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1. THE TAYLOR-GOLDSTEIN PROBLEM FOR NORMAL MODES

1.1 Introduction

In these lectures we shall discuss internal gravity waves and instability
of parallel flow of a stratified fluid. The theory of these phenomena

is the fluid mechanical foundation of much of the dynamical meteorology
of mesoscale atmospheric motions (and of dynamical oceanography). Of
course we shall make many over-simplifications of the real motion of

the atmosphere in order to produce models that are both tractable and
instructive. In particular we shall suppose that there is laminar

flow of an incompressible inviscid fluid. The assumption that the

fluid is incompressible may be relaxed without more than minor technical
difficulties when one considers applications to mesoscale motions.

The simplest problem is that of the instability of two layers of

fluids with different densities and different horizontal velocities.
This is the classic problem of Kelvin-Helwholtz instability. The

flow is always unstable unless the velocities of the fluids are equal
and the lower fluid is denser than the upper one. Here we shall consider
the interplay of the stabilizing influence of gravity on a continuously
stratified fluid and of the destabilizing influence of basic shear in a
generalized form of the Kelvin-Helmholtz instability, although this
generalization is sometimes simply called Kelvin-Helmholtz instability.
We shall see that the intuitions that heavy below light fluid is a
stabilizing influence, that strong shear is a destabilizing influence,
and that light below heavy fluid renders any basic flow unstable

are usually correct.

. We model the problem by taking a basic state iﬁn&ynamic equilibrium,
with velocity, density and pressure given by

*
U = Up(z)i, 00 = 00 (20, Py = P78 J Py (24)dzy

for_’ZI* $ 2, € Z, 4 (1)
respectively, where z,_ 1is the height and g the acceleration due to gravity
and where each of the horizontal planes at Z, = Z,, and z,, is taken to be
rigid. We take scales L of length and V of veiocity characteristic of

the basic velocity distribution U*(z*) and o characteristic of the basic
density op (z*). We assume that the fluid is ifiviscid and incompressible,
@ensity being convected but not diffused. Then the equations of motion,
incompressibility and continuity in dimensionless form give

ou
by -2
D(SE'+ u . Vu) =-Vp - F opk,
V.u=0,
and (@)
e -
se T4V =0,

where the Froude number is defined by

F =y L, | (3)

b =pulo s u=u/V etc.
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It can be verified that the basic state satisfies the equations for
arbitrary distributions U(z), p(z). To study its stability we put
Z

u(x,t) = U(2)i + u'(x,0), p(x,0)= p - F‘Zj 5(z")dz' + p'(x,1),
- | )
p(x,t) = p(z) +p'(x,t),
substitute these expressions into equations (2); and neglect quadratic terms

in the small primed quantities to derive the linearized equations for the
disturbance. We also take normal modes of the form

(', p', 0") =@(2), p(2), o()expli(ax + By = met)}. (5)
Thus equations (2) give

iap (U-c)u+pU'w

= -iop,
iaEkU—c)G = -ifp,
1ap (U-c)w = p-rF2 o[ | (6)
icu + iBv + Dw = 0,
ia(U-c)p +p'w = O,

where differentiation with respect to z of a basic quantity 1s denoted by
a prime and of a perturbed quantity by D. One may eliminate U and Vv
from the flrst two of equatlons (6) and from the fourth; then one may
eliminate p and p in turn with the aid of the third and fifth of
equations (6) to find

) ~ - -~ ~ 2 AP} ~
(-c) (D% = (a2 + 82)w} - y'ry - L X Bel g
; _ . 3 =
a“F(U-c)p
+ 3—'{(U—C)D€z - U'w} =0 . (7
p .

The conditions at the rigid boundaries give

w=0 at Z =2z, Z, . ; (8)
Yih (1955) applied Squire's transformation to this system. It can be

seen that the characteristics of two-dimensional waves are simply related to
those of three—dimensional ones, for each three~dimensional wave with numbers
(a,B) there being a two—dimensional one with the same value of the complex
velocity ¢ but with wave-numbers ((oc2 + B2)2z, 0) and Froude number

a F/(a? + Bzﬁ Thus two-dimensional waves effectively have reduced gravity
and magnified relative growth rate (o + B2)Zc,, and they are usually found
to be the most unstable waves.  For these reasons we shall henceforth

consider only two-dimensional waves.

