phase of the cycle, and from T to 2T in the forward phase. To
each of its values 17, there corresponds a unigue value of the.real time.

To any value t of the real time, t1 < t < tN, there correspond two values

T and t' of the auxiliary time, such that t + t' = 2T, and belonging respect-
ively to the backward and forward phases of the assimilation cycle. The
instants in the cycle when observations of X are introduced into the model
will be denoted Ty (coinciding with tN), Toreeer T (coinciding with tl)’

N

1) (coinciding with ty ). We shall define M = 2(N-1).

Tga1? tecr ToN - 1
M introductions of observations are performed in the course of one assimilation

cycle.

For any two values 17 and 1' of the auxiliary time variable, it will be
convenient to denote by R(t',T) the resolvent matrix (5) between the corres-
ponding values of the real time. A similar notation will be used for the

submatrices Rx, Ry, ceen
X X

Let us now consider the difference (AX, AY) between the assimilating model and
the observed solution. Between two observation times, this difference varies
according to the perturbation system (2) where the "unperturbed" solution

[x(xO,yO-

1

t), Y(XO,YO; t)] is now the observed solution [ X(t), ¥Y(t)]. at
an observation time T, AX is set equal to 0, while AY remains unchanged.
Let AYn be the Y-difference at the end of the n-th assimilation cycle. 1In
the (n+l)-st cycle, starting at time Tyr the model integration from Ty to
T,y will produce a difference AX which will be then set equal to 0, and a

difference AY(TZ) which, according to (6b) is equal to
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. oY
AY(TZ) = Ry (Tlel) AY o+ o(AYn)

Similarly, the subsequent integration of the model from To to T4 will produce

a difference
_ oY )
AY(TB) = Ry (T3,T2) AY(T2) + o(AY(tz))
4 Y
= Ry (T31T2) Ry(?zyrl) AY  + O(AYn)

This argument, carried out over the complete assimilation cycle, shows that
the difference AYn+1 at the end of the (n+l)-st cycle will be

AY 4 = B AY 4 o(AY ) (9)

where A is the matrix

_ Y v y
A Ry (Tl,TM) Ry (TM,TM_I) ..... Ry (Tz,Tl) (10)

A is the product of M square matrices of order g each of which represents the

effect of the assimilation over one interval (Ti, Ti+1). A will be called

the amplification matrix of the difference AY over one assimilation cycle.

It is entirely determined by the linearised perturbation system (3) in the
vicinity of the observation solution and, more precisely, by only one, namely
Rg, of the four submatrices which make up R (see Eq. (5)). It must be noted
that, contrary to R, R§ does not satisfy a "contracting" relationship of

type (7), so that expression (10) cannot be written in a more concise form.

Now, according to a general result of matrix algebra, the relevant parameter

for the behaviour of AYn as n tends to infinity is the spectral radius p(3),

which is by definition the largest modulus of the eigenvalues of A (see e.g.

Varga (1962):

- if p(A) is strictly less than 1, AYn will tend to 0 as n increases
to infinity, provided the initial difference AYO is small enough

so that the o(AYO) term in (9) is negligible compared with AAYO.
- if p(A) is larger than 1, the components of AYn along eigenvectors

corresponding to eigenvaluek)with modulus larger than 1, will be

amplified by the assimilation, and AYn will not tend to 0.
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- finally, if p(A) is exactly 1, the component of AYn along
eigenvectors corresponding to eigenvalue(s) with modulus equal
to 1, will be neither amplified nor reduced in the product AAYn,
and the behaviour of AYn as n tends to infinity will depend on

the higher order term o(AYn) in (9).

We see that p(A) <1 is a necessary condition for convergence of an assimilation,
and p(A) < 1 & sufficient condition, when convergence is defined as follows:
there exists some number & > 0 such that AYn will tend to O as n tends to

infinity provided the initial difference AYO is less than €.

For the sake of simplicity, we have assumed that the "same" p parameters,
making up the vector X, are observed at the successivé times tl' t2,..., tN'
This assumption is in effect not necessary and an amplification matrix of type
(10) can be obtained through a similar derivation when the nature, or even

the number of the observed parameters varies with the observation time ti.

Also, we have considered only the case of a forward-backward assimilation which,
being an exactly iterative process lends itself more easily to a rigoroué
mathematical treatment. At the price of a somewhat more complicated mathematical
formalism, the approach presented above can be extended to a purely forward
assimilation, in which the model is always integrated forward in time, and new
data are constantly introduced. In this case too, the convergence of the
assimilation depends on submatrices Rz extracted from the resclvent matrix

of the linearised perturbation system (3). We will see in the next subsection

an example of convergence of a purely forward assimilation.

2.2 Application to the linearised shallow-water equations

The non-linear shallow-water equations read

gi:l+v LV = o : (11a)
%ﬁ(\v. VV+ V6 +mnx £V= o (11b)

where ¢ and V are respectively the free-surface geopotential and horizontal
velocity of a shallow fluid covering a horizontal domain S; m is a vertical
unit vector, £ the Coriolis coefficient, and V the horizontal del operator.

Linearised about the state of rest defined by
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e
¢ = @O = ¢ . (12a)
V=0 (12b)
equations (11) become
38¢ _
e T o, 8V=C (13a)
—;‘;—%\\{+V6¢+mxf6\\/=o (13b)
where 8¢ and 8V are now Yperturbations” from state (12). We are going to study

the convergence of an assimilation when the appropriate linearised perturbation
system is system (13). According to the developments of the previous subection,

this is the case in either of the following situations

- the time evolution of the system under observation is given by the
non-linear eguations (11), the "observed solution" being the state

of rest (12).

