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1. Introduction

An important decision made in the process of
designing a numerical model is the choice of vertical
coordinate. There exists a variety of possibilities
(e.g. Kasahara 1974, 1977). However, each of them is
associated with its own problems of representing
topography. By far the most frequent choice is the
so-called sigma system (+hillips 1957 ) with coordinate
surfaces following the ground surface. A number of
other "transformed vertical coordinates" can be
constructed in a straightforward manner following the
Phillips’ idea. The problems which will be discussed
here are common for all transformed coordinate systems.
Thus, it will sufifice to consider only one of them,

We shall concentrate on the sigma system, their most

popular specinmen,

A number of studies dealing with the problem
of calculating the pressure gracient force in the sigma
systen: and the related problerms has been nrade (e.g.
Arakawa 1972; Arakawa and Lamb 1977; Brown 1974;

Corby et _al. 1972; Corby et _al. 1977; Gary 1973;
Gilchrist 1975; Jdanjié 1977; Kurihara 1968; Phillips

1674; Liousseau and Pham 1971; Smagorinsky et_al. 1967;

Sundqvist 1975; Tokioka 1978), This paper is devoted

10 these probleis as well, We shall treat them following
the ideas of the paper by Janjié¢ (1977). Namely, we shall
start our analysis with a discussion of the physical
meaning of the pressure gradient force in the sigma systen.
Some of the problems related to the vertical distribution
of variables in nuiterical models will be discussed

as well. A study of the origin of the pressure gradient
force error in the sigma system will follow. A rather
zeneral method for minimization of the error based on

the results of this study will be presented. Also,
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a problem related to false vertical staggering of the
pressure gracient and Coriolis force will be pointed
out. Fihally, a systematic deriVation of the scheme
ior the omega-alpha term of the thermodynamic equation
ensurlng con31stency in transforhatlon between the

kinetic and poLentlal energy will be presented.

2. | General form of the pressure gradient'fo

force in the sigma coordinate system

The pressure gradient force in the‘sigma
coordinate systen may be interpreted as the result of
applying the -Voperator to the geopotential at a
constant presSure level calculated by extrapolation
from a neighbouring sigma surface using the’hydrostatic
equation. Namely, let the geopotential be a function
of the form

@ = ¢(X-!q,z} (1)

where
'?z?(?) (2)

is a continuous, monotonous function of pressure. Let
the pressure gradient force be calculated at a pressure
level 4%, and let the corresponcding value cf % he

denoted by
S*=5(P) . (3)

This situation is schematically shown in Figure 1.

Using the notation introcuced in the figure,
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Figure 1. Stencil and notation used to derive the
general formula for pressure gradient force

in the sigma system.
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Figure 2, The usual vertical distribution of dependent

varial:les in the sigma system,
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at the points 1 and 2 we may write

3 =b,+ 2L (57 (1)
* ) "
B, = qb‘t * 5‘%324(\? =% . (5)
Here
Qb*:qS(xsﬂv;*)k. (6)

Combining the equations (4) and (5) we may write

P - ) b _29
_%3 _.:__qbzfg 6$,3 37)?’: 73_3_?24 SF'B'@F*EE )

Here Ab is the distance between the two points at which
the geopotential is being calculated. If A3 is

oriented in the direction of the largest variation of
geopotential ¢ﬂ'along the pressure level -pﬁ in the limit
as Ad tends to zero, the expression (7) tencs to

-V b =- ¢+L%F . (8)

As usual, the subscripts # ana ¢ indicate that the V
operator is appliec along constant pressure and ccenstant

sigma surfaces, respectively.

The formula (§8) represents the general form
of the pressure gradient force in the sigma system in
the sense that any of the commonly used expressions can
be derived from it by a particular choice of the

function %¥. For instance, if we choose

F=tnp (9)
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the formula (8) takes the form

-VP¢=-V¢¢-PTV¢lnP. (1o0)

3 Discretization of the pressure gradient force,
hydrostatic consistency and distribution of

variables over grid points in the vertical

Let us for a moment consider the usual vertical
¢istribution of variables over grid points shown
schematically in Figure 2. The symbol 57¢ denotes the
simplest finite difference approximation to the derivative
of geopotential with respect to %, while the other symbols
used in the figure have their usual meaning. If we
restrict ourselves to, say, x-component of the pressure
gracdient force, using the notation introduced in

Figure 3, similarily as before, we may write

v x ¥ ok Xk
Sre - B B i) BB L a1

Ax T AR AX

The superscripts here indicate the sigra level at which
the variables are located. Conmnparing formulae (7) and
(11) it is readily seen that (11) may be interpreted

as a result of applying the operator -0x to the values
of geopotential oktained by extrapolation via the
hydrostatic equation fror the level Ux to the constant

pressure level p* corresponding to $*==%(‘$;-P$AK).