We used F % as a dimensionless measure of gravity because it was the
first one at hand. However, it can now be seen from equation (7) that F
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arises only in a product with —-p'/p. Further, the physical effects of
gravity on the modes will be seen to create internal rather than surface
gravity waves (if the upper boundary is rigid). So we shall use the
overall Richardson number J, defined as a characteristic value of

dp*

"_—v = - 2 2
/Fp gL dz, % V

rather than the Froude number. It is also convenient to define the
Brunt-Vdisdld frequency (or the buoyancy frequency) N, by

) dp
N2(zp) = - g o /ex = N2 (z) . V&/12 ., (9)
%
' dp, / [dU
Thus JN2/U'2 = - g —— iz, PAT is the local Richardson number of the basic
. %

. 1
flow at each height z*, and we shall identify J2N as the dimensionless

frequency of short internal gravity waves in the case for which U = 0 and
N 1is constant (see equation (17)).

In many applications of this theory it happens that p*(z ) wvaries much
more slowly with height than U, (z ), so that -p /p<<1 yet . J 1is
'nonetheless of order of magnltude unlty because F<<l; in this approx1mat10n
which resembles the Boussinesqapproximation, we neglect the last two terms
of equatlon (7). Thus the effects of variation of density are neglected
in the inertia but retained in the buoyancy.

Considering only two—dimensional disturbances, using the Richardson
number instead of the Froude number, and neglecting the inertial effects of
the variation of density, we can reduce the system (7), (8) to the form

(U-c) (D2-a2)¢ - U''¢ + IN2¢/(U-c) = O, (10)
wp =0 at z=1z, 2z, | (11)

where
u' =8y'/3z, w' = -3y'/dx f - (12)

 and
o' = b(Dexplia(x-ct)} . S (13)

Equation (10) bls called the Taylor-Goldstein equation in honour of its
derivation and exp101tatlon by Taylor and Goldstein, although

the equation was independently published by Haurwitz in the same year,
1931.
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1.2 Internal gravity waves and Rayleigh-Taylor instability

The important special case of internal gravity waves or Rayleigh-Taylor

_ instability arises when ‘ : ‘

U* 0. L (14)
Of course this is equivalent to the case when U, has any constant value, by

Calilean transformation. Here there is no scale of the basic velocity, so
we use dimensional variables, for which the Taylor-Goldstein problem reduces to

202 - a2)¢ *+ N2(2,)6 = O, . (15)

@ =0 At oz =z, Zog s o (16)

a problem originally due to Rayleigh (1883).

The problem has no solution in finite terms for a general function
N%(z*), but there are a few simple solutions known for particular functions
N%(z*). For the simplest, we follow Rayleigh and suppose that
5* = poexp(-z*/ﬂ)so that Ni =g/H 1is constant, and deduce at omce that

: -1 . ' )
Aci =»{ui + nzﬁz/(zz* - Zl*)z} Ni’ ¢ = gln{nn(z*-zl*)/zz*'zl*)}
for m=1,2, ... R an

This gives a discrete spectrum of internal gravity waves, stable or unstable
according as Ni is positive or negative, with a complete set of eigenfunctions.
Detailed properties of internal gravity waves defined by the standard
Sturm-Liouville problem (15), (16), for both general and particular density
‘distributions, are described in the books by Yih (1965, Chap. 2)and Krauss (1966).
They also treat cases when the upper boundary is a free surface, when the
inertial terms due to the variation of density are not negligible, and when
the fluid is compressible. ' '

Rayleigh (1883) himself proved the outstanding general property, namely
that there is instability if and only if light fluid is locally below
heavier fluid, i.e. there is instability if and only if N2 is negative
somewhere. His proof runs as follows. Multiply equation 15) by the complex
“conjugate ¢* - and integrate from zl* to Zz* to deduce that

. zé* B Zz* E .
2 [ inel? + a2sl2an, = | W2lel2az, 18)
214 Z]4

on integration by parts and use of boundary conditions (16). It follows that
c2  and therefore ¢ 1is real, and that c, is real if Ni>0 everywhere.
Thus there is stability if N§>O everywhere. To prove the converse, Rayleigh
noted that the variational principle associated with the Sturm-Liouville
*

problem (15), (16) gives ci as the minimum of f 2 NZf2dz, over the class

, , : 2

. . . . ¥ .
of functions £(zx) with square integrable derivailves such that

2 . . , ,
2% . .
J (D*f)2 + aifzdz* = 1. It follows at once by the calculus of variations

