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Abstract

The large-scale effects of mountainous massifs are
investigated with a global shallow water equation
model whose finite difference formulation exactly
conserves potential absolute enstrophy. At first,
the perturbations caused by a circular mountain to
two different idealized zonal flows are investigated.
Then the 300-mbar zonal flow longitudinally averaged
for the winter is considered. The perturbations
brought to this flow by the global orography are
compared with climatology and with the response

obtained, in a similar work, by Grose and Hoskins (1979).




1. DESCRIPTION OF THE MODEL

1.1 Introduction

Charney and Eliassen (1949) published the first study on the
influence of large scale drography upon atmospheric'motions.

They showed in their paper that the large scale quasi-stationary
disturbances in the mid-latitude westerlies are due to contihentain
elevations. They draw this conclusion from the results of an

equivalent barotropic model including orography and surface friction.

This pioneering work has been followed by numerous studies. When
baroclinic models became available, it also became possible to
simulate a thermal forcing and therefore to investigate either
the respective or the combined effects of these two forcings.
More recently, tests have been carried out with full general

circulation models.

The advantage of using a shallow water equation model to study the
dynamical effects of orography upon atmospheric motions is that the
response is solely and unequivocally due to orographic features

and is not biased by the thermal structure. This latter determines
the vertical stability and, indirectly, the vertical wind shear.
Considering the broadvrange of variation of these paraﬁeters,

they would presumably considerably differentiate the responses.

As we are, in this work, first of all interested in the large-
scale effects of the largest mountainous massifs of the earth,

the most appropriate geometry is the global one.

A very similar study has been made by Grose and Hoskins (1979)
who solved the steady state linear shallow water equations on the
sphere by expansion of the dependent variables in truncated ;
spherical harmonics. The results obtained by these two authors

will be compared with those shown in this study.

The model described in this note has been derived from an earlier
model - developed by Robert Sadourny - that has been used as a
forerunner for the ECMWF baroclinic model. It is very similar

to this latter model, as far as a shallow water equation model
can resemble a multi-layer baroclinic model. It has the same
grid, the same spatial differencing scheme for the equations of
motion (if we except the additional pressure term due to the

sigma coordinates and the term involving the vertical coupling),



the same treatment of the polar singularities, the same time- =~

stepping scheme with the same time filter. A difference is to be

found in the space filter. The tendencies of all the historical

variables are Fourier filtered in the main model. In the barotropic

one, only the geopotential (the variable, not its tendency) is

Fourier filtered. Because of these similarities, the description

of the barotropic model has been limited to a minimum and the

interested feader is asked to consult the detailed documentation
prepafed by Burridge and Haseler (197%) and Haseler and Burridge
(19277) for the ECMWF baroclinic model.

1.2 The model equations
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It is well known that the above set of equations satisfies the

following constraints for an integration over the whole globe.
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List of Symbols

u

v
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longitudinal (or zonal) velocity
latitudinal (or meridional) velocity
height of the free surface
gravitykacceleration

geopotential of the free surface (¢= gh)
height of the orography

Coriolis parameter

df/dy

relative vorticity

longitude

latitude

earth's radius

number of longitudinal points
diffusion éoefficient

drag coefficient

u2 +v2



1.3 The spatial differencing scheme

The spatial differencing scheme used 1s the one dev1sed by
Sadourny (1975a,b) which strictly conserves the mass and the
potential absolute enstrophy for the Arakawa C grid.

The equations are expressed in spherical coordinates; the

orography is included in the continuity equation.
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1.4 Modification of the spatial differencing scheme near
and at the poles .

u and v are not defined at the poles. But the geopotential ¢ is
defined, thus its tendency %%- has to be computed.