However, tiris extrapolation is sometimes
perforiec in a hycdrostatically inconsistent way
(Rousseau and Pham 1971; Janjid 1977). Namely, the
geopotential at the level Oy is normally calculated
starting from the lowest sigwa level at which ¥ and57¢’
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Figure 3. Stencil andynOtation used to calculate
preSsﬁre gradient force approximation in
case of the usual distribution of
variables over grid points in the sigma

system.
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Figure 4. A schemnatic representation of hydrostatic
inconsisténcy in evaluation of geopotential
at a constant pressure level in case of the
non-staggered vertical distribution of variables
over grid points in the sigma system.
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are defined, and adding the thicknesses of the layers

above evaluated using a formula of the form
+1
¢n _¢x=_2,_<57,¢u+:+ é‘?'¢%)<\$“‘+l‘?“‘) . (12)

The function %' may not necessarily coincide with the

function ¥ (e.g. Arakawa 1972; Arakawa and Mintz 1974/.

Cf course, the geopotential at the lowest sigma level

requires somewhat different treatment, but we shall not

consider this problem here. On the other hand, we have

used 5$¢K to calculate the geopotential P* at the level

¥*. This situation is schematicaliy shown in Figure 4.

As it can be readily seen, this procedure may be

hydrostatically inconsistent in the sense that the

geopotential at the sigma levels anc at the pressure

levels is not calculated integrating the same approximation

to the hydrostatic equation. Namely, the formula (12)

implies the linear profile of geopotential in between

the levels 7" anda ¥°. This profile is represented

in the figure by the dashed line connecting the points

(i ,¢#H3 anc (7«;b5h The slope of this line is

defined by %(&V¢&“ + 0g®*) a5 indicated in the figure.

On the other hand, when integrating the hydrostatic

equation in between the levels v and‘$m+', we are

assuming a different linear geopotential profile

indicated in the figure by the solid line connecting

the points CF*,9*) ana (3%,9%), Tnis time the slope

is defined by 5$¢K. It should be noted that this

inconsistency may occur even if =%, Namely, as it

can be seen from Figure 2, the point (?*,¢*) would

again lie off the line connecting the points (?Hﬁdﬁw)

and ‘(?K,¢K?v.
An alternative to the distribution of variables

shown in Figure £ is the "staggered" distribution shown

in Figﬁre 5. Here we do not specify sigma and 7
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Figure 5. Staggered vertical distribution of
dependent variables over grid points in

the sigma system.
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Figure 6. Stencil used to calculate pressure gradient
force approximation in case of staggered
distribution of variables over grid points

in the sigma system.
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within the layers. They are defined at the interfaces

of the layers only. In this case, the problem of
calculating'fhe pressure gfadient,force in the sigma
system reduces to linear interpolation of geopotential

to a pressure level $* corresponding to $*=%(%%,

Nawely, using‘theyﬁotation introduced in Figure 6, in
case of a hydrostaticaily consistent linear interpolation
with respect to 7, we may write

St [0+ B - - ] )

It shoulu be noted that the expressions for P in (13)

can he written in the form

__> ¢K;+'/Z. Cb K~if2 (‘;*

-1 \ll
2 \Fn.wlz.' k=12

"5 +0$¢($* ¥, aw
where

q—g = 2_( K+HI{2 qsn-l/z) ? (ﬁmrz \?K—lﬂ. SFQS M—L&_ '( 1 5)

I(.H/z w =2

Using the icdentity (14) and the notation just introduced,

instead of (13) we may write

-CSX¢* = -éxav‘ —S:;a*é\x (5*_‘?‘¢> —($*-?¢58x(5$¢) s (16)

where for exauple,

x P - _p
2 \?G—Fq $ "$3
If we define the height at which the pressure gradient

force is calculated by

e o

Bx="5" o (18)

the last term on the right hanc¢ side of (@16 ) vanishes.