2% )
that ¢y<0 if Ni(z*)<0 anywhere.
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1.3 Instability

The interplay of the effects of basic shear and buoyancy is seen in
the eilgensolutions of the Taylor-Goldstein problem (10), (11). We shall
show how, for a given flow and wave—number, the modes may be divided into
five classes, some of which may be empty:

(1) There is a finite class of non-singular unstable modes.. These,
giving instability, are the most important and have been given most
attention in the literature. The class is empty certainly if the local
Richardson number is everywhere greater than or equal to a quarter, the
flow then being stable to all waves. These modes are in general the
modifications by buoyancy of the unstable modes of shear instability
but exceptionally buoyancy with N2>0 everywhere may render unstable a
wave of given number which is stable when N?% = 0. :

-(2) The conjugate damped modes form a finite class of non-singular
stable modes. : .o

(3) The marginally stable modes form a finite class of singular
neutral modes, each having a branch point at its critical layer.

(4) There is a continuous spectrum of singular neutral modes, each
having a singularity no worse than a discontinuity at its critical layer.

(5) The internal gravity waves modified by the basic shear form a
discrete class of stable modes when N2>0 everywhere. There are slmllar
" unstable modes when N2<0 somewhere.

To discuss the properties of these classes of modes, first note that
we may take 30 without loss of generality and that to each unstable mode
there corresponds a conjugate stable mode.

The essential mechanism of the 1nstab11ity-converts the available
kinetic energy of relative motion of layers of the basic flow into kinetic
energy. of the dlsturbance, overcomlng the potential.energy needed to raise

dp,
or lower fluid when T <0 everywhere. Thus shear tends to destablllze
% o ‘
and buoyancy to stabilize the flow. To quantify these tendencies, suppose
that two neighbouring fluid particles of equal volumes, at heights z, and
z, + dz,, are interchanged. Then the work SW per unit volume needed to
overcome gravity and effect this interchange is given by

— W = —ng 8z, ;
dp* * *

where 65; =T 8z,.. In order that horizontal momentum is eonserved'in
% * _

the interchange, the particle originally at height z, will pleusibiYAhave
final velocity (U*+k6U*)§ and the other particle (U*+{l—k}6U*)i, where
du - » N -
* o
8u, = a;—-dz and k 1is some number between zero and one. Then the kinetic

energy 6T per unit volume released by the basic flow in this way is given by
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©s
!
I
DN
ke
*
(e
N
+

F(oy *+ 60,) (U, + 8UD2 =} 0, (U, + k8U)®
- (o, + 80,) (U, + {1-Kk}8U)?

= k(1-k)p, (8U)2 + U, 86U, S0,

N

b 0, (8U,)2 + U8USp,

equality holding for k = % Now a necessary condition for this interchange,
and thus for instability, is that

SW < 8T

and therefore that somewhere in the field ofrflowv

d b, _ [au,)\? du, dp,
- g € 4ol U, =—— 5 > ' (19)
dz, - b Tk \dz, * dz, dz,
i.e. _
do, _ fdu,\?
- = [ o ‘
g dz* Px dz* $4 , . "‘_' (20)

if the inertial effects of the variation of density are negligible. The
essential idea of this argument is due to Richardson, who in 1920 applied
it to turbulence. However, it has been recast by Prandtl Taylor and many
others since. The above form of the argument is essentlally that of
Chandrasekhar (1961;p.491) The argument is heuristic in the sense that
only energetics are ‘considered, the detailed kinematics and dynamlcs of
the interchange of the particles being ignored.