The theorem of the divergence or Gauss' theorem is used.
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Jdiv (o - gV} ds = § (¢ - gV - dy
T

For the North-Pole (NP), we have (Fig. 1)

div {(¢ - gH)Y}
NP

IM '
AB
= -1 (¢ - gH)(I)-v(I)-a sin & - AX
S 2
I=1
S = gurface of the polar cap
IM = number of longitudinal points
With the help of the continuity equation
3 - .
5 (¢3gp = - div {(¢ - eD)¥hy
it becomes:
IM ————9%
3 _ 1 . A6 ,
S5t lohyp = - 5 IEH (¢ = gH) (I)-v(I)-a sin AA

The same treatment applies at the South-Pole as well.
For the computation of %% at a distance %; from the pole (the first:

v—-line after the NP-line and the last v-line before the SP-line),

we need to know U and P at the poles.

IM
1. ¥ U(I)=0 (1) because if u(A) - as well as v(A) - has to be
=1 defined at the pole, it must vary as a sine for
continuity reasons.
2. We impose:

div (¢ - gHY }p

.
= 5% Co- emy - ay =1 {:w—gH)y-c@y'
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The equality
§ (¢ - )Y - dy' =3 6(p - gH)V - dy
c T

vields the relation (see Fig. 2)
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{U(I) - U(1-1)} %; = (¢ ~ gH) (I)-v(I)-sin %§~- A\ ~
IM ——
-5 2 (- gl) (I)v(I)-sin 82 .y
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if we suppose that, at the poles,.H < h. This assumption is
perfectly correct at the North Pole, but is' very bad at the South - - -
Pole. 1t is nevertheless necessary if we want to use the same

boundary condition as in the baroclinic model.

Relations (1) and (2) allow to compute the IM values U(I). So
computed, the U(I) are not necessarily of the form sine of ) o
because at the poles the U(I) are not true velocity variables.

The same procedure is used at the South Pole.



jtnentonpuuiteadt’ SRRty puipni s SSUPEESPEPRPEEEES e M aiaintaiaiat bbb adenhabesiaien e

We suppose a homogeneous flow crossing the polar cap.

We want to know at the pole:

= 1 . 2
P = ¢ + 5 E where E u” + v

By considering that
v()\) = JE sin A

it comes that
2T )
E == J vZ(A)dx Fig. 3
o S :
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T v (D)

P o= ¢ +

M=

I=1

The v(I) are taken at a distance %? from the poles (see Fig. 3).

For the computation of Z on the first and last v-lines, the
values of u at the poles are needed. They are set equal to zero
and remain zero through the whole integration.

1.5 The time-stepping scheme and the time filter

The time-stepping scheme is a leapfrog scheme for the dynamics
and a forward step for the linear drag and the linear diffusion.

A time-filter of type Asselin (1972) is used with the three
dependent variables. Example with u:

L u¥(T) = w(T) + e{u(T+1) - 2u(T) + u (T-1)}

1.6 Space filter

Latitudinally dependent Fourier filtering of the geopotential
and of the auxiliary potential P.

The filtering scheme has been designed so that.the stability
criterion for the finite difference scheme can be based on the
longitudinal grid length at some fixed latitude and the filter
is then applied polewards of this latitude in both hemispheres
(Burridge and Haseler 1977 and Haseler and Burridge 1977).
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1.7 Linear diffusion

A linear second order horizontal diffusion acts on all the variables.

du _ 2
Nt ... T K V u
BV__ g 2
ﬁ——....+KV v
3 . .
T ... + K VS ¢
The same coefficient K is used for each variable.  The Laplacian

V2 has the form:

. — —a8 . —2
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vn Gx{dxn }o+ Sgn  + - ae{deu }

1.8 Linear drag

A linear drag acts on the velocity

3t - Cu
3V _
ﬁ'-—....—CV

Same coefficient C is used for u and v.



2. DESCRIPTION OF THE EXPERIMENTS

2.1 Preliminary remarks

All the experiments described hereafter have been carried out with.
the following parameter values:

Resolution: N24 (3.75 degrees)

Timestep: 5 minutes

Averﬁge height of the free surface: 7000 m

Time-filter coefficient: ¢ = 0.001

The space-filter starts at the Equator

Diffusion coefficient: X = 0.0 (no diffusion)

3.0. 10° m%s™ ! (with diffusion)

or K

Orography:
Isolated mountain:

circular, cos2?-shaped, height: 3000 m,
radius of the base: 20° (2224 km).

