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SOME ASPECTS OF LARGE SCALE NUMERICAL MODELLING
" OF THE ATMOSPHERE

INTRODUCTION

This short series of lectures is concerned with some
fundamental aspects of numerical modelling which have
relevance to the problem of medium range weather fore-
casting. The subject matter is weighted towards the
problems that have arisen in the design and development of
the European Centre's first operational forecasting models.
Where possible the Centre's models and/or algorithms are

used to illustrate particular concepts and procedures.

For an up-to-date review of the computational aspects of
numerical weather prediction models and climate models,
readers are referred to Volume 17 of "Methods in Computa-
tional Physics" (1977) edited by Chang et al. The chapter
by Arakawa and Lamb is recommended particularly for its

in depth analysis of the many problems that face the
numefical modeller. The number of numerical techniques
employed in forecasting models has, in the last 15 years,
grown enormously and the Joint Organising Committee of the
GARP's recognition of this led to their decision to publish
a review of the numerical methods used in atmosphere models.
Volume I of this review, GARP Publications Series No. 17,
by Mesinger and Arakawa (1976), discusses time stepping
schemes and grid point finite differences for the hori-
zontal derivatives. Volume II, edited by Kasahara, which
will appear in the near future, contains, amongst other
subjects, comprehensive reviews of spectral methods, global

mapping problems and finite element methods.

In my first two lectures I shall discuss some of the
physical principles that guided the selection of our first
operational model, a global grid point model. The ideas
are, of course, quite general and apply equally well to

the design of spectral and finite element models. 1In the



third lecture I shall describe the formulation of the
Centre's global semi-implicit grid point model and present
objective and subjective comparisons of explicit and semi-
implicit forecasts. Finally, the fourth lecture gives an
introduction to some of the problems that arise in the

design of lateral boundary schemes for limited area models.

1. FINITE DIFFERENCE SCHEMES FOR PRIMITIVE EQUATION
BAROTROPIC MODELS

1.1 Distribution of variables over a horizontal grid

It is not obvious a priori how one should proceed with the
problem of selecting a horizontal grid and the spatial
arrangement of the dependent variables. We were guided by
the work and suggestions of Arakawa and his co-workers at
U.C.L.A. He considered five arrangements, see figure (1.1),
of the three dependent variables, horizontal velocity
components u and v and the free surface geopotential ¢,

of a barotropic primitive equation model. He was concerned
with two fundamental problems, namely accurate simulation
of the geostrophic adjustment process and simulation of
quasi-geostrophic non-divergent flow. He ruled out grids
(A) and (D) as being inferior in their ability to simulate
geostrophic adjustment. The choice between the remaining
grids is less clear, the relative performance depending

on the radius of deformation and the grid spacing.

Arakawa selected the C grid for his low resolution general
circulation model. Recently, Mesinger (1979) has considered
the relative performance of these five grids for the sim-
ulation of slow geostrophic motion. His main conclusion

is that the A-grid arrangement gives the poorest accuracy,
but he was unable to find any clear advantage for any of
the remaining four grids. Early in the development of

the Centre's grid point model Gauntlett, Burridge and Arpe
(1977) compared the performance of the A and C grids in a
full primitive equation model with diabatic forcing and

their results underlined the superiority of the C grid
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Fig. 1.1 Five grid arrangements for a finite difference description
of the barotropic primitive equations. ¢ geopotential; u
and v velocity components; h grid length; i and j indices.



over the A grid. We eventually chose the C grid, partly
because of its performance with simple models (Arakawa's
studies), because of our own experience, but mainly because
of its low computational noise and because it lent itself

easily to the implementation of a semi-implicit algorithm.

1.2 A global barotropic model

One major problem that has to be considered is the
numerical stability of the spatial descretization chosen,
whether it is a grid point, finite element or spectral
representation. It is now well known that the most potent
numerical instabilities arise because the non-linearity

" of the horizontal advection process can generate, in
descrete models, aliasing errors. Mainly through the

work of Arakawa (1966) and Lilly (1965), the meteorological
community has come to appreciate the role of some of the
important integral constraints satisfied by the continuous
equations. In the descrete representation, maintenance bf
conservation laws for mass, energy and potential enstrophy
during vorticity advection by a non-divergent horizontal
wind field help to inhibit or prevent non-linear instability.
In particular; conservation of potential enstrophy, or
enstrophy in non-divergent barotropic flows not only
prevents non-linear instability, Arakawa (1966) and
Sadourny (1975a), but it is an essential feature of the
dynamics in two dimensional barotropic flows and controls
the exchanges of energy between different scales of motion.
Failure to conserve enstrophy accurately in two dimensional
flows eventually leads to a spurious computational cascade
of energy to small scales, Sadourny (1975a). The use of

ad hoc lateral diffusion schemes can control the false
numerical cascade by removing energy directly at the small
scale end of the spectrum, but a false energy cascade into
these scales in combination with excessive lateral smoothing

enhances artifically the energy dissipation.