Thus, at this level, the x-component of the pressure
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Figure 7. An exanmple of inconsistency in evaluation
of pressure gradient force in case of
staggefed vertical distribution of
variables over gric points in the sigma

system.
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gradient force approximation takes the form
— e ¥, —_— , .
-8, =5 +68s@ &3 . (19)

The formula (19 ) has been derived in a hycrostatically
consistent manner. However, it should be noted that
in case of very steep slopes of the sigma surfaces and
inadequate horizontal resolution, the geopotential at
the pressure level defined by (18) may still be
calculated inconsistently, This situation is shown

schematically in Figure 7.

From a rather general point of view, the
preservation of the hydrostatic comsistency in the
discretized equations seems to be desirable. Namely,
it implies a coherent definition of a unique continuous
profile of geopotential which, as we have seen, is needed
to calculate the pressure gradient force in the sigma
system. The requirement for the hydrostatic consistency,
as we have defined it here, is obviously equivalent to
the assumption that the geopotential vary linearily
with T in between the grid points at which it is
calculated integrating the hydrostatic equation. On
the other hand, it is rather difficult to make a general
assessment as to how the hydrostatic inconsistency
affects the accuracy of the pressure gradient force
"approximation.' Some numerical results reported by
Phillips (1974) indicate that, at least if 3T #3%', its
influence may be. large. For this reason it seems
desirabhle to try to avoid it. The staggered distribution
of variables is more suitable for this purpose, since
it offers a possibility of calculating the pressure
gradient force in a hydrostatically consistent way

without any additional effort.
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The heuristic arguments discussed so far appear
to be much too vague to form a sound basis for judgement
as to which of the two distributions should be preferred.
A more detailed analysis of the problem has been
performed by Tokioka (1978). Namely, starting from a
simple idealized situation, he examined the effect of
several distributions of the variables over grid points
upon siwmulation of wave propagation in the vertical.

It appears that with the both distributions considered
here the internal waves are treated as internal, though
there is an unavoic¢able error in the finite difference
vertical wavelength, The vertical energy transport is
accelerated in the both cases. However, in contrast to
the staggered ¢istribution, the non~-staggered one allows
a computational mode in the vertical. Thus, it appears
that the ataggered distribution should be considered as
a better cioice. For this reason, in the rest of this
paper we shall mainly concentrate our attention on this
type of grid. However, most of the considerations will

be valid for the non-staggerec grid as well.

4, Fressure gradient force error in the sigma

system and its minimization

To analyze the origin of the additional error
of the pressure gradient force in the sigma system as
compared to that which occurs; e.g., in the pressure
systesi, consider the situation shown schematically in
Figure &. The two piece-wise linear curves represent
geopotential profiles at two adjacent grid points.

The heavy aots correspond to the values of geopotential
at the interfaces of the sigma layers. As before, the
values ®* and ¢i', denoted by crosses, are used to
calculate the pressure gradient force at the pressure

level corresponding to % This situation obviously
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corresponcs to the staggered dlstrlbutlon of variables
1n the vertical,

‘The geopotentlal at the 1nterfaces of the sigma
layers is calculated integrating a finite difference
approximation to the hydrostatlc equatlon. This procedure
is subject to an unavoicahle error ar1s1ng due to the
finite c1f1erenc1ng. However, thls error is not pecullar
to the sigma system.A It occurs in the pressure system
as well, For thls reason we shall 1vnore it for a moment,
An addltlonal error in the s1gma system may occur as g
consequence of the assuwsption that the geopotenthl Vary
11near11v w1th F within the 1ayers. This assumption is
ﬁlnherent in the hydrostatlcally consistent formula (19).
N'mely; when ceriving this formula we have used the
linear 1nterp01at10n to ocflne the Ceopotentnal at the
‘pressure level corresponolnn to ‘5* Houever the
'uev1at10n of the éeopotentlal frow the linear proflle
may he large and therefore, mnay affect considerably
the accuracy of the pressure gradlent force. This’
situation is visualized in Figure 8, the dashed lines

representing the "true" profiles.