- the time evolution of the system under observation is given by the
linear equations (13), the "observed solution” being any solution of

these eguations.

Despite their simplicity, considering these situations lead to a number of
instructive conclusions which, as will be seen below, remain valid in more
complex and more realistic cases.

It turns out not to be necessary to determine explicitly the matrix Rg
corresponding to eqguations (13) in order to conclude as to the convergence of
an assimilation. For any solution of equations (13), the following quadratic

quantity

which represents the total energy of the perturbation, is conserved in time

(from now on, we will drop the prefixes § in (13)). The geopotential b being
necessarily positive in any physically meaningful situation, E is 20 and

can be 0 only if the perturbations ¢ and \ are 0 everywhere on S. Let us
consider an assimilation performed on observation of geopotential and/or velocity.
In the simplest updating procedure the perturbation ¢ §/) will be set equal to 0
over that part of $§ over which the geopotential (velocity) has been observed,

and will be kept unchanged elsewhere. E cannot conseqguently increase at the



time of an introduction of observations, and will tend to some limit
E_ 2 0 as the assimilation is infinitely continued. If E_ = o, the assimilation
will be successful in the sense that it will reconstitute the complete mass and

wind fields of the observed solution. The following theorem is proved in T77.

- In the case of a forward-backward assimilation, or in the case
of a purely forward assimilation performed on observations which
have an exactly periodic time distribution, the limit E_will be 0
for any initial perturbations¢ and Y if and only if the available
observations are numerous enough to define uniguely the observed

solution.

It is obvious that a necessary condition for convergeﬁce of an assimilation is
that only one solution of the basic equations be compatible with the available
observations. The above theorem states that in the case of equations (13), and

because of energy conservation (14), this condition is also sufficient.

Energy conservation thus ensures the convergence of an assimilation performed

with equations (13) but it tells us nothing as to the rapidity of that convergence.
The latter will depend to a large extent on the particular space- time distribution
of the observations. We will consider the case of successive observations of the

complete mass field, separated by a constant time interval.

Assuming the Coriolis coefficient to be constant, Egs. (13) read, for wave

vector |k

d¢ -
8 445 p-g (152)
%‘;— - &% - fr = o (15b)
dc -
5 tfD=o (15¢)

where D and r are respectively the divergence and vorticity of the wind field.

The resolvent matrix of system (15) between times t and t + AT, which depends

only on AT, reads
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@ @

2 2
Yy +(1-y )sin g -~ ;? sin B - :ﬁ-y(l-cos g}
k2
R{AT) = 7;-sin [ cos B vy sin B (16)
2
~k
E—‘y(l—cos B) - ysin B 1-Y2(1—cos B)

where o is the frequency of inertia-gravity waves
o =+/f + k" o (17)
and B and y are defined by

B = alt i (18a)

£
o (18b)

The parameter vy, which is always comprised between 0 and 1, is a measure of the
V%o

ratio of the scale defined by % to the Rossby radius of deformation K = -
v is close to 1 for scales large compared to &, and close to 0 for scales small

compared to &.

We will assume that the complete mass field has been observed at successive times
separatedby A1, and that the observations are introduced into the model without
modification of the wind field. The mass field ¢ and the wind field (2] therefore
stand respectively for the vectors X and Y of Section 1. An important remark can
be made at this point: since the geopotential appears in the divergence equation
(15b), but not in the vorticity equation (15¢), an introduction of mass observa-
tions performed without modifying the wind field will modify the first time deri-
vative of D, but only the second derivative of . We can therefore expect an
assimilation of that type to generally have a stronger effect on the divergent

éomponent of the wind field than on its rotational component.
From formula (16) the expression for the matrix R?(AT) is

cos B Y sin B

RY (A1) = (19)
Y 5 :
-ysin B 1-y" (l~cos B)

We will successively consider the cases of a purely forward assimilation and of

a forward-backward assimilation. Unless it is necessary to distinguish between

different values of the argument, we will normally drop the argument Art.

345



2.2.1 Forward assimilation

The wind difference is multiplied at each assimilation stép by the matrix Ry. The

rate of convergence will therefore depend on the spectral radius p(Rz). The
variations of p(R§) with the parameters B and y are shown on Fig. 1. The spectral
radius is everywhere < 1, as could a priori be deduced from the energy conserva-
tion (14). It is equal to 1 for the values B = &m (& integer), Yy =0, vy =1 and
for those values only which, in agreement with the theorem stated above, corres-
pond to cases when the available observations do not uniquely define the

observed solution. For B =47, a "stroboscopic" effect between the intrinsic
period %g- of equations (15) and the observing period AT makes the successive
observations redundant. For y = 1, RY is a rotation matrix of angle B (Eqn. (19))
whose both eigenvalues have modulus 1. Neither the divergence nor the vorticity
is then reconstructed by the assimilation. For Valﬁes of y close to 1, both

the divergence and the vorticity are reconstructed at a slow rate (see T77).

In a realistic barotropic model, the constant @o must be about 9 x 104 m25_2.

The value of vy is then approximately .3 for the largest scales, and tends to O as

the scale decreases. It is therefore for small values of Y smaller than .3 that

a detailed study of the assimilatioh is most relevant.

