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Summary

The formulation and organization of ECMWF's adiabatic
spectral model are discussed. The formulation is conven-
tional and rather similar to that of the models of

Bourke (1974) and Hoskins and Simmons (1975). The organiza-
tion of the model is tuned to minimum core storage reguire-
ments and maximum efficiency and flexibility, although it is
realised that the last two conditions may sometimes be
conflicting. Core storage is minimized by adopting a

double gaussian loop structure and allowing I/0 of grid
point data. High efficiency, in particular on vector
machines, is obtained by a diagonal-wise storage of spectral
coefficients. This system also allows high flexibility with
respect to the choice of the truncation and the integration

domain.

On ECMWF's CRAY-1 computer (0.75 Mwords) integrations are
possible within the order of 5000 spectral degrees of

freedom.
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| CHAPTER I

Introduction

The spectral modelling technique has been developed over

the last few years to a mature stage. Some weather services
make use already of operational spectral models, and develop-
ment of such models is in progress at several other
institutes. A comprehensive review of the mathematical
aspects is given by Machenhauer (1978). A description of
operational spectral models is found in papers by Bourke

et al., (1977) and Daley et al. (1976).

Although the spectral technique has proven to be efficient
and accurate, its major draw-back has been its high core
storage demand. This prohibited the development of the
very high resolution models that may be necessary for
successful extended range weather forecasting. The
solution of this problem is therefore of paramount

importance for the development of ECMWF's spectral model.

In this report we describe both the formulation and the
organization carried out at ECMWF., The formulation is
described in Chapter II with details given in two
appendices. The organization is presented in Chapter III.
Particular attention has been paid to the problem of
vectorization of the code in order to increase the
efficiency on ECMWF's Cray-1 computer system. Inte-
grations on this system are possible in the T60-80 range

with 15 vertical levels.



Table 1 Constants and variables used in the model
t time

A longitude

u = sin 8 sine of latitude

r absolute vorticity

D divergence

u , longitudinal velocity component

v latitudinal velocity component

U = u./&—pz u cos ¢

V = v/1-p2 VvV cos 8

q humidity mixing ratio

T temperature

To : reference temperature, constant in time

and only dependent on ¢.

T' = T-To

TV =T 62@%%%%%5) virtual temperature

T% = TV--TO

O surface pressure

Y , pressure

o = éi vertical coordinate

g = %% sigma vertical velocity

w =’%% pressure vertical velocity

o geopotential

b % geopotential of earth's surface
a radius of earth

R gas constant

Cp specific heat at constant pressure
k = R/C



CHAPTER 11

Formulation of the model

1. The model equations

The continuous equations are similar to those used by
Bourke (1974) and Hoskins and Simmons (1976). Instead of
the momentum equations the following two equations for ‘

vorticity and divergence are used:

dg o1 3 3
ot~ a(inz) o Cv'Py) T omey (FutPy) » (1.1)
8D - 1 2 (p b ) + 2 (F+P) - v2(2 IV 4gk BT fnp,)
ot a(l-nu2) 23 uu ajdy v v 2(1-12) o ¥ Px
(1.2)
where:
2 Lnp
-3U %
F =V.r - g&= - R.T!
u V.o Y R TV a9
. 98NP,
F o= -U.¢ -5 AV R (1-42)

20 v aosy
1 = —_—
T (Asu,0) T (Asu,0) T, (o)

T, being the virtual temperature

= 0.622+q
Ty =T §5.622(1+0)

and To(o) an arbitrary vertical temperature

profile.

The non-adiabatic forcing terms Pﬁ and Pv and those in the
equations below are not discussed in this report, except
for the horizontal diffusion in Section 7. A list of all

symbols used in this chapter is presented in Table 1 (page 2).



The thermodynamic equation and the equation for the mixing

ratio can be written as follows:

T w
3T 1 P , 3 LT v
e R Y e _——— 1 + v +
3 a(1-y2) 32 (U.T") o (V.T')+D.T 5an ko P,
1 (1.3)
8 _ _ 1 9 _ 8 .\ . agq o ‘1 )
ot a(l-u2) 2a (U.q) asy (V.q)+D.q -0 - qg (14

Here  T'(A,u,0) = T(A,n,0) - T (o)

and g is the mixing ratio.