A rigorous form of the argument comes on assuming ci#o, defining H by
- o/ @W-0)t, N (21)
and substituting H for ¢ in the Taylor-Goldstein equation. This gives
D{ (U-c)DH}- {azr(U—’c). + U o+ (du'? - JNZ)‘/(_U—.c)} H=0. , (22)
Multiplying this equation by H* and integrating, ﬁe‘findw

Z2

. V ! 2_ 2
J (U-c){|DH|2 + o2|H|2} + } U'"|H|Z + %ﬂ-\‘_ H|2dz =0. (23)
21
The imaginary part of this equation gives
22 '
~c, J |DH|2 + o?|H|2 + (IN2 - | U'2)|H|2/|U-c|2dz = O . S 2a)
Z

1
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Therefore ' Zy
0> - J | b |2dz
z, ’ ‘ Z
= J {(IN? - {U'2) + o?|U-c|?}|u|2/|U-c|? dz (25)
Z

1 ,
if ci¢o. Therefore the local Richardson number satisfies the inequality

IN2/U'2 < |} o : (26)

somewhere in the field of flow. This is Howard's (1961) general proof of

the necessary condition of instability Miles (1961) proved otherwise for a
special class of flows., It can be stated in the form that there is stability
if the local Richardson number is everywhere greater than or equal to ome
quarter. Howard (1961) also showed that inequality (25) gives

azc% < méx(%U'2 - JN2) . ' @7

zlszsz2

A similar integral of the Taylor-Goldsteln equation can be used to show
that instability implies that

= 2(U-c )N {(U-e)? + 2} (28)

somewhere in the field of flow (Synge 1933). ‘When J=0 this yields Rayleigh's
criterion that there is instability of homogeneous fluid only if the basic
velocity profile has a point of inflexion. Unfortunately condition (28) for
stratified fluid involves the unknowns c, and c;, and so does not give a
simple criterion like Rayleigh's. :

Another simple integral gives Howard's semicircle theorem, that

{Cr—%(Umax * Umin)}2 * c% < {%(Umax - Umin)}2 4 (29)
provided that c. # 0 and N° > O everywhere in the field of flow. The
method also showS that if N° £ O everywhere then no non-singular neutral
mode exists; unfortunately this does not imply instability because a
continuous spectrum of singular stable modes with velocity ¢ within the
range of U(z) may exist (cf. Chimonas 1979).

For any given basic flow the marginally stable modes are modifications
of the 's-modes' for the case J=0, although the significance of a point
of inflexion is lost when J=0. For illustration take the example

U = tanh z, N? = sech?z for —w<z<m . (30)
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Note that this Brunt-Viisdld frequency comes from taking p = exp(-tanh z),
so that p_ = p(») =1l/e and p__ = p(-») = e. Holmboe (cf. Miles 1961)
verified that then a peutral eigensolution of the system (10), (11) is
given by

c =0, J=a(l-a), ¢ = (éech z)a(tanhAz)l‘a for 0 <o g1, (31)

Miles (1961)examined the branch point at the critical 1éyer where z = 0
in the limit as c.+0, finding that the solution (31) was the uningd

" marginally unstabl® solution provided that one interprets {tanh z) >0 for

1.0

z>0 but
(tanh z)l—a = e—lﬂ(1~a)|tanh le—a for z<0.

hzel (1972)computed the unstable mode for various values of o and J. These
results are shown in Fig. L. It can be seen that oac.s(; - J)% in accord
with inequality (27), equality being attained only when J =, a = .
Thus the condition J>! everywhere happens to be both necessary and sufficient
for stability of flows (30). The semi-circle theorem is satisfied, it

being found that c_ =0 and c, £ 1 for the unstable mode (with c¢; =1 for
a =0, J=0). Thers—sqlution chn be seen to arise from (31) when '

J =0 and o = a, = 1.

a - Figure 1. Stability boundary and curve of maximum growth

rate for U = tanh z , N2 = sech?z , - = <z <@,

‘stable After Hazel (1972 Fig. 1)

marginal curve
‘ J=q(1l -a)

unstable

aci -

.190 .160 .126 .090 047

) | 4
T i 1

curve of maximal growth rate

for fixed values of J
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If U, U' or p is discontinuous, at z = z  say, one can show that

Mo/ (U-0)] =0 ,
— (32)
Alp{(U=c)D$ = U'¢ + ¢/F(U-c)}] = 0,

in order that the normal velocity and the pressure are contlnuous at the
1nterface with mean position z = z,

These conditions are useful to work out simple examples for which the

Taylor—Goldsteln equation can be solved piecewise in terms of elementary
functions.