When y = O (i.e. when £ = 0), the rotational component of the wind is disconnected
from the rest of the flow (Egs. (15)). An assimilation will then reconstruct only
the divergent component of the wind, as can be seen from expression (19). For
small, non-zero values of vy, both the divergent and the rotational components will be
reconstructed, but the former will be reconstructed more rapidly. After an

introduction of mass observations, the proportion of the energy of the difference

flow contained in the geostrophic mode is equal to

2

12 + |p|?

It is at most equal to 1 - yz. As the number of data introductions increases

to infinity, and the difference between the model and the observed solutions

tend to 0, D will either tend to a limit or oscillate between 0 and 1—Y2,
depending on the values of B and y. Fig. 2 shows that for small values of v, D
will tend to a limit which is close to 1. This means that the gravity wave
component of the flow will be reconstructed much more rapidly than the geostrophic
component. This is in complete contradiction with an often made hypothesis

(see. e.g. Morel and Talagrand (1974)), according to which the main difficulty

in data assimilatiqn is to get rid of the spuriocus gravity waves excited by the
introduction of observations. Indeed, what the assimilation will do in the

present case is to reconstruct rapidly the gravity wave component of the flow
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Fig.l Variations of the spectral radius of the
matrix Rz with respect to the parameters B
and Y. Because of symmetries, only the
range 0 ¢ B ¢ 7 1is considered.
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Fig. 2 Variations of the asymptotic value of the

ratio D with respect to the parameters B and
vy. In the blank area, which corresponds to
Y > tan’%, D has no limit and oscillates

between 0 and 1—Y2.

347



(possibly 0, if the observed solution is geostrophic) and slowly the geostrophic

component.

Figs. 3a and 3b show the spectra of the divergence and vorticity differences
respectively at the beginning and after a given time of forward assimilation.
The assimilation was performed with a non-linear spherical barotropic model
(described in T77), the "observed" solution being the state of rest (12), with
@O = 8.13 x 104 mzs_z. The features anticipated above are clearly apparent.
Both the divergence and the vorticity are reconstructed at all wavelengths.
The former is reconstructed more rapidly, especially at small wavelengths

(small y's). Wavelengths such that B = 4w, % integer, have been indicated.

The decrease of the difference is slower for these wavelengths.

The effect of latitude on the assimilation is visible from Fig. 4, which shows
the time variations of the divergence and vorticity differences, at both the

equator and high latitudes. The divergence difference decreases rapidly, at a
rate independent of latitude, while the vorticity difference decreases slowly
at high latitude, and does not decrease at all at the eéuator, where the value

of y is O.

2.2.2 Forward-backward assimilation

In one cycle of forward-backward assimilation performed on N successive
observations of the mass field separated by At, the wind difference (g) is
multiplied N-1 times by RY (-471) in the backward phase of the cycle, and N-1
times by Rz (A1) in the erward phase. The amplification matrix A of (10)

is therefore

a =& o]V R (-an ]V
y Yy

From the energy conservation (14), we can tell that necessarily p(A)< 1.

For N > 2 (if N=2, p(A) = 1 for all values of B and y because the uniqueness
condition stated above is not satisfied), the variations of p(A) with B and vy
are similar to those shown on Fig. 1. 1In particular p(A) = 1 for the same

limiting values. The conclusions already drawn remain valid.

An interesting question is the following: for a given time distribution of
observations, will the convergence be more rapid in a forward-backward assimila-
tion, or in a purely forward assimilation? In one cycle of forward-backward
assimilation, the wind difference is multiplied by the above matrix A. In the
same time, i.e. 2(N-1)At, of forward assimilation, the wind difference is

]2(N—-1)

multiplied by C = [R?(AT) . The question considered is therefore equiva-

lent to comparing the spectral radii p(a) and p(C). Egs. (18a) and (19) show
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Fig. 3a Spectra of the divergence difference at the beginning (upper curve) and
after 9 days of assimilation (lower curve). The unit in the vertical
axis is arbitrary, but the initial difference has been generated by a
random perturbation with standard deviation .58 ms~% on each component.
The abscissa variable is the logarithm of the modulus of the Laplacian
eigenvalue., It mostly depends on the latitudinal wavenumber of the
corresponding eigenfunction. The arrows indicate abscissa values such
that :f=4w, £ integer, together with the corresponding values of £,
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Fig.3b Same as 3a, for the vorticity difference



that Ry

(-At) is the transpose of Rz(AT), so that A and C are respectively equal
~ N-1 ~

to BB and B2, where B is the matrix [R§(AT)] and B is the transpose

of B. Now a result of matrix algebra (see. e.g. Varga (1962)) tells us that,

for any matrix B, p(Bﬁ) is the square of the Euclidean norm of B. Consequently

0 (B%) < p(BB) (20)

which, in the present case, means that a purely forward assimilation will

converge at least as rapidly as a forward-backward assimilation.

Fig. 5 shows the time variations of the rms wind differences in assimilations

of both types performed on data with the same time distribution. In the
beginning, the decrease is more rapid for the purely forward assimilation, in
agreement with inequality (20). Later on, however, the difference starts
increasing in the forward assimilation. This increase, which is in contradiction
with the energy conservation (14) can be traced to the fact that energy is
conserved by the model only to first order with respect to the time discretisation

increment.