The pressure vertical velocity w in the thermodynamic

equation is defined by

O’ .
- 1 -
% = v.Venp, - = f (D+V.V£np*)dc (1.5)
(0]

whereas the sigma vertical velocity ¢ is given by
o =0 J (D+V.V2np*)do - J (D+V.V2np*)do (1.6)
0] 0

The reasons for using the flux form rather than the advective
form of the temperature and mixing ratio equations will

become obvious later in this report (page 20).

From the continuity equation in the 0-system:

JLnp

Qe

*
ot

and using the boundary conditions:

- vy -2

|

= -V.v2np (1.7)

*

(o5
Q

6= 0 for ¢ =0 and o = 1 (1.8)



we easily derive the fdllowing prognostic equation for the

surface pressure by vertical integration

1
e J (D + $.v1np*)do (1.9)
(6]
Assuming the atmosphere to be a perfect mixture of dry air
and water vapour, the hydrostatic equation can be written

as

_9d - _ R.T (1.10)
RE R 1Y} v

¢ being the geopotential and R being the gas constant for

dry air.

2. The horizontal spectral representation

A1l prognostic quantities ¢,D,T,q and gnp, are represented
in the horizontal by a truncated series of spherical harmon-
ics

+M  N(m)

X(A,u,0,t) ==Z_M n=2|m| Xo n(0t) Py j(u).e

iaA

where Xm n(g,t) are the complex spectral coefficients and

Pm n(“) are Associated Legendre Polynomials. The use of
¢ and D as prognostic guantities directly implies a con-
sistent truncation of the velocity components U and V

(Bourke, 1974).

Besides the prognostic quantities, also the orography b 5
and the geopotential ¢ are represented by the same trunca-

ted series.

At present there seems to be no concluéive evidence in
favour of any particular choice of the form of the trunca-
tion N(m). It was therefore decided to allow for maximum

flexibility by adonting a so-called pentagonal truncation,



depicted in Fig. 2.1. This truncation is completely def-
ined by three parameters J, K and M. All common truncations

are special cases of the pentagonal one

triangular M=J=K
rhomboidal K=J+M
trapezoidal K=J, K> M

Furthermore, the model equations may be integrated option-
ally on the globe or on the hemisphere by making use of
the parity of the prognostic duantities. In order to
compute the non-linear terms in the spectral prognostic
equations, the transform method (Machenhauer, 1978) is
applied. Non-linear terms of any order may be computed
exactly within the assumed truncation if the transform
grid is defined on a sufficient number of gaussian lines
of latitude and equally spaced lines of longitude. It has
been shown however, (Hoskins and Simmons (1975)) that in
practice it is sufficient to allow for an unaliased comput-
ation of only the quadratic terms.

In order to find the necessary number of gaussian lines of
latitude for a pentagonal truncation, the product trunca-
tion for quadratic terms must be constructed. The general
form of this product truncation together with the original
truncation is shown in Fig. 2.2 in which quantity N is

defined as:

It should be noted that the triangular indentation in the
upper boundary disappears if M - N > 2N i.e. if M > 3N.
From this figure and the exactness condition for the
gaussian integration it may be shown that the nurber of

gaussian latitudes G must fulfil the following conditions.



it M« 2N G » 2JHKAMHL
if M» 2N G3 31;):+1

These conditions reduce to those for the common trunca-

tions:

Triangular/Trapezoidal N=0 =1 > 2N G =

3J+2M+1
N

&

Rhomboidal M=N < 2N G =

In order to obtain an exact Fourier integration of quadratic
terms on a line of latitude, the number of longitude points
P must fulfil the following condition, independent of the

type of truncation:

P > 3M+1

3. The vertical finite difference representation

Several methods have been investigated to represent the
vertical structure of the prognostic variables. For a
brief review of the attempts to introduce Galerkin methods,
we refer to the recent paper by Staniforth and Daley (1977).
In this model we adopted the more conventional finite
difference approach, similar to the formulation of Hoskins
and Simmons (1975) and identical to that of ECMWF's grid
point model (Burridge and Haséler, 1977).

The vertical distribution of variables is shown in
Fig. 3.1. All prognostic quantities are carried on full
o -levels, whereas the vertical velocity ¢ is carried
on half o-levels, subject to the boundary conditions
(1.8).
Defining

Aoy = Gk+% - O 3

the vertical advection terms have the following finite



difference analogue

93X 1 . , _
(6 550%™ 2K5£L-Uk+%(xk+1_xk) + o (X% ) ]

The vertical integrals in the expression (1.6) for G

and in equation (1.9) are approximated as follows:

N k
& =g Y (D.+v..Vin Ao - v
K+1 1 Pyl)ho, (D.+v..Vnp, )Ao.
3 k+3 j=1 d 3 *777 ] jzl J ] *) %
3 4np T v YA
g ADMy — _ D.+ v..V&np a.
5t jzl( j ¥

N being the number of levels.