_ 1.4 Internal gravity waves with basic shear

Next we consider the qualitative character of the eigensolutions
of the Taylor-Goldstein problem (10), (11) as J decreases from infinity
' for fixed functions U(z) and N(z) and a fixed value of «. When
J = o, a condition which we may regard as expressing either V =0 or
g = », there are internal gravity waves as described in section (b).
There we found an infinity of discrete modes with eigenvalues of the
form c =% Jzy (n) for n=1, 2, ..., and with a complete set of
“eigengunctions ¢ (z); these modes are all stable if N2(z) > O everywhere.
When J =0, which we may regard as expressing either V ==, g = 0 or
N2(z) = O, there arises the case of a homogeneous fluid, for which it
is well known that there is a finite number (possibly zero) of umstable
modes and a continuous spectrum of singular neutrally stable modes. The
change of the pattern of the modes as J decreases from infinity to zero
is quite complicated, but briefly one may say that the phase velocities ¢
of the infinite discrete spectrum of stable modes are divided into two
classes. For the first class the wvalues of c¢ decrease to the global
maximum value of U(z) over the field of flow as J decreases from
infinity, and for the second class ¢ increases to the minimum value of
U(z) (Banks, Drazin and Zaturska 1976). The eigenfunctions associated with
each class form a complete set. As J decreases so much that the local value
of the Richardson number is less than a quarter somewhere, either class may be

replaced in whole or in part by a finite number of comnlex eigenvalues or a
continuous spectrum of real values.
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It can be shown that eigenvalues are given by
1 ’ .
zy (n) + 0Q1) as J 4 o : (38)

for n=1,2, ..... If z_ is the height of a simple maximum or minimum

of U(z) such that zi < zz < z,, then it can be shown that

= - 2 1
c Um ZJNm/n(n + 2)Um + o(J) . as J+ O (39)
for n =1,2, ... and any value of @, where U_=.U(z ) etc. If, however,
the height z_ of the maximum or mlnlmum is at a boundary, say: z_ = zp,

and the shear does not vanish there, then there is a finite number p
(possibly zero) of modes such that : -

(1 - 43 N2 /U, 2)? A
- ! - .
U, c v Ul{Ah(J Jn)} n1'"1 as J %_Jn ‘ (40)

for n =1, 2, ---, p and some constants An(a) and Jn(a) <v£Ui2/N% .

For the rest of the modes,

Ao

U - cv B exp{ - nﬂ(JN%/U;Z - 1%} as J + 1U'2/N2 (41)

1

for n=p+1,p +2, ... and some B (a). Here we take U1 U(z ) ete.
o

and may derive similar results if zp = U2. These results are perhaps most

easily understood by seeing figures 2 and 3 for two examples, which also

indicate the dependence of ¢ upon n.

1.5 Observational results

Experiments and observations of motions of a stratified fluid
are not easy. However, new developments of techniques of remote
sensing of the atmosphere by the use of sound, micro-waves and .
lasers has brought in a new era of observational meteorology.

Many of the theoretical and observational results are discussed at
length by Gossard and Hooke (1975).
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Figure 2 Sinusoidal flow U =sinz , N2 =1 for - wt<z<1:
c vs J for n=1, 2, and 3, and a2 = 3. Note that Umax =1
and Cmin = -1 After Banks, Drazin and Zaturska (1976,

Fig. 2)
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U(=- 2) - ¢,
2 —
1 —
1 T
0 20 40
Figure 3. t=z'-2z, N2=1 for -2< z <2 : U(-2) -c_ versus
J for n=1,2 and o= 1 . After Banks, Drazin and Zaturska (1976, Fig. 5).

Note that J = 25.6, p =1, and u*= 0 at J = 30; .

1
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2. THE PROPAGATION OF PLANE INTERNAL GRAVITY WAVES

In Section 1.2 we met internal gravity waves as normal modes;

. here we shall meet their group velocity, their reflexion, and their
production by a source, and shall discuss their relationship to wave
fronts and rays and their role in boundary-value problems.

The linearized equation governing internal gravity waves can
easily be shown to be
32 9 ow' 32y" 32w' dp , 22w’ %' | _
C s ) o (g v )i g (o * 52 )‘((1)5

This is essentially equation (1.7) with Uy = O but without
Fourier analysis. For mathematical simplicity we shall take — =
o exp(-z/H), and assume that H is much larger than other
length scales of the problem (so we neglect density variation
except in the buoyancy, as before). Then equation (1) becomes

32 y L g . %W 3%w' .,
55z Aw' + I ( =z 5§7—-) = 0, 2)

Equation (2) admits plane wave solutions of the form
w'ec exp{i(ax + By + yz — wt)} if the dispersion relation

w? = g(a2 + g2)/H g2 (3)

is satiéfied,where the vector wavenumber is given by o = (0,B8,Y).
Note that w? < g/H, with equality if and only if vy = O.