Planetary orography:
As described in Experiment 3.

Growing rate of the orography: 3 days.

The orography begins to grow not'at the start of the integration
but 24 hours later, when the wind field is very well balanced with
the mass field. Tests with orography developing from the start of
the integration were noisier than the ones with a delayed growth of -

the orography.

Initialisation:

The wind field is given. A balanced mass field is obtained by

solving the reverse linear balance equation{



2.2 Experiment 1: Solid rotation

In an unperturbed zonal wind rotating as a solid body with a maximal
tangehtial velocity of 18 msv—1 (Fig. 4), there grows in three days
at latitude 30 °N a circular mountain. After an integration of

10 days - that is to say 6 days after orography has reached its

full height - the perturbation brought about to the flow by this
obstacle is reproduced in Fig. 5. Fig. 6 shows the same perturbed
flow after 15 days. (This integration is performed without

diffusion).

The anticyclonic curvature of the contour lines over the mountain

is explained by the conservation.of the potential absolute vorticity:

D (z+f) _
Dt |h-H| ~

As pressure gradients must be very weak close to the equator, a
pressure chart (in our case the height of the free surface) does
not give a good account of the waves in the tropics. It is better
to look at the wind field. Fig. .7 and Fig. 8 depict the relative
vorticity after 10 and 15 days of integration, respectively.

When these charts are compared with the perturbation vorticity map

in the work of Grose and Hoskins (Fig. 3a in Grose and Hoskins, -1979),
we also note an’anticyclone upslope of and over the mountain, a
downslope cyclone, a train of Waves downstream of theymountain
exhibiting a strong northéast—southwest tilting. This wavetrain
splits into a double structure in latitude. What is less marked

in- the present stﬁdy is the reinforcement in the antipodean regibn
and the réversing of the tilting of the wave after it has passed

the antipodean point. '

Very similar patterns to Fig. 7 and Fig. 8 have been obtained by

plotting the wind component v.

The difference between the 10 day integration (Fig. 5) and the
15 day one (Fig. 6) shows the propagation of the wave.

It could be interesting to compare the response on a sphere with

the one in a channel. Kasahara (1966) placed a circular obstacle
of parabolic shape in the middle of a channel at 45 ON.

10
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Fig. 4 Initial meridional profile of the zonal wind for the solid rotation
case. Ordinate: wind velocity in ms~1. Abscissa: colatitude.
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Fig. 5 Height in m of the free surface at day 10 for the solid rotation case. The dashed
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Height of the obstacle: 2000 m
Radius of its base: 1769 km
Width of the channel: 7075 km

Average height of the free surface: 7000 m

Zonal flow velocity: = 20 ms~1

Between 8 and 14 days of integration with full height of the
obstacle from the start, the perturbation was é wave 3 (Fig. 9).
In the present experiment, we have at 10 days 3 very well marked
waves in the free surface contour chart, with a weak fourth wave
(Fig. 5). The vorticity pattern (Fig. 7) shows 4 waves with a

- weak fifth maximum. At 15 days, a wave 6 has established,
recognisable on the free surface chart (Fig. 6) as well as on the

relative vbrticity chart (Fig. 8).

It may also be of interest to see how the waves generated by an
isolated mountain compare with the theory of the Rossby-Haurwitz
waves (Haurwitz, 1940 summarised in Haltiner and Martin, 1957).
These waves are a generalisation of the Rossby waves in the sense
that they no longer must be of infinite lateral extent. But this
theory_is valid for a channel on a B-plane, not for a sphere.

Moreover it has been derived from the'linearized'equétions of -
motion and requires a horizontal divergence everywhere eqﬁal to
zero, two conditions which are not satisfied in the present experiment.

~According td Haurwitz, we have:

where
B = df/dy
U = velocity of the basic zonal flow
¢ = phase-speed of the wave
L = wave-length

d = half width of the channel (At y = =*d, v = 0)

14
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We shall consider the flow at 15 days as stationary and shall

compute the number of waves. It comes:

2ma cos (300)/L = number of waves

U = mean zonal wind at 30 °N at day 15

U = 11.9 ms_1

°Ny = 9.913 - 10712 pig71

d = distance 30 °N - North Pole
d =6.667-10° m
a = earth's radius

a =6371 - 10° m

With these values, the number of waves is 5 (4.9 more precisely).

