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I. INTRODUCTION

In 1973-7k Nils Gustafsson and I made at SMHI an experiment
in order to see if, with linear regression the 24-hour error
field of the numerical model could be predicted, using EOF
(Empirical Orthogonal Functions) parameters of the initial
fields as linear predictors. These fields consisted of three
levels, 1000, 500 and 300 mb over an area considered as a
probable domain of influence for height changes over Scandi-

navia.

Due to computer limitations only a very small sample could

be processed. The results were promising, not only with

respect to geographically fixed errors but also to some extent
to model errors in flow development. However, these experiments
were not continued at that time due to a number of intervening
factors, SMHI to be moved from Stockholm to new premises in
Norrkdéping, change of numerical model and of computer etc.

and it is only now that the experiment can be taken up again.

It is then natural to consider also the possibility of intro-
ducing non-linearity in some simplified way and, if this
turns out to be feasible, also the possibility of using a
statistical model for forecasting directly atmospheric fields

instead of error fields of a numerical model.

0f course the crucial point in any of these two undertakings
is that the best data sample available only gives analyzed
fields every twelve hours. With such a large timestep one
would assume a very large area of influence and a high degree
of non-linearity, all leading to a prohibitively large number

of predictors.

However, the very important results obtained by Lorenz [1977]
in his experiments with statistical barotropic forecasting
using initial time derivatives as extra predictors, indicate
that the effect of non-linearity may possibly be taken into

account in a simplified way.
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I have therefore found it of interest to try to investigate

by means of a very simple equation what kind of approximations
one can expect to be realistic iﬁ statistical prediction model.
What I present here is not a final result but may still be of

interest.

2. TIME DERIVATIVES

In order to discuss these problems it is sufficient to con-
sider a simpliest possible non-linear equation
Ju au | (1)
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In a finite difference scheme an integration over n timesteps
will require an area of influence of 2nAx, which translated
into atmospheric conditions means more than a hemisphere in
less then 12 hours. This is really in drastic contrast to
synoptic experience where one usually makes 12 hour extra-

polations taking only a very limited area into consideration.
We shall now use eq. (1) in order to calculate terms in the
Taylor expansion
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where all derivatives are taken at x and t and where 0 is
large. It is of no interest in this connexion to use an
expansion of u(x,t-0) in order to reduce the number of terms
on the right hand side. Differentiating (1) with respect to
time and eliminating lower time derivatives we obtain for

second, third and fourth order derivatives.
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In for instance (4) we immediately note that there is only
one term, the last one in the last bracket, that requires
five gridpoints in a finite difference approximation. For
all the others it is sufficient with three gridpoints. Thus,
even if the area of dependence increases linearly with the
number of timesteps it is obvious that it carries very little
weight at the boundaries in comparison with more central
parts. The last term in (4) will have its largest values for
large values of u and véry small scales. Since this is some-
thing that one wants to suppress in atmospheric models
beyond a certain limit, a neglect of such terms may be of
advaﬁtage. Compariéon with the atmosphere is facilitated if

we non-dimensionalize for instance equation (4) and take

A
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where Ro is the Rossby number and with the choice given of

U and L has the very large value of 0.3.
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In this case third order terms are multiplied by 0.09 and
fourth order terms by 0.027. Since Rossby numbers of 0.2 or
0.1 are more realistic for atmospheric conditions we find

here a clear indication of truncation possibilities.

3. EOF-EXPANSTION

In order to investigate another aspect of the non-linearity
‘we shall assume that observed values of u(x,t) have been
expanded into empirical orthogonal functions over a limited

interval in x, (-L,L) and in time (0,T).
ul(x,t) = cZun an(t) hn(x) (6)

where we have the orthonormalization conditions
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and where ¢? is the variance of u with a mean value sub-

tracted out.

Under these conditions we have

where An are the eigenvalues of the covariance matrix of u
from which the EOF:s are calculated. In order to present
some typical values for M I have taken data from an expan-
sion of a year of 700 mb geopotential heights in a north-
south direction over Sweden. With seven gridpoints (Ax =

150 km) the following U -values were obtained

n =1 2 3 4 5 6 7
0.8873 0.4398 0.1280 0.0460 0.0224 0.0133 0.0067
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H
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We now introduce the expansion (6) into the third order terms
of eq. (3). We obtain
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With k, m, n = 1-7 we have here 84 third order terms and it
is clearly not possible to have all theée as predictors.
However, considerable reduction can be made. Looking first
at the third order product of the constants u it is clear
that uz is much smaller than uf their quotient being 0.003.
Thus, it is easy to make a scheme by which small terms are
neglected. In general small values of u correspond to high
frequency in the corresponding a(t)-functions and small
scale in the corresponding h(x)-functions and a truncation

is therefore not only acceptable but also desirable.

With regard to the product Oy O O in (7) we shall here

only consider the case of a second order product
Z = Xy

where we assume x and y to be independent and having a
normal probability density distribution, a case that seems

to be sufficiently realistic with regard to the a-functions.

With the distributions

2,2 ~b2y2
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we find the probability density distribution for z for the
case x>0, y=>0

2.2
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This integral cannot (?) be solved directly but differentiating

twice with respect to z and changing integration variable we

find the following Bessel differential equation

%E (z %%) = La?b?fg

which has the modified Bessel function

_ 2ab
f(Z) = T Ko(2abz)
as solution when integration constants have been determined
so that the total probability becomes 1. For the case a=1
and b=2, the two distribution functions for x and y and the

resulting distribution f(z) are shown in fig. 1.
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Tt is seen that the possibility for small values of z is
very large and we may conclude that this will be even more
so in all cases where we have non-linear terms of higher
order provided the factors are mutually independent. There-
fore, terms of the type a:(t) will dominate over terms of
the type oa1(t) az(t) as(t) etc. and this will also provide

guidance in the necessary truncations.

The same type of reasoning may also Be‘applied'to the last
third order products of the functions h(x). Varying x they
will also have a normal distribution and the probability

for a third or fourth or higher order product of independent

'functions to be very different from zero becomes very small.

4. CONCLUSTONS

For a number of reasons it seems realistic to expect that the
effective area of influencé for a 12-hour timestep in a
statistical forecasting model may be much more limited than
indicated by conventional finite difference models. One seems
also to have reason to beligye that the high order non-
linearity that would be na%ﬁral to expect may be of limited
importance and possibly reStricted to only few important
terms. However, the results shown here are too general to
give sufficient guidance ‘and further investigation is there-
fore needed. This may be carried out either in a theoretical
way or by experiments. In one such experiment which is plan-
ned to be carried out in the near future, the 12-hour height
change at one grid point will be statistically predicted
using as predictors therémplitude functions (time-dependent)
of an EOF-expansion of the héight field over an area of 9x9
surrounding gridipoints. The EOF-expansion will be truncated
and hOnélineafi%ynintroduced only stepwise. The results will
be compared with conventional barotropic forecasts. One may
here add that if the results turn out to be promising, then

the real difficulties will start.
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