These plane wave solutions also exist when a?,p2 or v2 is
negative, giving external gravity waves which grow or decay
exponentially with x, y or z. They occur only if there is an
appropriate boundary to ensure that w' is finite; for example,
an external wave varying like exp(-|y|z) above the ground z = 0
may occur. Such a wave is said to be external because it is
appreciable only near the exterior of the domain of flow.

The conditions of incompressibility and mass conservation give
div y = O and thence

''= 0. (4)

O«
o

Thus internal gravity waves are transverse, motion of the fluid
being perpendicular to the direction of phase propagation.

The group velocity is given by (cf.Lighthill.1978, Sect.3.6)

e = (v 3w dw
g da > 3B’ dy

wy _
m (yo, By, (Ot2+82))-‘ (5)
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Note that g.c = 0. " ‘It can be shown that the energy flux of the
waves is in the direction of the group velocity. Also the phase
velocity is given by

C
s oy

= wa/a?. - (6)
It follows that

%"+ '(\:-’g = EZ_%_B'Z' (uaBso)-
These relations can be represented geometrlcally in an 111um1nat1ng
way, on taking ¢ and e, to represent segments of a circle on the
base of a dlameter. is is shown in figure .4, Note. that the
plane of the circle is vertical and contains the direction of phase
propagatlon of the wave, and that the vertical components of the’
phase and group velocities are in opposite directions.

To solve a boundary—value problem one is likely to need a real
Fourier integral of these complex wave components or wave components
in other coordinates, for example cylindrical polars. As a simple
example, however, consider waves in the rigid rectangular box
0<x<K, 0Lz <M This problem admits elgensolutlons

u' = A sin(pmx/K)cos (qmz/M)cos wt . '
w' = A(pM/qK)cos(pnx/K)51n(qﬂz/M)cos wt 7)
for p, ¢ =1, 2, ... and an arbitrary constant A, where
w2 —-—Z' /( + . (8)
HK ’

This solution represents cellular standing waves. In a crowded
room you may sometimes see such waves made visible as a layer of
smoke undulates.
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Figure 4, The wave-velocity vectors.

i

<i + 8)
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3. PROPAGATION OF INTERNAL GRAVITY WAVES WITH BASIC SHEAR

3.1 Airflow over a mountain

An important application of the theory of forced internal gravity
waves is to the airflow over a mountain. This application has been
treated by many authors (cf. Gossard and Hooke .1975) since the first
work of Lyra in 1940. Here, trying to capture the essence of the ‘
problem with a minimum of detail, we shall neglect the rotation of the
earth, compressibility of air, unsteadiness of flow, nonlinearity,
three~dimensionality, and non-hydrostatic effects after Drazin and
Su (1975).

We accordingly suppose that u > U(z)1 ) +-E{z) as

X > —» far upstream. Then we put u = U(z)1 + u"(x,z) and

= p(z) + p'(x,z) as in equatlon (1. 4) and pregare to linearize
the equations of motion. It is convenient first to introduce the
dependent variable z(x,z), defined as the height of the stream-—
line through the point (x,z) above its level far upstream.
(It may help to look at figure 5.) Thus z 1is a Lagrangian
vertical displacement such that ‘ S :

-_ Dz E14
w! =7 2&
T X . ) v (1)7

on linearization. The equation of incompressiblity gives

1 — —

D_p = — 'i_ = a 1 dp
Dt U ox tow dz U S§(p ez EED'

0

X

Figure 5. The configuration of the model airflow over a mountain
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Therefore, on integration along a streamline, we find
5 e
_D'='E£‘- _ (2)
Now mass conservation and hydrostatic balance give

du' w' ‘3?' o .
ox * 3z 0, ‘and oz ‘_ &P ' (3

respectively. Therefore the linearized equation of horizontal
momentum gives

S0 g du g 4 sy 2, e U
3% p(U X W dz p(-U P4 * w dz
o2 O W'y _ _=p2 97T
pU ( R oU% 5%

(if we assume that U > 0), and thence

p pU23z/5z. (%)

Therefore (2), (3) and (4) give

2 (zp2 3%y - dp V
) (U z) 83z - (5)

This is essentially equation (1.7) with c¢ =0, B =
@2 << D2 and ¢ = %/U; thus the hydrostatic approximation is seen

to be equivalent to that of long waves. The general solution is of
the form

r(x,2z) = F(x) £(z) + G(x) g(2), (6)

where F and G are arbitrary functions, and f and g are any
two independent solutions of the ordinary differential equation (3.