As We‘observe 6 waves, the»agreement is surprisingly good for a

spherical geometry.

2.3 Experiment 2: Idealized zonal flow

The same circular mountain is placed in an idealized westerly zonal
flow which is maximum (18 ms™1) at 45° of latitude in both hemi-

spheres and zero at the Poles and at the Equator (Fig. 10).

Fig. 11 and Fig. 12 show the resulting perturbation respectively

in the height field and in the vorticity field after 10 days. In
Grose and Hoskins (1979), the authors arrive at the conclusion

that "the equatorial easterlies provide an effective barrier for
stationary waves'". It seems that a zero wind at the Equator already
prevents perturbations from entering into the Southern Hemisphere

(compare Fig. 7 with Fig. 12).

Fig. 12 shows a much shorter wavetrain than in the three perturbation
vorticity charts of Fig. 4 in Grose and Hoskins (1979) even when it
is compared with the J3 case (300 mbar summer). This could be due

to the fact that 10 days of integration is too short a period of

time for comparison with the steady state. Experiment 1 shows

16
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Fig. 10 Imnitial meridional profile of the zonal wind for Experiment 2.
Ordinate: wind velocity in ms ~. Abscissa: colatitude.
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Fig. 12 Relative vortlclty field after 10 days for Experiment 2.
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that the "best fit" with the steady state solution lies between 10
and 15 days.

It is not irrelevant to compare also the absolute contour height
field (Fig. 11) with the total stream function maps of Fig. 4 in
Grose and Hoskins (1979). We obviously have to remember that the
stream function leaves out the divergent part of the wind. As, in
the experiment under review, it is only over the mountain that the
divergence exceeds +1.0 - 10_6 s_1 (ma.ximum<5-0'10_6 s—1 on the
windward slope, minimum >—3.O-1O_6 s—1 on the lee side), both fields
can be compared if‘the tropical and mountainous regions are dis-
regarded. Thus, we also have a strongly tilted trough just behind
the mountain, an anticyclone between 40° and 60° downstream from
the mountain and there is a slight ridge to the north and a trough

to the south at about 80o downstream.

When the same circular mountain lies at 60 ON, the main feature to
be seen in the contour height field (not shown) is a split of the
zonal-current into two streams, one circulating to the north of the
obstacle, the other to its south. On the eastern slope of the
obstacle, the northern current turns equatorwards until it merges
with the southern current. This creates a closed depression to the
east-northeast of the mountain, 60° - 100° downstream from it. By
looking at the relative vorticity field (not shown), we note, as

in Grose and Hoskins (1979), "a large vorticity response near the
mountain and a strongly east-northeast to south-southwest tilted

wavetrain. The waves display no splitting tendency".

This experiment with the mountéin at 6OON has been repeated without
diffusion. Some irregularitiesA(noise) have been found in the
relative vorticity field, first of all in the area of the mountain,
and, to a much less extent, in the free surface height in the

viecinity of the North Pole.

19



2.4 Experiment 3: Climatological zonal flow

This experiment shows the response of a climatological zonal flow

to the global orography.

A, The planetary orography

This orography has been derived from the N48 GFDL drography, the
construction of which is explained in Holloway and Manabe,(1971)y
It is a smooth orography where large massifs like Himalaya or
Antartica are well represented. On the contrary, high ridges as the
Rocky Mountains or the Andes see their altitude strongly reduced.
This leads to a misrepresentation of the barrier-effect they
actually produce on atmospheric flows (Fig. 13). This shortcoming
is inherent to every orography defined by spatial averaging over.a

coarse mesh.