2.3 Generalisation to the linearised primitive equation

The foregoing results can be extended to the linearised multi-level primitive
equations. These equations conserve with time a positive definite quadratic
energy, which is a function of surface pressure, potential temperature and wind
(see T77). This energy plays exactly the same role as (14) and it results that
an assimilation performed on observations of surface pressure, potential
temperature and/or wind will converge under the only condition that the available

observations uniquely define the corresponding solution.

In the case of observations of the complete mass field (or wind field), the
liﬁearised primitive equations can be separated into their vertical modes, the
time evolution of each of which is given by Egs. (15),<I>o being replaced by the
appropriate equivalent depth. The equivalent depth decreases, and the paraméter
¥ consequently increases (Egs. (17) and (18b)) as the order of the vertical mode
increases. According to the analysis of the previous subsection, we can therefore
expect that the difference between the rates of reconstitution of divergence and
vorticity will be less marked for modes of higher order. Figs. 6a and 6éb, which
are in the same format as Figs. 3a and 3b refer to the internal mode of a two-
level model, for which the equivalent depth was @1 = 1400 mzs—z. At large
scales, divergence and vorticity are reconstituted at about the same rate. At
small scales divergence is still reconstituted more rapidly than vorticity, but

the latter is reconstituted more rapidly than on the external mode (see Fig. 3a).
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2.4 The effect of geostrophic adjustment

The results established so far are valid for any solution of equations (15),
whether this solution is geostrophic or not. It has often been hypothesised
that geostrophic adjustment, whose effect is to reestablish geostrophic
balance after it has been disrupted by an introduction of observations, is a
necessary ingredient for the success of an assimilation procedure. Our
results show that such is not the case. We will come back later to this point,
and will here study how the rgsults estéblished so far are modified by the
presence of a geostrophiq adjustment process. We will assume this process
(whose exact mechanism is irrelevant) to be such that after each introduction
of observations, and before the next introduction, the gravity wave component of
the flow is completely damped, while the geostrophic ‘component is not altered
in any way. This simple "model" of geostrophic adjustment, has already been

used by several authors (e.g. by Williamson and Dickinson (1972)).

The energy E of the difference flow will now decrease both when observations

are introduced, as before, and between introduction because of the damping of
gravity waves. However, since the energy decrease can be distributed between
the various components of the flow, this decrease will not necessarily be more

rapid than in the absence of geostrophic adjustment.

Acting on the difference (p = O0,D,f) resulting from an introduction of
observations, geostrophic adjustment will leave only the corresponding geostrophic

components, viz.

®o
¢g ="E;'YC
D =20
g
2
= 1._
Cg (1-y7)t¢

This component is stationary with time, and the next introduction of observations
will result in ¢g being set equal to 0. The wind difference(g) will therefore

be multiplied at each assimilation step by the following matrix
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The spectral radius of G, equal to 1-y2, is always less than 1, except
for y=o. Fig. 7 shows the variation of the difference p(Ri) - p(G) with
B and y.

- for large values of vy, this difference is positive, which means that an
assimilation will converge more rapidly if geostrophic adjustment is present.
This can be easily explained: for these values of Y (i.e. for scales large
compared with the Rossby radius of deformation) the effect of geostrophic
adjustment is to adjust the wind field to the mass field, the latter not being
modified. Geostrophic adjustment can therefore do what simple assimilation
cannot do in this particular case, namely reconstruct a wind field consistent

with the observed mass field.

- for small values of y on the contrary (which are the relevant values for
an atmospheric barotropic model), and except in the vicinity of the values

B =0 and B = 7, an assimilation is more efficient if no geostrophic adjustment
is present. This too can easily be explained: for small values of Y
geostrophic adjustment results in the mass field being adjusted to the wind
field, so that mass observations are in effect rejected. For these values,

an assimilation without geostrophic adjustment converges slowly, but the

presence of a geostrophic adjustment only makes the convergence still slower.

3. COMPARTSON WITH RESULTS OBTAINED WITH THE FULLY NON-LINEAR EQUATIONS

It is interesting to compare the theoretical results obtained above with
numerical results obtained using a fully non-linear model. Figs. 8 and 9,which
are in the same format as Figs. 3 and 6, are relative to an assimilation
performed with non-linear equations. The model used, and the space time
distribution of observations, were the same as before, but the "observed”
solution was a fully non-linear meteorologically realistic solution. In
addition, the model contained a divergence dissipation, acting as geostrophic

adjustment (see Sadourny (1972)).

Figs. 8 and 9 refer respectively to the external and internal modes of the
model. The main qualitative features deduced from Egn. (15) are still present.
Both the divergence and the vorticity are reconstructed at all wavelengths

and for both vertical modes. The divergence is reconstructed more rapidly,
especially at small wavelengths and for the external mode. All stroboscopic
effects have disappeared, which corresponds to the fact that non-linearity
destroys any periodicity in the flow. There is moreover an important change
from the linear case: the global rate of reconstitution of the wind field is

now much more rapid (Fig. 10). This fact may be due in part to the dissipation
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of gravity waves, but cannot be due only to that dissipation, since it
remains true for small values of the parameter Y, for which, as seen above,
dissipation of gravity waves will not speed up the rate of convergence. For
instance, the equatorial vorticity is now reconstructed (Fig.11) while it was
not in the linear case (Fig. 4). Non-linear advection must therefore be at

least in part responsible for the speeding up of convergence.