The upper boundary condition can be shown to be that each wave
component radiates energy upwards into the upper atmosphere and away

from the source, namely the mountain (Eliassen and Palm 1961). To
investigate this we shall suppose, to be both specific and simple,
that U > U_ and 5 ~ pge -z/H as z - =, although the velocity of
the stratosphere in fact usually varles w1th height quite strongly.

Then we define

Yy =+ (g/HUZ -t . o

supposing that vy2 > O (which is almost always true in the stratosphere).
Then solution (6) gives

2(a,2) v ez/2H {F(a) ei(OLx vz, G(a) oifax - Yz)} as

7 > o
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where T, F and G are the Fourier transforms of ¢, F and G
respectively. Now look at the flow in & frame moving with velocity
Uw% relative to the mountain. By this Galilean transformation the
mountain and the wave appear to move upstream with speed U. but

the upper atmosphere is reduced to rest, so we may use formula :
(3.5) with w = ~aU,. That gives us the group velocity with a p031t1ve
vertical component, and hence upward propagation of energy, if and
only if ya U, > 0. That implies here, where we choose U, and y

to be positive, that o ‘ AR ) ‘ -

z/2H + i(ox + vz) for a >0

F(a)e as z - «. ¢))

Cal
3

z/2H + i(ax - yz) for

E(Ol.)e a <0

The boundary condition that the mountain, with equation

z = gg(x), say, is a streamline gives
t(%0. = ¢ G Qo)
Putting together (9) and (10) with Fourier ana1y51s, we find
_ f(=) ioax f*(z) ; , v
r = T00) 0 ;O(Q)e do + f*(0>, go(a)e @a , - ‘ (11

. =00

where f(z) 1s the solution of equétion (5) which behaves- like

iy+ : S LR
e(1Y I/ZH)?, as z > and gg 1is the Fourier transform of Ty,

It follqws that

_ {f(z) L - iax ; §f(z)1 ® ° - iax
z = Re }f(o) fj Co(a)e do + 1iIm Lf(o)j L)— j" Zp(o)e ™ "da
£(z) | [T B ® JE(2) |
= £5(x) Re {f(O)'? + T PJ - dt Im 1f(0)?' (12)

The Cauchy principal part of the integral in the latter term may be
recognised as the Hilbert transform of =z, with many well known
properties (see, e.g., Titchmarsh 1948). SRR

To illustrate this theory we take one simple example with
p = Py e—Z/H, U = constant for z =2 0, (13)
and . ‘ A J
2o(x) = b?h/ (b2 + x2) for == < x <o, (14)‘§,

Then it can be shown that the Hilbert tramsform of  z is,giveu_by.;

-1 J Zo(t)
T P
t-x

dt = -bhx/(b2 + 'x2) S i(15)

0
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and thence that
z [2H

;(x%z) = bhe (b cosYZ'; X sinY z)/(b2‘+ x2) . o » (16?

The streamlines of this flow are illustrated in figure 6. Note
that the crests of the waves tilt upstream as one rises.

Figure 6. Sketch of typical streamlines for airflow wifhv U=4_,
o= pe2/§ ; =bqn/(2 + £2).

3.2 Energy and momentum

Hitherto we have mentioned energy only in asserting that the
energy of waves is propagated with the group velocity when the
fluid is in a basic state of rest, but there is more to be said.