Maximum height of some mountains:

Alps 496 m

Greenland ‘ 2262 m

Rocky Mountains 2221 m

Himalaya - : 5093 m

Andes . 2634 m

Antartica : " 4065 m
B. The climatolgical zonal flow

For the Northern Hemisphere, the mean zonal wind in winter for the
500 mb surface computed by Oort and Rasmusson (1971) has been used. -
The values ére averages from the North Pole to 10 degrees south. '
For the Southern Hemisphere, the meridional profile of the zonal
wind at 500 mb has been read out from a mean zonal wind diagram
derived by Newell et al (1969). (Fig. 14). :

C. The experiment

For this experiment, the diffusion coefficient is K = 3.0 -~105.
Fig. 15 and Fig. 16 show the response of the free surface and of
the wind field on a global cylindrical projection after 10 days
and Fig. 17 also shows the response of the free surface after

10 days, but on a stereographic projection for the Northern
Hemisphere. Startling is the difference between the Northern and
the Southern Hemisphere: a very perturbed flow has developed in
the Northern one, a slightly disturbed one in the Southern.

20
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Fig. 14 Climatological mean zonal wind. Ordinate: wind velocity in ms_l.
Abscissa: colatitude.
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This is mainly due to the northern position of the highest part

of the Andes (208) and the southern position (508) of the peak of
the average zonal wind (Fig. 14). Noticeable on Fig. 16 are three
anticyclonic cells at about 20 °N. This could suggest a reinforce-

ment by the orography of the anticyclones of the high pressure. belt.

It would be nice to compare the results of the model with reality.
But the atmosphere has no free surface as a barotropic model does!
Thus a comparison has been made with a 500-mbar climatology
(Neiburger, Edinger and Bonner,1971) (Fig. 18). This climatology
has been found very similar to two others (Dzerdzeevskii and
Pogosyna, 1968, and Barry and Perry, 1973) and will thus be
considered as reference. It has to be noticed that the average
500 mbar surface shows a pattern practically identical to that of
the climatology of the 300 mbar surface height in winter. (This

resemblance is less good for the summer).

When the model response (Fig. 17) is compared with the 500 mbar
climatology (Fig. 18), we note that:

a) The closed cyclonic cell in the trough over North America
lies at the south of the Hudson Bay instead of at its north-

northeast as observed.

b) It is slightly off-centered from the North Pole that the
computed free surface height field has its deepest depression
although no depression is observed in this region.

c) The observed trough over the east of the asiatic continent
is badly represented. Instead of a single trough over the
Kamchatka and the Western Pacific, the computed solution shows
a trough which, at the latitude of the Sakhalin Island,
divides into two branches: one over China, the other over

the Pacific.
d) On the 500 mb climatological chart, the Hudson Bay trough is

more pronounced than the trough off the east coast of Asia
while the model produces equally marked troughs.
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Fig. 18 Average 500-mbar surface of the Northern Hemisphere for January.
Heights in tens of feet. (From the U.S. Weather Bureau).

- 26



More generally, it can be said that the observed January 500 mb
pattern is much smoother and more zonal than the result of the
model. If integration is pursued beyond 10 ~ 12 days, the zonal
flow in the Northern Hemisphere breaks in several cells and loses

more and more resemblance with climatology.

The response to the global orography forcing obtained by Grose
and Hoskins (see Fig. 6a in Grose and Hoskins, 1979) approaches
the climatology better than the response presented here (Fig. 18).
But their model also produces an unexisting depression slightly
off-centered from the North Pole. But the two main troughs

(the Hudson Bay one and the one off the east coast of Asia) are

represented with great conformity.

2.5 Concluding remarks

Although Grose and Hoskins have used the 300 mbar zonally averaged
wind together with a meanﬁfree surface height of 10 km while here
the 500 mbar wind has been used for a 7 km deep atmosphere, it is
interesting to see that both works show similar results. But when
these two authors use the climatological 500 mbar flow, but
retaining a depth of 10 km, the response they obtain deviates
strongly from the climatoelogy. (Four large troughs are produced

in this case as Fig. 7a in Grose and Hoskins (1979) shows), This is
a consequence of the basic shortcoming of the shallow water equations
when applied to the atmosphere, a shortcoming already implied by
their name: their "hydraulic" character which makes their solution

very dependent on the depth of the fluid.
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