The vertical integral in the conversion term (1.5) is
special in that it is intimately connected with the integ-
ration of the hydrostatic equation (1.10). This will be

discussed in the next section.

4. The integration of the hydrostatic equation

Integration of (1.10) gives the following expression for
the height of the k-th level.

U=ka

b - R | T .dno (4.1)
o=1

Ok

Consider a finite difference approximation of this equa-

tion

N (4.2)

L=k



where Bkzkare elements of an, as yet unspecified, upper-

triangnlar matrix B. Now, in order to ensure a cancella-
tion of the transformations between kinetic and potential
energy, it can be shown that the conversion term (1.5) of
the thermodynamic equation must be represented by the

following finite difference analogue.

T _w
v
(

Y

N .
Yy = kT LV -venp, - ;1 Crey (D, *V, -720D,)]

where the elements Ckz of the lower-triangular matrix C

are related to those of B by

Ao%

C =B, - 75
k8 Lk Aok

This general scheme has been implemented in the spectral
model, by leaving it to the user to provide the model with
the des1red matrix B. The program then computes matrlx C
and the scheme - is therefore energy conserv1ng for any arb—
1trary upper trlangular 1ntegratlon matrix B. One ea81ly
shows that the schemes of Hoskins and Simmons (1975) and
Burrldge and Haseler (1977) are special cases of thls

general scheme.

As a default option, the integration of the hydrostatic
equation following Burridge and Haseler (1977) has been
implemented. In this scheme the integration proceeds from
half level to half level:

N o}

=¢,+R J T_,. ’n
r ok Lok+1 v o

L+

2=

¢k+%

and the values at the full levels are found by simple

averaging

¢k = %(¢k+% + ¢k~%)
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The geopotential of the top level however is found by
extrapolation

¢1==¢1% + RT1 lq o]
This leads to the following values of the elements of
matrix B.
Bkz =0 L <k
o]
k+3%
B = % n 2 k#1
kk Ok—3
Oq1
= gn 22 K = 1
1
o]
L+3%
= 2 >
Bkl n 02—1; L k

Although the vertical scheme ensures mass and energy
COnéervation, these quantities are still not conserved
exactly due to time truncation and round-off errors and,
in case of energy, due to the horizontal scheme. As was
shown, however, by Hoskins and Simmons (1975) and Baede
et al. (1976) the spurious change of these quantities is
eXtremely small. In the latter paper it was shown that
the non-conservation of mass is dominated by time trun-
cation errors, whereas the spurious change of the total

energy can be explained by round-off errors.

It was furthermore pointed out by Hoskins and Simmons
(1975) that the vertical scheme presented in this section
does not conserve angular momentum, in contrast with
Arakawa's (1972) vertical scheme. They were able to show
however that the effect of this property on a simulation

of a developing baroclinic wave was negligible.
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5. The semi-implicit time stepping scheme

Following the approach and notation of Hoskins and Simmons,
the prognostic equations (1.1) - (1-9) may be written in
the following way after using the vertical scheme introduced

in the previous two paragraphs.

oz, L : :
5y _ : o ‘.
ot | D
oD
A T T 2
Py D+ = =V (09, * R§T¢+RTO+£np*)—V (RQ(TV¢_T¢))
(5.2)
oT
’ ¥ _ . :
5%——T¢——£.D¢ ) (5.3)
danp > A '
at—* - P = 1T.D+ (5.4)
‘BQ
A -
Fraiie Q+ =0 ~. (5.5)

Here vertical arrows indicate column-vectors and the
‘horizontal arrow a row vector. All terms on the right
hand side of the equations are linear gravity wave terms,
resulting from a linearization of the atmosphere about. the
vertical reference temperature profi]e To(o). The actual
form of the terms Z,0,7,0,P, the matrix T and the row
vector T are not important here. They are all given in
appendix 1. Some remarks should be made however con-
cerning the gravity wave term in the thermodvnamic
equation. In principle it contains all those contributions
to the temperature tendency in which the referencé
temperature To is multiplied by the divergence. Such
contributions come from both the vertical advection term
and the conversion term. It was however shown by Bourke

et al. (1977) that a semi—implicit scheme, based only on
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the contributions from the-conversion term is stable and
might have certain advantages. In the present model,
however, all linear terms have been taken into account.