The situefion is essentialiy‘the same with
the fornmula (11) corresponding to the non-staggered
¢istribution. Namely, in this case we have also assumed
‘that the neopotentlal vary llnearlly with 5 in between
the 31gpa level at which the geopotentlal is (eflned
’ano the pressure level at uhlch the pressure gradlent

'force 1s calculateo.

The error which we have ¢iscussed so far
cannot be ellmlnatea unless the gcopotentlal is a
linear function oi $ Cbviously, only in this case
the 11near 1nterpolat10n will be error-free. Tnerefore,

it appears desirable to minimize the vertical variation
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Figure S. A schematic representation of the geopotential
profiles at two adjacent grid points in the

sigma system.




64

of the derivative of geopotential with respect to %.
Apparently, the error introduced when calculating the
geopotential at the interfaces would be minimized in
this way as well. We can try to do this by a suitable
choice of the function %, Namely, consider the hydro-
static equation of the form

—_— -

3¢ _ _RT 2
3t S . (20)

Introducing the function 7 the equation (20) can be

rewritten in the form

8¢ _ . RT o
3;:-7’:[;;- (g1
, S

It

Y -
[N

viks

»

1

o

) (22)

there can be no variation of the derivative of geopotential
with %. This will be the case if

o
¢

P

By

o =CT (E3)

Q.

an¢ C is a constant. Solving the equation (23) we can
find an optimum form of the function % for any given
tewperature profile. HoWeVer, we may be interested to
mininize the error for a set of temperature profiles,
rather than for a particular one. In this case instead
of (23) we may require that, e.g., the vertical integral
of the second derivative of geopotential with respect
to % take on a winimum value. In this way, we may

hope that the error will be minimized "in the mean".

An example demonstrating how this procedure can be used

will be given in the next section.
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5. The choice of the function % - an example
Let us assume that the function % has the form
7 =X (24)
where
x=tnp - - (@5
The hydrostatic equation then has the form

3¢ - __R T (26)
-+

- m xM

3% !

To minimize the interpolation error the parameter m
should be chosen in such a way that the second derivative
of geopotential with respect to % is minimized. It can
be verified in a straightforward manner that

—2LnC14+M) —(2m+1)nn

2
.
5 - -n e KT -mT] (27

-2[n¢1+m) =@2m+)Inx

.
-8

3 3 _
am 3%z~

T
[(;Z +2tm-LyMT-C2- + 20dx3 ]« (28)
We may now require the expression (2&) to vanish

“in the mean", i.e.,
. X s
2 3P Uy =
S 3m WCLX =0 . (29)
Xt

Here ¥, and x, are the values of x at the top and at

the bottom of the model’s atmosphere. The equation (29)
is rather difficult to'solve for m, If we assume that
the top of the model’s atmosphere is located at, e.g.,
£00 mb, using épproximate methods, we find that m takes

on a value in between 1 and 2. This is a very crude
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'///////// /////4/§ 0= 0.0