4. THE CASE OF SUCCESSIVE OBSERVATIONS CLOSE IN TIME

The explicit determination of the amplification matrix (10) and/or of its
spectral radius will most often be difficult, if not impossible, since it

will normally require the explicit knowledge of the linearised perturbation
system (3) in the vicinity of the observed solution. In the case of the
meteorological equations, it is unlikely that system (3) can be determined,
except for a few explicitly known solutions. However, when the successive
observations are close in time, the amplification matrix and the corresponding
convergence criterion assume simple forms, depending only on conditions local

in time. We will now proceed to the study of this simpler case.

4.1 The simplified convergence criterion

We will first assume that two observations of X are available, at times t1

and t2. The amplification matrix is

- oY v
A Ry (tz’t1) Ry (tl’tz)

where we do not use the auxiliary time T any more. The reversibility

equation (8) together with decomposition (5) imply

Y Y X Y _
Ry(tz,tl) Ry(tl'tz) + Ry(tz,tl)Rx(tl,tz) =1

where I is now the unit matrix of order q.
Therefore
A=1I-R(t,t,) R(t,,t.) (22)
y 2" Txit1t T2

Equations (3) imply in turn

RX(t+at,£) = At 22 (£) + o(At)
v DX

RY (t+at,8) = At Z (£) + o(At)
X DY ;
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Setting At = t2—t1, and carrying these expressions into (22) lead to

2 DG DF 2
= = = +
A =14+ At DX (t1) DY(t2) o(At™)
. DG DF . . .
To order At, the matrices B§-and 5§-can be taken indifferently at time t1 or t2.
We shall write
2 DG DF 2
=3 +
A=1I+ At X DY o(At™) (23)
with no more precision.
. . .. DG DF .
Let Aj (3=1,...,q9) be the eigenvalues of the gxq matrix X DY The eigenvalues
of A are
2 2 \
aj =1 + Aj AtT + o(At") (3=1,...,q)

The convergence criterion derived above is that in the complex plane all
the eigenvalues aj lie inside the circle (c) centered at the origin with
radius unity. This condition is verified if all the eigenvalues Aj have a

strictly negative real part (Fig. 12).

Q(Aj) <o (i=1,...,q9) (24)

DG DF , . .
The matrix 5§-B§‘1S the product of two matrixes, each of which represents the

dependence of the time evolution of one of the two parts X or Y with respect
.. DG D . .
to the other. The matrix Bg-ﬁg-therefore represents in some sense the coupling

between the time evolutions of X and Y. It will be called the coupling matrix

between X and Y.

In the case when X has been observed at N + 1 successive times separated by a
constant time interval At, it can be shown (e.g. by induction on N) that the

amplification matrix is

3 2 DG DF 2,
A=T1+N At DX DY + o (At") (25)

which leads to the same convergence criterion (24).
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4.2 Application to the shallow-water equations

Let us consider the shallow-water equations (11), the geopotential ¢ and the
velocity Y standing respectively for the vectors X and Y, and equations (1la)

and (11b) for equations (la) and (1b) respectively. For the previous developments
to be valid, we must assume equations (11) to have been discretised to a

finite number of parameters. However, for the sake of simplicity, we will

keep notations usual for a continuum.

The velocity field \ appearing linearly in Eq.(l1la), the equivalent of the
DF
jacobian matrix S§-is now the linear operator L1 which to any "perturbation"

3 Vof the wind field, associates the scalar field defined by

Ll(BV) = =V.{(¢ W)

Similarly, the geopotential ¢ appears linearly in Eg. (11b) and the equivalent
D
of the jacobian matrix Bg-is the linear operator L2 which, to any perturbation

3¢ of the geopotential field, associates the vector field defined by

L,(3) = -7 (3¢)

D . .
The equivalent of the coupling matrix B%‘gg is the linear operator obtained

by composing L, with L i.e. the operator C which, to any wind field

1 27
perturbation 3 \/associates the following vector field

cav = L2[L1(8\\/)] = vlv.(¢aW] (26)

The next step is to determine the signs of the real parts of the eigenvalues
of C. First we introduce the scalar product defined for any two wind field

perturbations 3y and 3\ (with possibly complex components) by
<3V, 3W> = [ ¢ aV.av'* ds (27)
S
*
where 3V' is the complex conjugate of 3V'. Since the geopotential is positive
everywhere on the domain S, (27) defines a scalar product. Then, for any two

two perturbations 3V and 3V

<V, caV)> = [ ¢ aVvlv.(paw)] das = - [v.(¢a\) V. (¢3V'*) das (28)
S S

*
The latter expression is symmetrical with respect to &V and &V' , which means

that the operator C is self-adjoint with respect to the scalar product (27) .
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Its eigenvalues are consequently real. Let ) be one of these eigenvalues.
Setting §V' = §Vin (28), where §Vis an eigenfunction associated with 3},

leads to
2
A< W, 3= [[v.(¢p W] as
S
which shows that ) is negative except if
V.(¢p 8V) = 0 everywhere on S (29)

It is obvious from (28) that any perturbation 3V which satisfies this condition
is an eigenfunction of C, associated with eigenvalue 0. All the eigenvalues

of C are therefore negative, except one which is 0.

If we ignore for the time being the o(At2) term in (23), it results than an
assimilation performed on successive observations of the geopotential separated
by At will reconstitute the windfield except for a residual error verifying (29).
More precisely, taking the vorticity of (26) shows that the vorticity of the
wind difference is not modified in an assimilation cycle. The residual error
GW; will therefore be defined by the following two conditions: it satisfies (29)
and its vorticity is equal to the vorticity of the wind difference at the

beginning of the assimilation.