A discussion of the stability properties of the semi-
implicit scheme as a function of the reference temperature

(To(o)) is given in Simmons et al. (1978).

Now introducing a spectral representation of the prognostic
gquantities, a leapfrog finite difference analogue of the
time derivatives and an implicit treatment of the linear
gravity wave terms, we obtain the following set of finite
difference prognostic equations:

o) = 7 (5.6)

tgm,n+ m, nd

atqm,n+ - Qm,n+

= E£n+l_)_ =t t T
6tDm,n Dm,n+ 57 (¢ﬁnﬂf:R§Tm,n¢+RTo¢lnp*m n+RQ.V
(5.8)
1 - =t
StTm.n+ - Tm,n - E'Dm,n¢ (5.9)
- > =t
dt Rnp*m,n = Po,n” W.Dm’n¢ (5.10)
where
X = (xPATL xTAYy  ang
and
Xt _ %(Xt+At+ Xt—At)

Note that since TV cannot be treated implicitly we write

T, = T+(T,-T) and we treat T = T -T explicitly.

From equations (5.8-5.10), together with the hydrostatic

equation (4.2), the following equation for ﬁi , may be

derived:
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=t a’ t-t a?
= _a +
ig'Dm,n¢ n(n+1) Dm,n+ At'(n(n+1) Dm,n+ = Vi, nt
t-At t-t
+ é*m,n + R.B Tm,n¢ + R TO+.2np* + At.R.ng,n+
+ At'RTo¢'Pm,n) (5.11)

where the constant matrix An is defined by:

_ __a?
_n T n(n+l)

b=

I+ RAT*(B T + T, ,.7.)

I being the unit matrix.

Finally we obtain a new prognostic equation for the

divergence which follows directly from the definition of ﬁt.

=t t-At
_ Dm,n+ B Dm,n¢

O¢ Dm,n+ T At (5.12)

The set of equations (5.6), (5.7), (5.9) - (5.12) forms a
compléete set of prognostic spectral finite difference
equations of the model. However we have added to this model
a time smoother for numerical reasons, and horizontal
diffusion for numerical and physical reasons. They will be
discussed in the next two sections.

6. Time smoothing

It is well known that in order to avoid the growth of the
computational mode associated with the leap frog scheme,
a linear timefilter might be useful.

)

Xp = X+ olX_py - Xiint

where o is a small number, typically in the order of 0.005.

2Xt +

Due to the linearity of this filter, it may be applied in
grid point space as well as in spectral space. Because, as

will be seen later, in spectral space only one time level



of data is available at any time, and in grid point space
two time levels, it was decided to apply the filter on all
prognostic quantities in grid point space in two steps,

each requiring only two time levels.

X, =X_+ a(X - 2X

t t t-At t)
At = X_t + OLXt"‘At
7. Horizontal diffusion

In order to avoid a spurious growth of amplitudes at wave
numbers near the truncation wave number known as spectral
blocking, a crude parameterization of the transport
processes to the smaller, unresolved, scales may be
necessary. This parameterization generally takes the

form of a linear or non-linear horizontal diffusion.

In view of its easy implementation in spectral models and
its high scale selectivity, we choose a linear V" hori-
zontal diffusion on o-surfaces. Because, as said before,
only one time level of data is available in spectral space,

an implicit scheme was implemented according to

- X
Xeent “t-at _ (BXt) -
241 Jt “ad TOTtHAL

where the first term on the r.h.s. of the equation

represents the adiabatic tendency. 1In spectral form this

leads to:
Xt+At - a4 -—Xt—At_+2At (BX&,n) -
m,n a4+2AtKn2(n+1)2 - “m,n ot ad -

It can therefore be considered as a correction to the
prognostic variables after completion of the adiabatic

timestep.
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In order to avoid damping of uniform rotations (n=1) on
the sphere the diffusive correction of vorticity and
divergence takes the form: (Bourké et al.,k1977 and
Orszag, 1974)

4
a

a4+2AtK[ n%(n+1) 2_4}

beiﬁg equal to
1 for n =1

Appliéation of the horizontal diffusion on o surfaces may
lead to spurious diffusion near steep topography. In
other models this probleﬁ Was‘avoidéd by performing the
diffusionVOn‘pressuré surfaces followed by interpolation
to o surfaces. But there is no conclusive evidence in

favour of such a procedure.