f.= 200 mb

o k=1
U= .25
k=2
= .50
k=73
0=, :
Loy 75
‘U= ,875
k=5
T=1.0

Figure 9. Schematic representation of the vertical
‘ B discretization used in the numerical test.
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m k=1 k=2 k=3 k=4 k=5
0.0 term 1 4571.6 11177 14464 16221 17142
term I -4423.7 -11120 - 14439 - 16222 - 17144
error 153.95 56.852 25.066 —0.5508 —2.6641
0.2 term I 4577.6 11177 14464 16221 17142
term I - 4450.2 -11125 - 14441 - 16221 - 17144
error 127.43 51.590 23.250 0.0391 ~2.0391
0.4 term I 4571.6 11177 14464 16221 17142
term I1 - 44774 - 11131 - 14443 - 16221 - 17144
error 100.25 45.477 21.086 0.1484 ~1.8711
0.6 term I 4577.6 11177 14464 16221 17142
term II - 4504.5 -11138 - 14445 - 16222 -17143
error 73.141 39.383 19.504 -0.5234 -1.3359
0.8 term 1 4577.6 11177 14464 16221 17142
term 11 -4531.6 - 11144 - 14448 -16221 . - 17144
error 46.012 33.141 ‘ 16.688 0.1172 .~ 2.2969
1.0 term I 4577.6 11177 14464 ., 16221 17142
term 11 - 4559.1 - 11150 - 14450 - 16222 — 17144
error 18.543 26.773 14.633 - 0.4258 -1.9531
1.2 term 1 4577.6 11177 14464 16221 17142
term II - 4586.4 - 11156 ~ 14453 - 16222 ~17144
error ~ 8.7891 20.488 11.859 ~0.5859 -2.5781
1.4 term I '4577.6 11177 14464 16221 17142
term I1 -4614.2 - 11163 - 14455 - 16222 - 17144
error - 36.559 13.828 9.4219 - 1.0859 -2.2930
1.6 term 4577.6 11177 14464 16221 17142
term 11 - 4641.8 - 11170 ~ 14458 - 16223 - 17144
error - 64.180 7.2659 6.9141 - 2.0859 ~2.2188
1.8 term 4571.6 11177 14464 16221 17142
term I - 4669.5 -1n77 - 14461 - 16223 - 17145
error -91.863 0.3672 3.7109 - 1.9258 - 3.5938
2.0 term I 4571.6 11177 14464 16221 17142
term I1 - 4697.4 - 11183 - 14464 - 16224 - 17146
error -119.82 -6.5391 0.9023 - 2.9336 - 3.8047
Table 1. The first and the second term of the pressure

gradient force approximation as well as their

sum as a function of parameter m. All values

. . 2
are given in m2/sec .
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estimate, however. In a similar way it can be shown
that the optimum value ofm in the sense of the formula
(29) is decreasing with increasing the height of the top
of the model’s atmosphere., It should also be kept in
mind that the formula (29) disregards the inversions.

As a compromise between the requirements for
ninimization of the interpolation error and for
computational economy, if the top of the model’s
atmosphere is located at 200 mb, we can choose the value
M=1, The finite difference hycrostatic equation then
has the form ‘ .

8 :._‘ __T_".'.__ . ‘ ( O)
?gb"’ R 2¢enp 3

K
We can define the logarithm of pressure within the layer

e.2. by
“enpk=-%%lnpkdm_+énpm+m) . (31)

This form of the h&drostatic equation is used in the
HIBU (Hydrometeorological Institutes and Belgrade
University) model (Janjié 1977, 1979; Mesinger 1977)

and in the family of models developed from it (e.g.
Buzzi et _al. 1979; Mesinger 1679).

To test the performance of the proposed
method, a numerical test almost identical to that of
Phillips (1974) was performed. Namely, we examined
the artifiéial value of -V§¢ introduced by the sigma
system when the geopotential was only a function of
pressure, i.e. in the atmosPherélwith zero analytic
pressure gradient force. The geppotential profile

was assuwied to be of thevform

¢$=1054.5 + 80397.3z - 7659.02% + 11lo.o =3 (32)
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where

2= - x 4 11.51292546 (33)

Here the SI system of units is used. As in the Phillips?
(1974) experiment, we considered two columns located
along, say, x-axis at a unit distance from each other.

The Surface pressure at these two points was assumed

to be 800 mb and looo mb respectively. According to

(32), the corresponding values of the surface geopotential
were 18625.727 m2/sec2 and lo54.5 m2/sec2. The sigma

coorcinate was defined by

PP ,
J= T (34)
where
T=%-%, (35)

and 12 andé P, were the values of pressure at the earth’s
surface anc at the top of the model’s atmosphere which
was situated at oo mb. The interfaces of the layers
were locatec at the sigma surfaces o., .25, .50, .75,

' .875 and 1. This situation is shown schematically in
"Figure 9. The hyurostatically consistent formula (19)
was applied at the points marked by crosses in the
figure. As in the Phillips?’ test, the geopotential at
the interfaces, located at the points denoted by heavy
¢ots in the figure, was prescribed using the analytic
expression (32). Thus, only the linear interpolation

error was left.

The values of the first and the second term
on the right hand side of formula (19), as well as the
values of their sums, for different values of the

paraneter m are summarized in Table 1. These sums
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should ideally cancel. Note that due to very steep

slope of the sigma surfaces we may have a situation
similar to that of Figure 7 within the two lowest layers.
However, as it can be seen from the table, in this case
the error is generally of the order of the round-off
error and shows erratic behaviour with variation of m,

On the other hand, at higher levels there is a reasonable
agreement between the experimental results and the
theoretical considerations. Namely, the results

incicate that the proposed method for minimizing the

pressure gracdient force error acts in the right direction.