These results are true only if At is small enough so that no eigenvalue of
the amplification matrix (23) has modulus larger than 1. Still ignoring the

o(At2) term, this condition reads

2
-1 <1+ AM At

R (30)

M

or

where AM is the (negative) eigenvalue of C with the largest modulus. It is not
difficult to see that condition (30) is basically the same as the Courant-
Friedrichs-Lewy condition for stability of a numerical integration of

Egs. (11). It leads for At to values of the same magnitude, typically

At < 15 mn for ordinary spatial resolutions.
The additional term o(Atz) in (23) turns out to be too complex to be studied

analytically, and numerical experiments have been performed in order to determine

if, and how, it modifies the above results. Since the total number of parameters
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of a shallow-water equation model is three times the number of parameters
defining the complete mass field, two successive observations of the latter
cannot in any case define the complete state of the flow. Accordingly, the
experiments were performed with three successive observations of ¢, separated
by At. Development (23) is then replaced by development (25) with N=2.

Condition (30) is replaced by the still stricter condition

At < \/-~£; Atc (31)
M

For the particular model used in the present experiments, the value of Atc

11}

was about 12.6 mn. The time discretisation increment used was
AT = 12 mn = .95 AtC

As for the time interval At between successive observations of ¢, two values

were used, one

At = At

which satisfies condition (31), and the other

At = 3 At = 2.85 Atc

which does not.

Fig. 13 shows the variations of the root-mean-square wind difference in the

two experiments. The difference decreases in both cases and more rapidly, for
the same number of assimilation cycles, with the larger value of At. This means
that, when At reaches the limit value Atc, the o(At2) term is no more negligible,
and indeed is such as to decrease further the spectral radius of the
amplification matrix. An additional fact of interest can be seen from Fig. 14,
which shows the variations of the rms vorticity difference in the same two
assimilations. As said above, the vorticity is not modified by the first two
terms of development (25), and only the o(AtZ) term can account for a possible
variation of the vorticity difference. Fig. 14 shows that this difference

decreases for both values of At, and more rapidly for the larger value.

It thus appears that, at least in the case of the numerical model used here,
the o(At2) term contributes to the convergence of an assimilation and,
particularly, leads to the reconstitution of the rotational part of the wind

field. The basic mathematical reason for this has not been rigorously

LI
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established, but two facts strongly suggest‘that the role of the Coriolis
acceleration is here fundamental. ¥First, it has been shown in Section 2 that,
in the case of the linearised equations, it is the Coriolis acceleration,
which is then the only interaction between divergence and vorticity, which
ensures the reconstitution of wvorticity. The second fact is apparent from
Fig. 15, which shows, as functions of latitude, the proportion of the initial
rms difference remaining after a gilven time of assimilation on divergence

and vorticity respectively (this figure refers to the assimilation performed
with the larger value At = 3At). The rate of reduction of the divergence
difference is rapid and exhibits no variation with latitude. The rate of
reduction of the vorticity difference, on the contrary, is slow, particularly
in low latitudes. This suggests that the reconstitution of vorticity depends
to a large extent on the Coriolis parameter. It must be noted however that
the vorticity difference is reduced at all latitudes, including at the
equator. In Section 2, the same fact was observed only with non-linear
equations, and was ascribed to an additional effect of advection. The same

explanation probaly applies also here.

It is noteworthy that, as in the case of the linear equations, the

numerical convergence of an assimilation procedure is independent of any
specific feature of the solution to be reconstituted and, in particular, of
whether or not this solution is geostrophic. It does not reguire either

the presence in the assimilating model of any dissipative process, intended
at restoring the geostrophic balance after it has been disrupted by the
introduction of observations. These facts are obvious for the theoretical
results, which have been derived without any particular hypothesis about the
"observed” solution, and without assuming the presence of any dissipative
process. As for the numerical results just presented, they have been obtained
from an "observed" solution which had been produced by numerical integration
of the inviscid equations (11). For some reason, this integration produced a
rather large amount of gravity waves. This in no way prevented the reconsti-

tution of both the divergent and rotational parts of the wind field.

Because of the particular conditions under which the results presented in this
Section have been obtained (small time interval between successive observations,
no dissipation) they are not directly relevant to the practical problem of
assimilation. But, together with the results obtained for the linear equations,
they provide a clear description of the processes at play in an assimilation

of mass observations. First, the direct influence of data introduction upon

the divergence results in a rapid reconstitution of the latter. The
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vorticity field is also reconstructed, but indirectly and more slowly, through

Coriolis acceleration and, to a lesser extent, through advection.

As for the somewhat unexpected fact that neither geostrophicity nor the
presence of a geostrophic adjustment process are basically necessary for the

convergence of an assimilation, two conclusions at least can be drawn from it.

- a usual interpretation is that it is because of geostrophic adjustment
that assimilation processes converge at all. Our results show that this
interpretation is not correct. Other effects than gecstrophic adjustment
play a role in assimilation, and these effects must be taken into account

in the definition of assimilation procedures.

- an assimilation can relatively easily reconstruct the divergence field
from the observed time evolution of the mass field. This is clearly apparent,
for instance, from Fig. 15. Indeed, the time evolution of the mass field
contains information on the divergence inaccessible through direct measurement.
For instance, a surface pressure tendency of 1 mb hr~1 corresponds to a
vertically averaged divergence of 3 x 10—7 s~1, well beyond thé accuracy of
direct measurements. In all present assimilation procedures, the

final values of the divergence are determined mostly by the initialization
step, which is intended at suppressing unrealistic gravity waves. But it

is not known to which accuracy the real values of the divergence are
reconstructed by the initialization. It would be of interest to define a
method for reconstructing the divergence with all the accuracy allowed by

the observations of the mass field. The results presented above suggest

that this is possible.