The abové‘implicit diffusion scheme is slightly inconsistent
with the semi—implicit time stepping scheme in that the
computation of ﬁé,n and therefore of the linear griziiy
wave terms is based on the undiffused divergence Dm,n .
Again, however, in view of the small diffusion coefficient
and of the fact that horizontal diffusion is anyhow a rather
crude parameterization, this seems not to be a serious
problem. Test integrations have shown that it does not

lead to any numerical instabilities.

It remains to be shown if horizontal diffusion is necessary
at all. This may depend on such factors as the horizontal
truncation, the length of the forecasting period and the
physical paraméterization scheme. For example, the
Canadian group (Daley et al. (1976)) was able to produce

short range forecasts without horizontal diffusion.

T e
o Wl
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8. Transformation between spectral and grid point space

As stated in section 2 of this chapter, the transform
method is used to}compute the non-linear quantities in

the spectral prognostic equations. This requires trans-
formations back and forth between spectral and grid point
space. The algebra involved has been spelled out in
several publications (Daley et al. 1976), (Bourke et al.,
1977), (Machenhauer, 1978) and needs not be repeated here.
An exception is made for the expressions used to compute
the velocity components U and V on the gaussian grid.

In previously published models it was found necessary to
compute first the spectral components Um,n and Vm,n
within a truncation large enough to yield exactly equivalent
spectral representations of {U,V} and {z,D}. This then
was followed by a straightforward computation of the grid
point values of the velocity components. However, because
a spectral representation of U and V is nowhere in the
model explicitly required, it was found a considerable
advaﬁtage to compute the velocity gridpoint values using
the following expressions: |

M imA
{u,v} = {u,.vte
m=-M

with:
N .
Up = —anz(:,) C a1y P, nPm,n(¥3)- ST e (1 ?)dlfﬂ;“w )]
(8.1)
N(m) o 1
Vo= _an=Fm|[n(n+1) Ca.n P, p i+ (o) Pm,n (145 }—ai—(ujﬂ
| (8.2)

Apart from avoiding the storage of spectral velocity
components, it has the extra advantage that the same trun-

cation is used throughout the model.
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CHAPTER III

Organisation of the Model

9. Constraints

The development of ECMWF's spectral model was subject to
several constraints which we shall outline here in rather

arbitrary order:

a) Within the core storage constraints of ECMWF's
operational computer facilities (about 0.75M word
core available to the user), high resolution

- spectral integrations must be feasible. In a
triangular truncation the maximum zonal wave
number should be in the range 60-80, with

15-1levels in the vertical.

b) The model must be compatible with ECMWF's grid
point model with respect to data and history file
format and with respect to the implementation of

the physical parameterization scheme.

c) If any I/0 is necessary to meet the above require-
ments, it must be possible to mask it with the

computational CPU-time.

d)' The code must be flexible with respect to the type
of truncation and with respect to the integration

domain (global or hemispheric).

e) The code must run efficiently on ECMWF's vector

rmachine.

The first constraint was met by elaborating a scheme
suggested by Burridge (private cormunication) that makes

it possible to 1limit the number of fields of spectral
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components to one for each prognostic variable and each
verticel level. This is achieved at the expense of some I/O
of grid point data and some corresponding extra buffers in
core. This extra core, however, increases only linearly
with resolution whereas the core required for spectral
components increases quadratically. This organiSation

scheme is worked out in detail in section 10.

The fact that there is only I/0 of grid point data makes
the I/0 easy. The 1/0, the grid point data and the file
structure are identical to those of ECMWF's grid point

model. Thus this meets the second requirement.

Whether also the third constraint is met is a point of
further investigation and will depend, among others, on

the final operational computer configuration.

No serious problems were encountered in the vectorization
of the cbde, except for the legendre transform from
spectral space to grid point space. This problem was
solved by a diagonalwise arrangement in one—dimensional
arrays of the spectral components. This will be elah-

orated in detail in section 11.

Bearing in mind that all spectral components on a
diagonal in the (m,n) plane have the same parity, the
proposed arrangement of spectral components makes it
very easy to implement flexibility with respect to both
the type of truncation and the integration domain. This

is discussed in section 12.