6. False vertical staggering.of the pressure

gradient and Coriolis force

As we have noticed, the formula (18) can be
considered as the definition of the height at which the
pressure graaient force, and therefore the corresponding
velocity coniponent, is being calculated. In certain
cases, however, this definition may imply false vertical
staggering of the pressure gradient and Coriolis force
if the formula (19) is appliec in the most straightforward
way. Namrely, the two velocity components may be defined
at different pressure levels. TIn case of steep topography,
the variation of velocity in between the two pressure
levels may he considerable. Thus, noticeable errors may
be made when calculating the Coriolis term. As a
conseqﬁence, the meaning of the geostrophic balance
in the model’s atriosphere in the vicinity of the mountains

nay be considerably altered.

The problem which we are discussing is to
a certain extent related to the choice of the
Gistribution of dependent variables in the horizontal.

Three possibilities denoted by B, E and C are shown in
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Figure 11, False vertical staggering of;velocity

components on the E grid.
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Figure 10. 1In Figure 11 the E grid is used as an example
to visualize the false vertical staggering of the velocity
components., The symbol 4% is used in the figure to denote
the geopotential at the ground surface at the gricé points
markec by heavy cots. The two intersecting rectangles
represent schematically the segments of the lowest sigma
layer in between the grid points, as viewed in the
¢irection of the x and y-axis respectively. A similar

exaniple can be constructed for the C gric.

The situation is rather different in case of
the B grid. Namely, assuming that the y-axis is oriented
northward, the x-component of the pressure gradient
force is calculated as an arithmetic mean of the
contributions half a grid length south anc half a grid
length north of the velocity point. The southern

contribution is calculatec¢ at the level

——¢*
=7, (36)
an¢ the northern one at the level
* .
N . (37)

The level at which the mean value is located 1is not
explicitly specified. HNowever, assuwniing that both
tite x=-component of tlie pressure gradient force and 7
vary linearily with y in between the points at which
the southern and the northern contributions are
calculated, this level is defined by

- p———— %

/

— x4
Y AT =%

»* .
7; . (38)
Eere, the averaging operator with respect to y is
Gefinea aralogously to that applied in the direction

of the x-axis. Similar considerations for
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/

Figure 12. Stencil used to define an approximation

t. the pressure gradient force on the E grid.
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the y-component show that the level at which this

component is calculated is defined by

= |
Py =7 . (39)

Faving in mind the definitions of the averaging operators,

we finc that
* *
e 7% . (40)
i.e. the both conmponents are cefined at the same level,

To avoi¢ this probler on the E grid Janjié (1977)
nropose  to apply an averaging technique analogous to
that applied on the B grid. Namely, using the notation
introduceu in Figure 12, the x—component of the pressure
gfadient force can be calculated according to the

formula
—a
_§x¢) +ﬁ.¢=‘2i5(n.[TP23+TH1+TP‘|3+m“] (41)

where

ARpal = By By = Syt 85B5)(F-Tp)

l TP.Q_‘ = 5—5;0 - 5‘2.0 -i— (8$¢| +67¢2)(§'¢—?:)

. o (112)

EEA - d')z,<r S AN ERD

|0

Pl = P~ -5 B+ &, BGEE)

For brevity, the symbol € has been introcduced to denote

the finite difference cpproximation to the second¢ term
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on the right hand side of (8). It can be verified

that providecd the y-component is calculated analogously,
we shall have the situation similar to that on the B grid,
This averaging technique is applied in the HIBU model

an¢ in the family of models derived from it.

In contrast to the grids B and E, it is rather
cifficult to see what can be done to avoid the false

vertical staggering in case of the C grid.

7 . FPressure gradient force

and energy conservation

For a number of the pressure gradient force
schemes an associated procecdure for calculation of the
omega-alpha term of the thermodynamic equation
ensuring consistency in transformation between the kinetic
and potential energy has also been developed. Experience
has shown that it is desirable to preserve this
consistency even in numerical models designed for
short-rangze siiulations. Otherwise the numerical
instability may be encountered after less than a day

ol simulation tine in the presence of steep topography.