5. THE EFFECT OF OBSERVING AND MODELLING ERRORS

We have exclusively considered so far the "identical twin" case, in which
observations are supposed to be exactly compatible with one model solutién.
This is not so in reality because of observing and modelling errors. We shall
now extend the formalism of Section 2 to the case when such observing and/or

modelling errors are present.

First, one particular solution of the model (which need not be defined

more precisely at this stage) is chosen as a reference solution. Then, for
each observed datum, an "error" is defined as the difference between the
datum itself and the corresponding value for the reference solution just
chosen. The vector made up of all the errors thus defined will be noted E.
With the notation of Section 2, the dimension of E is equal to the product Np

of the number N of observation times by the dimension p of the observed vector X.
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Denoting again by AYn the Y-difference between the model state and the
reference solution at the end of the n-th assimilation cycle, a derivation
similar to that of Section 2 leads to the following relationship between

AYn and AYn+1

- + 2
AY 4 = R AY + BE + o(AY ,E) (32)
where A and B are matrices with respective dimensions gdxgand g x Np. A is
the same matrix as in (9) since (32) must reduce to (9) when E=0. The

matrix B, like the matrix A, is entirely determined by the resolvent matrix

of the linearised perturbation system (3) in the vicinity of the reference

solution.

Now the question is: - as the number n of assimilation cycle increases to
infinity, and E remains constant, how will AYn behave? The following result

is proved in T77: if the spectral radius of A is strictly less than 1, and if
E and AYO are small enough, AYn will tend to a limit as n will tend to infinity.

However, this limit will not in general be O.

This result means that, if the observed values remain close enough to one
particular model solution, and if the spectral radius of the amplifica-
tion matrix corresponding to that solution is strictly less than 1, then
the assimilation will converge to a limit. However, the corresponding
model states at times t1 't2""tN will not in general lie on one model

solution.

The proof given in T77 is too general to provide information of specific interest
for the meteorological problem. It does not in particular allow any practical
estimate of how "small” E must be for an assimilation to remain convergent.

It is probably mostly through numerical experimentation that precise information

can be obtained on this point.

6. A THEORETICAL WAY FOR ACCELERATING CONVERGENCE

We assumed in Section 2 that oné particular arbitrary choice had been made as
for the nature of the vector Y which was kept unchanged when observations of X
were introduced. One can wonder how the convergence properties of an
assimilation will be modified if it is another vector W, and not Y, which is
kept unchanged when Y is updated. It is not difficult to show (Talagrand, 1980)
that keeping W unchanged is equivalent to adding to Y the following correction

whenever X is updated
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A'Y = DAX + o(AX,AY) (33)

In this expression D is a g x p matrix, obtained from the dependence of W with
respect to X and Y, while AX and AY are, as before, the X and Y differences
between the model and the observed solution. Conversely, any correction

of type (33) applied to Y when X is updated keeps unchanged some perfectly
defined vector W. We will consider in this section how the convergence
properties of an assimilation are modified by a correction of type (33).

In fact, only the matrix D will be important for this study and it will not

be necessary to consider the corresponding "invariant" vector W.

Many assimilation procedures have been defined, some of which are in operational
use, which use a correction of type (33). For a large number of them

(but not all) the correctionis purely linear, i.e. there is no o (A¥,AY) term.
The "optimal analysis" when performed with the model forecast as first gquess,
as is most often the case (see Lorenc et al.(1977)),is one of them. The

matrix D, which is then determined on the basis of statistical considerations
is in that case equal to —QCnl, where Q is the covariance matrix of AY with

AX, and C the variance-covariance matrix of AX with itself. vVarious schemes,
intended at restoring the geostrophic balance disrupted by the introduction of
observations, and which are all particular cases of (33), have been defined

by Kistler and McPherson (1975) and by Daley and Puri (1980). Several of them
have been shown to accelerate the convergence rate of an assimilation. For

still another example of (33), see Tadjbakhsh (1969).

The scheme proposed by Kistler and McPherson is of particular interest because
its simplicity allows for a ready analysis of its effects. This scheme consists,
whenever the mass field is updated, in adding on the wind field a correction
which is geostrophically related to the mass correction. The corresponding
matrix D is the matrix which expresses the dependence of geostrophic wind

on the mass field. Since the global correction thus added on the flow is
geostrophic, the gravity wave component of the difference flow is not modified
at an introduction time. In a linear model, this component is not modified
either between two integrations. The Kistler-McPherson correction used alone
in a linear model therefore prevents the convergence of an assimilation, since
it maintains the gravity wave component of the difference flow. The situation
becomes completely different however if the observed solution is known to be
exactly geostrophic and the Kistler-McPherson correction is used together with
a geostrophic adjustment procedure. After geostrophic adjustment has been
applied once, the difference flow is and remains geostrophic. The energy

convervation argument presented in Section 2 then applies in the particular



case of a purely geostrphic flow, and an aésimilation will converge under

the only condition that the available observations uniquely define the observed
geostrophic solution. In the case of a periodic f-plane, it is easy to show
that the assimilation will have exactly converged (i.e. the difference flow will
have been reduced to exactly 0) as soon as the mass field has been updated at

least once at each grid point.