The fact that at any time only one time-level of spectral
data is available creates some problems with respect to
the semi-implicit scheme. The exXpression in square
brackets on the r.h.s. of equation (5.11) cannot be
computed in spectral space because two time levels and

tendencies are required simultaneously. The formulae used
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to compute this term on the gaussian grid are presented

in a second appendix.

10. The double loop structure

The traditional approach of the organisation of a spectral
model is to perform the computation in one loop per
timestep over the gaussian latitudes. The non-local
nature of the spectral approach requires that all spectral
coefficients should be kept'intact during the scan. If,
moreover, two time levels of grid point variables are
required, it follows that in the traditional approach
three complete fields of spectral coefficients per
vertical level of each prognostic variable are needed:

one for the previous time level, one for the present and
one for the tendencies. These core requirements prohibit
high resolution integrations unless the use of peripheral
I/0 devices is permitted. Layer-by-layer 1/0 of spectral
coefficients, however, seems unsuitable because the
introduction of physical parameterization schemes is
simp]ifiéd if1grid’point values are available simul-
taneously at all levels. This would increase I1/0 time

to a- level out of proportion to CPU-time.

An organisation scheme with two transform loops per time .
step was proposed by Bourke et al. (1977). - One loop
handles the physical processes, the other one the dynamics.
Although some reduction of core storage is claimed it has
the disadvantage of extra transforms. An unexplored
advantage of this approach may be that different grid .
resolutions could be used in bhoth loops in order to
minimise aliasing due to the highly non-linear physical

processes.

To achieve substantially higher resolutions, a further
decrease of, in particular, spectral coefficient storage

is necessary. The amount of I/O time involved however
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should not exceed computational CPU-time so that masking

is possible.

The scheme proposed here limits the number of fields of
spectral components to one for each prognostic variable

and each vertical level, at the expense of I/0 of grid
point data and some extra grid point buffers in core.

The amount and the format of I/O is such that compatibility
with the grid point model with respect to data storage can
easily be achieved. The principal of the scheme is as
follows:

Consider a centred time step:

S
+OAE i

5 = Sn—l ot

n+1

At the beginning of time step n a field of spectral
coefficients Sn is available in core in a buffer SB. In

a first gaussian loop the corresponding grid point values
Gn are computed and temporarily stored on disk. ~In the
second gaussian loop grid point values Gn—l and Gn~at'time
levels n-1 and n are read from disk. Next on each latitude
line the contributions to Sn—l and 2At %;? are computed
and their sum accumulated in the same buffer SB. Clearly
the advantage is that one spectral field SB is sufficient.
The fact that never more than one time level of spectral
data is available has, however, some disadvantages which

will be discussed below.

Elaboration of this scheme is complicated by the time
smoothing, the convective adjustment and the semi-implicit
time stepping scheme, but no serious problems were
encountered. The complete scheme will now be described

in some detail and is presented schematically in fig.10.1.

At the beginning of a timestep n we have available the

N

spectral coefficients of the prognostic variables Sn’

which have not been subject to time smoothing and



convective adjustment. In the first loop the corfesponding
gaussian grid point values are computed. Whilst computations
on row j are in progress, grid point values of row j-1 are
written to disk A. At the end of the loop all information
is essentially available on disk A and the spectral fields
may be blanked. In the second loop these grid point data
are read in again from disk A and at the same time half-
time-smoothed grid point data En_l are read from disk B.
These data were written to this disk in the second loop

of the previous time step (see below). Of course data for
row j+1 are read with computations on row J progressing
simultaneously.

First of all present time step data én are convectively ‘
adjusted. It should be noted that these adjusted data are
used in the subsequent computation of adiabatic and non-
adiabatic tendencies without re-analysis and truncation

in spectral space. This is in contrast with the Australian
model (Bourke et al, 1977).

It should be noted furthermore that problems arise if a
convective adjustment scheme should be applied that computes
vertical momentum exchange. This would result in an
inconsistency between the velocity fields on one hand and
vorticity and divergence on the other. Here the advantage
of the flux form of the temperature and humidity equations
becomes clear. Had the advective form been chosen, »v;
adjustment of T and g would have made it necessary to
recompiute the corresponding horizontal space derivatives
of these quantities in order to avoid inconsistencies.
After convective adjustment the time sméothing of Gn-l

can be completed. This means that from now on we dispose
of convectively adjusted present time step values Gn and
time smoothed values Gn—l of the previous time step. This
is then the best opportunity to produce so-called history

files, containing results for verification and display.
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Here also the first part of the time filter (equation 6.2)
is applied to Gn. The results are produced in a special
buffer for output to disk B.