As we have seen, the procedure described in
Section 4 may lead to rather unusual finite difference
forms of the hydrostatic equation, For this reason, in
this section we shall derive a general scheme for the
oniega-alpha term of the thermodynamic ecquation
corresponding to the general form of the pressure
gradient force approximation in case of the staggered
distritution of variables in the vertical. For the
sake of completeness, however, we shall start with the

continuous equations.
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The kinetic energy generation due to the

pressure gradient force, per unit mass, is given by
v be-ve%d + ve2T s 43)
Multiplying the expression (43) by a mass element
dm:—é—ﬂdAcLa' (44)
we obtain
~V-v,pdm = —%- [TV T +TV. g%‘vqﬂclkdw 45
Bere dA is an area element and the other symbols used

have either tiheir usual meaning, or they have already

been defined. Taking into account the identities

TV Vg P = Vo (TYP) = PG (V) (46 )

W gr=L3¥vp, (47)

(48)
the equation (45)may be rehritten in the Ionn
V- Gdim -.:—%—[-%-(ﬂv¢)-¢§'{-Cﬁ%(ﬁ&)-w-(g%v@ﬁ)]d'ﬁ«dv. (49)

However, since

Y 2 = _3 é_f[ . - * D
b0+ a(r(vrc)_s_vcaﬁoat +d>7fo) U%%g_fg—ﬂcs-gf .

(50)
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the equation (49) takes the form

- V. Vo dm = —é—[-vq-(rrv¢)-%,c¢v%{+ emré)

(51)
2% 3 Y @ -
+e 22, 7i 3. (3§ 7P ldbds
Taking into account the hydrostatic equation
=T (52)
instead of (51) we may write
~¥e VpPdu = -%[—v.r-(wcb)—a%(qscg{),w&)
(53)

~TdG 2 7Y T p] dAd T

and fihally,
-V Vhddm = - }EL- Vo (1Y)~ 3 ($716)- 2 (S ) o Jdads (54 )
where
w= &P _ 1;4-V5V%1°*‘&2£ . (55)

Integrating the equation (54) over a closed comain, the
contribution of the first term in square brackets
vanishes., Provided F=0 at the top and at the bottom

of the model’s atmosphere, the same is true for the
second term when the integration is performed with
respect to sigma., The contribution of the last term in
the square brackets cancels in the total energy egquation
with thie contribution of fhe omega~alpha term of the
thermodynamic equation which enters the total energy

equation with the opposite sign.
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Stencil used to derive an energy conserving

scheme for the omega-alpha term of the

Figure 13.

thermodynamic,equation.
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Let us now proceed with the discrete equations,
For convenience we shall treat the two terms of the
pressure gradient force separately. Let us start with
the first one as defined by the formulae (19) and (41) .
Namely, congider the stencil of grid points shown in
Figure 13. It does not imply any particular choice of
the distribution of variables over grid points since it
represents a subset of most of commonly used grids.
Note that we do not require the grid distances to be
constant. Let the symbol 7, denote the value of 7 at
velocity points, and let a mass element be defined by

Am:—é-ﬂ;AxAgM. (56 )

Using the notation introduced in Figure 13 we may write

- =g —_— —

-1 [(AMM5x¢ )4+(AM\( 5)@9 )2] ‘L{'L(m“')"uAﬂqﬂ‘éq‘\'% . “-)ZLAXIA‘#}AO’ B7)

The right hand side of this identity can be written in

the form
-—[(Amué ¢ )4+(Amu.§ ¢ )2] {-L‘b (7, “4)(3'4;,-(7/;(-“2)1537_] 5‘15 U&“)qﬁﬂz,#ﬁ*u)z‘sﬂz.