The linearized equations of motion (2)-(5) give

DE _ . 3E _ 3Wx , 8Wy _ - dU

== = _— = Puashucll | . .
de - UBx %k T3z P v Vo a7

where we define

E=3(u'?- %% £?), W_=p'u' and W, =p'w' . (18)

We identify E as the energy density of the waves, ipu'? being
the kinetic energy (note that we neglect the kinetic energy of the
vertical motion in order to be comsistent with the hydrostatic

dp z2 being the potential energy. Similarly

dz
. . —~ dy
we identify W and W, as the components of the energy flux and ~p gzu'w'

approximation) and -~ig

as the rate of transfer of energy density from the basic shear flow
(this is essentially a Reynolds stress).
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Also the vertical flux of horizontal momentum is given by
M_ = pu'w' = —WJU. (19)

This is related to the drag exerted on the mountain by the wind,

> 9z w© - ) 14 1)
D = J [p ]z=0 = dx = - J [p U 5;1 ) 5§-dx
. _— z=0
= ___l__ ” [vavj dx | ’ (20)
U(0) z=0 ?

00

on resolving the force due to the pressure perturbation in the
horizontal direction, because the x-integral of M, must be in-
dependent of height to conserve momentum. For our example (16) we
find
: D = imyh? p,UZ. (21)
More insight into these properties can be gained from the

model of Section 2, with U= O and negligible inertial effects

of density variation. It gives waves with dispersion relation
(2.3) and

av' = gu', w' = -(a? + g%)u'/ya, p' =wpu'la . | (22)
The energy density is then
E = fpu'” + N%'2/u?)
. n

12 12

= %E(u'2 + v+ w4+ gW'Z/sz) : (23)

= pa? + H)g? u'?/y? o? ,
and the wave flux vector
W= G, L w)=(p'u', p'v', p'w')
= Eg‘g , ) ‘ (24)

as we asserted earlier. One can also show that DE/Dt = divy.

o Going further back to the model‘of the Taylor—~Goldstein
equation (1.10), we find that the average vertical flux of
horizontal momentum is given by

— ZII/OL
= T . 9P
Mx uw = 2 J

u'w' dx
0

ap [2™/% Re iDg e
21 g T

. _ 4 , . _ ‘
1o (x ct)% Re - —ia¢ela(x ct)sl)vdx

= Hop(pmg - gD 01 | (25)
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and of vertical momentum by

- 2m
W, = %;-JO pfw' dx
= -} ap 1L@W-c)(¢*Ds - o0¢™) + c;plofr.  (26)

When c¢j = 0 we deduce that

Wy = = (U= | o @
in agreement with (19). Also the Taylor-Goldstein equation gives
Ay s {——-——————JNZ(U_Cr) - = }I i s
dz R § IU_C|H . WU_C‘Z i o _

as in the proof of (1.28). This also shows that if c; = 0 then
ﬁx is constant except possibly where U = c, and

éﬁ? = -y'M , L (29
dz v MX : . ’ ‘ )

3.3 Critical layers

Hitherto we have shunned the singularity of the Taylor-
Goldstein equation at its critical layer, say =z = z. where
U(z) = c. This singularity in fact gives rise to the continuous
spectrum of neutral modes and to the interpretation of the branch -
points of eigenfunctions of marginally stabie modes, both of which
are mentioned briefly in Section 1. Also in this Section we
implicitly assumed that U # O in order that our theory of lee
waves would be nonsingular. But what happens if U = 07

One may treat a problem of wave propagation after Booker
& Bretherton (1967) to illustrate both the mathematical ideas and
physical importance of the critical layer. We consider a mono-
chromatic two-dimensional internal gravity wave of numbers o and
B = 0 and fixed angular frequency w propagating in a stratified
shear flow, governed by the Taylor-Goldstein equation (1,.10).

If we make the approxiﬁation that U and N2 vary very slowly
over a vertical wavelength, then we may use the ideas of ray theory
and a local Galilean transformation to deduce from (2.3) that

{w ~U(z)/a }2 = 02 N2(z)/{a? + y2(2)} . - (30)

Sometimes w — U(z)/o. is called the Doppler—shifted frequency.
Formula (30) shows how Yy varies as the wave propagates upwards. It
can be seen that as the wave approaches a critical layer 2 -+ «
thus the wave fronts become nearly horizontal and get closer together
vertically (but not horizontally). The group velocity of the wave

relative to the basic velocity of the fluid is zero and so the energy

density E tends to infinity at the critical level. 1In fact, (Bretherton &

Garrett 1968) the wave action E/(w-U/a) 1is a conserved quantity,

i.e. independent of height in this approximation of ray theory, not E
itself.
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