On the basis of G and Gn_ladiabatic and non-adiabatic
tendencies may be computed now. As far as possible these
tendencies are added to Gn—l for transformation to spectral
space. Those parts of the tendencies which involve
horizontal derivatives are kept and transformed separately.
Finally, all relevant quantities are transformed to spectral

space and the contribution of the current row j to

§n—1 + 2At (i;?) is added to the spectral field in core.
After completion of the second loop, the timestep is
finished except for the linear semi-implicit contribution
to the tendencies and for the horizontal diffusion. As
mentioned above, the r.h.s. of the Helmholtz equation
(5.11) is accumulated in the course of the second loop.
After transformation the r.h.s. is stored in a special
spectral field, reserved for this purpose. Here finally
the Helmholtz equation is solved and the semi-implicit
linear contribntions are added. The time step is completed
by applying horizontal diffusion according to equation
(7.2). '

Fig.10.2 presents the total core storage required for
spectral and gridpoint fields in an adiabhatic model, as

a function of triangular truncation. The full curve is
the sum of spectral and grid point fields, the dashed
curve,'thé grid point fields only. The discontinuities
stem from the assumption that the number of grid points

on a gaussian latitude line is a power of 2 and fulfils
moreover equation (2.2). Clearly, adiabatic integrations
up to T80 are feasible on ECMWF's CRAY-1 computer with its
0.75M word core storage. Moreover, sufficient core memory
is left for a sophisticated physical parameterization scheme
at least up to T70.
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In Fig.10.3 the amount of I/0 is shown in k-words per

time step. Again the step function behaviour stems from
the power of 2 assumption and from the fact that the 1/0
concern grid point data only. The actual I/0O time involved
is a much more important figure but cannot be given here
because it depends on the actual configuration of peri-
pheral storage devices. In particular; in the second

loop 1/0 to and from three different files take place
simultaneously. The I/0 time to CPU-time ratio may
therefore be optimised by storing these files on three

different disks, each with its own processor.

Against the advantage of a considerable core storage
reduction must be set the disadvantage of having only one
time. level of spectral data available, as already mentioned
above. This makes it necessary to compute the r.h.s. of
the Helmholtz equation in grid point space and to perform
extra transforms back to spectral space.. A further
consequence is that the hydrostatic equation is integrated
in grid points, rather than in spectral space. This saves
again a spectral field in core. Expressions used for the

r.h.s. of the Helmholtz equation in grid point space are

presented in the last section. First we shall discuss

the solution of the vectorization problem.

11. Vectorization of the Legendre transform

For vectorization purposes, the computations in a spectral

model may conveniently be classified in five groups:

a) grid point'computations, including the physical

‘parameterization schemes;

Vo
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b) Fast Fourier transforms;

c) contributions from each gaussian latitude to the

inverse Legendre transforms to.spectral space;

d) spectral computations (e.g. horizontal diffusion;

semi-implicit part);
e) Legendre transforms.

Grid point computations are vectorized easily by inner loops
over the grid points on a latitude line. A vectorized FFT
routine was obtained from C. Temperton, ECMWF, and need.

not concern us here. Also, the spectral computations and
the inverse Legendre transforms are easily vectorized,
whatever way of storage of the spectral coefficients is
chosen. The traditional column-wise storage of spectral
coefficients in one-dimensional arrays (Fig.11.1b) however
is unsuitable to the vectorization of the Legendre

transforms, where sums of the type:

Xm(uj) = g N s
are computed for each m within the truncation. The problem
is that the array index increments n rather than m.

Storage in double-indexed arrays offers a solution but
seems rather inconvenient in case of any other than

rhomboidal truncation.

We choose to store the spectral coefficients diagonal-wise
in one-dimensional arrays so that the array index
increments both m and n (Fig.l1l.l1a). The inner vector
loop is then a loop over all (m,n) points on a diagoﬁal.
The length of the diagonal is fixed in an outer loop over

all diagonals.
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Clearly for low resolution, vectorization may be rather
inefficient, particularly in case of triangﬁlar tfuncation
where the length of the vector loop is decreasing
iineaflyo For high resolutien this preblem is less _
important however, Nevertheless in a vectori7ed spectral
code efflclency may be an 1mportant crlterlon 1n selecting

a type of_truncatlon.