58)
- - . —q VI
5B,y ) by, 4 BB 1-5 B 0y, |2

After rearrangenment, instead of (58) we may write

e Tvq (7]’ u) AH (Ted), AHZ‘
= famu 8,0 ) + (hwusd),] '%‘ ¢ = ZX:A‘G: )
(59)

1(¢5+¢3)(7f*“)4’534 — JEr b )Tz A2 }A,X Dy;AT
DXy ﬂ‘ag

or, in a more compact form,

X -

—ur?xa‘z«mﬁ"i EL6 (TubYy) - -Lach(‘?s u.Ag)}AdeAQ' . (60)
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Obviously, in the direction of the y-axis we shall have
a similar situation. XNamely, starting from an identity

analogous to (57) we arrive to the expression
—F% i —
~vsy® aw= L B LS Ao -4 8y @ a0 ]axayac . (61)

Summing the expressions (60) and (61) we obtain

X 4 — ~
~uby B am- vy Fhm= é— {¢"v,-cn;w)-v,,-<$"1r*v)}Axang. (62)

Here Vg is the simplest finite difference approximation
to tire v operator applied at a constant sigma surface
ana the averaging operator"V denotes the two-point

mean calculated in the direction of velocity components.
Summing up the expressions (62) over a closed domain

and all values of the vertical inc¢ex, we obtain
— — o '
-V P hm= %—Z b Fpo (MY ) AXAYAT — +Z Vw'($c‘ﬂ'*\v)AxA3A0‘ . (63

On the left hand side of this expression we recognize
the contribution of the first term of the pressure
gradient force to the overall kinetic energy generation.
Since the summation is performed over a closed domain,
the second term on the right hand side of (63) vanishes.
Thus, this feature of the continuous atmosphere is
reproduced without any additional effort. On the

other hand, taking into account the finite difference

approxiﬂation to the continuity equation we may write
'l ".oaﬂ- —_— . .
P V- (e)=-9 2T - ENCLON (64)
and finally,

E Ve (T W)= S (PIT) = S (DT 2Ty +‘<F°c$,¢§%f+1r§¢5¢¢ . (65)
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“Substituting (65) into (63) we obtain

e .
T -V, P Am:-é—Zc?chbrm)AxAgm —%—2‘_ §¢ (D7) Axayda
- . : (66
+ = T4 axayac +%—2m‘¢c§,q§m;§m .

As in the continuous case, provided5”=° at the top and
at the bottom of the model’s atmosphere, the first term
on the right hand side of (66) vanishes. When the grid

'size tends to zero, the last two terms tend to

! il Y}
0 ZT P AxpyAT —b So( 2F dm

(67)
rad &

§ Z7E dad axayas ——> Sagiham |
Therefore, if Within'the«omega-alpha'term of the
thermodynamic equation we use the approximations

) =T a7
%at = -0 7 3 &r¢
(68)

the overall contribution of these terms to the total
energy change rate will compensate exactly the
contributions of the last two terms in the equation (66),
as in the case of continuous equations. It should be
‘noted that the approximatiohs (68) do not imply any
particular choice of the hydrostatic equation. Only

the values of geopotential at the interiaces of the
layers and the cdrresponding values of the sigma

coordinate should be'known.
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Let us now coansider the second texrm of the
pressure gradient force, which we shall denote by
as before, Its overall contribution to the kinetic

energy generation is given by

ZCVAmM= Z M V€ AXDYAT (69)

Here the summation sign has the same meaning as before,
When the grid size tends to zero, as we can infere from
(47), the expression (€9). tends to

ST CAXDYAT — SAV« Vg pdm , (70)
Thisgives us an idea how to design the finite difference
approximation to the remaining part of the omega-alpha
term correspounding to the horizontal advection of pressure
along the sigma surface. Let us consider the € grid

first., If we use the approximation

— X, =T * — 9, =T &
(V- p = = (T udeB 63 + T 553784 F ) (71)

the overall contribution of this term to the total energy
change rate will compensate exactly the contribution of
the expregsion (€7) as in the case of continuous

equations. Namely, multipying (71) by
Amy = —éfoAn AT (72)

and summing up, we obtain an expression identical to
(69) which enters the total energy equation with the

opposite sign.

The approximation (71 ) could be used on the
E grid¢ as well. However, since it would imply the
separate cancellation on the two C subgrids of this grid,

it might be advantageous to use the approximation
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of the form

XVeVep L (mwee)d | (73)

Here the averaging operator denotes a mean value at

a mass field point calculated from the values at four

nearest velocity points. The approximation (73) is used

in the HIBU wmodel and in the family of models derived
from it.
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