Coming back to the general correction scheme (33), we are now going to study
how such a scheme modifies tﬁe amplification matrix (10). We will assume that
the correction matrix D can vary with the introduction time. After introduction
of observations of X, and correction of Y, at time ti, we are left with
differences AX = 0 and AY(ti). Integrating the model to the next introduction
time ti+1 will produce the following differences (Egs. (6)).

by X(&,

_ oY
1) = Rx (ti+1,ti) AY(ti) + o(AY(ti))

- oY
A1 Y(ti+1) Ry (ti+1’ti) AY(ti) + o(AY(ti))
Introducing the observations at time ti+1’ and correcting Y according to (33)

will set AX to 0 and transform AY into

BY(ey ) = Ag¥(E; )+ DOE ) BAyX(E ) +o(A ¥k, ), A X(E, )

y y .
[Ry(ti+1,ti) + Dt ) Rt ot)] AY (£, ) + ol(a¥(t,))  (34)

The developments of Section 2 therefore remain valid, the matrix R§(ti+1,ti)

being replaced at each assimilation step by
y - Y Y
Ut rty) = B (e ot +D0e; ) R (e, o))

1 i+1

In particular the amplification matrix (10) now becomes

A= pg(Ti,‘TM) p}{(rM,:M Yeaeeennn Pl(r,,t) (35)

A correctionof type (33) will be useful if the resulting spectral radius

p(A') is smaller than p(R). A particularly interesting case is when the

matrix A' can be made equal to 0 by an appropriate choice of the correction
matrices D(ti)' If this can be achieved, the decrease of the difference AY with
the number of assimilation cycles will be faster than exponential. The following

theorem is proved in T77.
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Theorem (T) : The matrix A' can be made equal to O by an appropriate

choice of the correction matrices D(ti) if, and only if, the following

condition (C) is satisfied

(C): the only solution of the linearised perturbation system (3) which

satisfies the condition 5X(ti) = 0 at all observation times t, (i=1,...,N) is

Sy (t) E 0.

the null solution 6X(t)

il

Condition (C) essentially means that, in the approximation defined by the
linearised system (3), the available observations X(ti) uniquely define the

observed solution.

The proof of theorem (T) resorts only to basic notions of linear algebra. It
turns out that a complete assimilation cycle is not necessary to make the
matrix A' equal to O, but that the product of the matrices Pg over either

of the two phases (forward or backward) of a cycle can be made null by an
appropriate choice of the correction matrices D(ti). Also, it is not necessary
for theorem (T) to hold that the same parameters be observed at the successive
observation times, but the nature and even the numbers of the observed para-
meters can vary with time. Moreover, the set of correction matrices which

make A' equal to zero is in general not unique.

Example

Let us consider the linearised shallow-water eguations on an f-plane (Egs. (15)).

For successive observations of the mass field ¢ separated by AT, the

matrices Ri and R§ are obtained from the resolvent matrix (16), viz

@
i = - ag-(sins vy (1-cosB) )
cosf vsing
R =
Yy
o ~-Ysing 1-Y? (1-cospg)

Given N successive observations of ¢ separated by Ar, we have seen in Section 2
that these observations uniquely define the corresponding solution of (15), i.e..
they satisfy the above condition (C) if, and only if, the following conditions

are simultaneously verified

N > 3
B # &m 9, integer
y # 0

vy#1
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Theorem (T) tells us that, under these same’ conditions, there exist correction
matrices D, with dimensions 2 x 1, which make the matrix A' of (35) equal to

0. Since condition (C) requires only N > 3, two such correction matrices must
be sufficient. There must therefore exist two 2 x 1 matrices D1 and D2

such that

Y

(R ¥
y

+D. RY) (R
x' Vy

2

+ D Ry)=0
1 "x

An easy calculation shows that one solution for this equation is

!

1 + 2cosB
sinf

1-2Y? (1~cospB)
Y (1-cosB)

This is always defined, except for values of @o, B, vy for which condition (C)

is not satisfied anyway.

Theorem (T) provides a theoretical basis for optimising the convergence of an
assimilation. However, the explicit computation of a set of "optimal"

correction matrices D(ti) in an operational assimilation raises a number of
difficulties, the most basic of which is the following: the optimal matrices
depend in the linearised perturbation system (3). The latter, in the case when
the basic equations (1) are non-linear, depends in turn on the observed solution,
which is precisely what is being looked for. It is therefore certainly impossible
to determine the correction matrices which make the amplification matrix a°’
exactly equal to 0. But, since an assimilation performed with meteorological
equations already converges with no correction .of type (33) at all, it is
reasonable to assume that its convergence can be accelerated by optimal

matrices corresponding, not to the solution which is actually observed, but

to some already known solution which can be considered as being some approximation

of the observed solution.

Finally, it must be added that theorem (T) per se provides a way of using only
what can be called the dynamical information, obtained from the fact that the
solution to be determined must satisfy the basic equations (1). It is of no
direct help for using any kind of statistical information, obtained from known
statistical properties of the solution to be reconstituted. 1Indeed such
statistical information is commonly used in present assimilation procedures

under the form, for instance, of structure functions. Using statistical
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information amounts to reducing the number of independent degrees of freedom
to be determined. A fully efficient assimilation procedure must use
information of both kinds. A possible way for doing so could be to restrict
the linearised perturbation system (3) to those modes which are compatible

with the a priori imposed statistical constraints.
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