12, Truncatioh and integretion domain

The dlagonal -wise storage of spectral coefflclents offers
a convenient way of 1ntrodu01ng f1e31b111ty in the code,
both with respect to the choice of the truncation and
with respect to the integration domain. This stems from
the fact that all coefficients on a diagonal have the same
parity. A global model can therefore be transformed
easily into a hemispheric one by skipping every second
diagonal. This avoids such artificial features as the
"jagged" truncation (Hoskins and Simmons, 1975). At the
same time flexibility with respect to the choice of the
truncation is obtained by specifying in a one-dimensional
array the length of each diagonal, the only condition
being that all (m,n) points on a diagonal actually belong
to the truncation domain. As already explained in

section 2, we choose to restrict ourselves to a pentagonal
truncation which, by specifying the values of three
parameters may be reduced to the common triangular,

rhomboidal and trapezoidal truncations.

It is realised that this high flexibility may be at the
expense of efficiency, by causing considerable over-head
in setting up the vector-loops. The present model should
therefore be considered as an experimental model for
research purposes. For an operational model, the Legendre
transforms should be rewritten for a specific truncation

and integration domain, preferably in Assembler Language.
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Appendix 1

The non-linear quantities in the prognoStic équation (5-1)-
(5.5) are defined as follows: (suffix k indicates the

vertical level)

- 1 3 )
7, = — = F F.]
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k a(l—uz) oA TV aosu k
- 1 9 ) -~ 2
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A = - 12y 3 O-ap) - 357 Ve @) * D9y
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N
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The elements of matrix T in the thermodynamic equation are

defined as:

L " (To,,.-To ) 1 L
T = Sh o] -To 0, .,-A0, -
kJ ZAGk- k+1 k k+3 j Ao (k3 ) -
L (To,-To, ) { TGl T
+ 57— [ (To _-To, _ o, ..Ao. - }
240, k™ k-1 k-3 dos (k=13 3)
+ KTOk ij

Finally the elements of row vector T are defined as

ﬂk = Aok.
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In this appendix we derive the formula used to compute

the r.h.s.

of the Helmholtz equation on the gaussian grid.

The solution of the ‘Helmholtz equation (5.11) may be

written:
5t = a7t |‘—3-2—“——'D13"AJc + At I ]
m,nd =n - n(n+l) “m,ny m,n¥
2 -
. B _a® .
with Im,n¢ Rm,n+ * n(n+1)vln,n+ + At.R.B 1m,n+
‘ t-At L t-At,
Rm,n+ = <¢*fR'E’T4 +At.RB T2 +RTo znp*
* T
tot R‘0+P * RE TV+)m,n
T1 and T2 have been defined in Appendix 1, the other

guantities in Chapter II.

The term 1
m

bl

cannot be evaluated in spectral space

because two different time levels and tendencies are

involved.

It is therefore computed on the gaussian grid.

After computation and subsequent Fourier transformation of

the terms R, Fu,

we have

Fv,

Y w., Rn& )P (wy)
j +UJ H

’ m,n
3 J
Vow, [(—F— .FuT(u )
i J Ta@-uD)
J
d : m -

Yw. [ (UT')mP
39T a0 ¥'m,n

UT', VI', E on a gaussian latitude,

(u
n

¢ )+(vm'>¢—af m,n¥s)

J.)
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where upper index m indicates the m-th Fourier component

and the vertical arrow a column vector over the vertical
levels, as before.

This leads to the following expression for the gaussian

contribution of the j-th gaussian latitude to At,Im nt

2
At B 2, ,m a . om it s L\
PN ijja(l uj)R4§uj)+ ETSY) .1mFu¢(uj) At.im.R.B(UT'),
J

m
+aE+(uj)} Pm n(uj) :

2

2
a m )™ 2 d |
“atarTy PV, (vy) -0C.R.BOVEN)LY (1-w®) g P ()]
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Fig. 2.1 Pentagonal truncation
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Fig. 2.2 Product truncation
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Fig. 3.1 Vertical distribution of variables
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10.1 Scheme of double loop time step



900 |-
’800 B
700 |
600 -

500 |

Kilowords

400

300

200+

Grid point fields only

100 000 Jemeeee=-

0 10 20 30 40 50 60 70 80
Triangular truncation

Fig. 10.2 Total memory needed for the spectral and gridpoint fields for a
15 levels adiabatic model. (The number of points on' latitude

lines is supposed to be a power of 2)
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