For our first evaluation of various finite difference
schemes we used the global barotropic primitive equation

model whose governing equations are:

32 - sotrey (0veos(8)) + goomres S (HAWE)= 0 (L.1)

g_jcf + zéu + .}L aie(¢+%(u2+y2)) =0 | (’71-2)

g_¢ + EE%'S‘(‘e‘T {-B?X(¢u)+ gaé-((bvcos(e)) b =0 »‘(1.3)
where

z = { £+ ;c%‘sm (oY -2 (ucos(0)) ) 1/ (1.4)

is the potential vorticity.

This system has the following conservation laws:—

(T 2T
g% ¢cos(6)a?drde = 0, conservation of "mass"; (1.5)
o Jo '
(n (27
3 1 P} 3
FYA 2cos(0) {-a—l{—ﬁ(ucos(e))}cos(e)azdxde = 0,
Jjo Jo ‘ conservation of vorticity; (1.6)
fm (27
2
g% { % + ¢3(u?+v?)} a%cos(8)drdd = 0, conservation
Jo 1o of energy; ‘ (1.7)
and
m™ (27
g% z2¢a’cos(0)drde = 0, conservation of
: potential enstrophy. (1.8)

0 0



Sadourny (1975a) has shown that formal conservation of ‘
potential enstrophy is more important than formal conserv-
ation of total energy, in that the potential enstrophy

conserving models are inherently more stable and maintain

more realistic energy spectra.

For our barotropic models we choose to conserve mass,
vorticity and potential enstrophy. Our potential enstrophy
conserving model is an extension to a regular latitude/
longitude grid of the potential enstrophy conserving model
described by Sadourny (1975b) for a global cylindrical
coordinate system. Away from the poles the finite difference

equations are

3 2% Foos(0)°) - gomsrry 6 (0 * @) (1.9)
2o g oLl ek e ©(1.10)
3¢ _ 1

T T~ 50050y (8,0 + AGO(VCOS(G)) (1.11)

where the zonal and meridional mass fluxes are given by

U = 5XU, vV = Eev respectively
and

e = l(uzk + N vzcos(e)e) (kinetic energy) (1.12)

2 cos(9) ’ .
_ 1 ——0

z = { fcos(0) + 6,v - 8,(ucos(8)) } (1.13)
—_—A A e
pcos(9)

These finite difference equations are used with the

regular staggered C grid illustrated in figure (1.2), in
which the dependent variables ¢ and u are kept at the poles.
The finite difference scheme comprising (1.15) to (1.17)

conserves thevtotal mass, the vorticity and the potential



Fig. 1.2 Distribution of variables at and near the poles, np—Norfh pole,
sp-South pole.
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enstrophy, apart from boundary fluxes at or near the poles.
We shall see that the strict adherence to these three
conservation laws can be used to derive consistent polar
pboundary conditions. Although energy is not conserved
formally by our finite difference forms for the rotation
terms, in practise it turns out that the model conserves
energy very accurately. It should be noted that the work
done by the pressure gradient terms in the momentum
equations is balanced correctly by the increase in potential
energy arising from the divergence term in the continuity
equation, provided appropriate polar boundary conditions

are chosen.

Conservation laws and the polar boundary conditions

(i) The continuity equation

The invariant form of the continuity equation may be

written

%% + div(U,V) =.0 (1.20)
U = ¢u, V = ¢u.

Integration over an area A gives

30 ga + | div (U,V) aa . (1.21)
A A

The second ,integral can be turned into a line integral

using the two dimensional form of Green's theorem. If
the area A is the North polar cap, 6 > g - %;, then using

9 finite difference analogue of Green's theorem we have

NLON NLON

3¢
~np dA_- \ .1 aAlcos(0 1.22
iil 3t © “°p 121 np-3,1t 24he0s Oy ) e
' A8 il AB
= 1 - =5 - 5
dAp zaAkcos(enp_%) 5 enp—% 5 5
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(see figure 1.2) (there are NLON points around each
latitude circle). Since ¢np is independent of i, (1.22)

may be rewritten as

NLONBifp afh cos (8, 250 —TE?N\Qm_%J?AMxB(%Hﬁ%)= 0
(1.23)
For the south‘pole we have’
NLONN)BST%3 ?*_él cos(0 sp— l)age +Ni§C1)N Vsp—l aA)\cos(eSp_%) =0
(1.24)
with 6 4 = - 3 * 2

Equations (1.23) and (1.24) are the continuity equations
for the polar points, and using these forms ensures that

the total mass

1A}
2¢ va®cos(6)ANAB  is conserved,

provided we interpret cos(@np) as %cos(enp 1)
-2
1 . 3
and cos(esp_%) as zcos(esp_%)j the sum is taken over all
¢ points (the poles are counted NLON times) and the double
prime means that a factor of % is applied to the contributions

from polar points.

(ii) Kinetic energy generation and the form of the kinetic energy

density near the poles

In order to form the kinetic energy equation we first

consider sums

np=l ou _» BV g2
u ?'u 5% a”cos(8)AAAG and 2 ¢ v cos(8)5pa’AAe;

sp-1

np-1
Zu is a sum over all u points excluding the poles and

sp-1
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Ev is a sum over all v points

‘Now : :
np-1_ np—l_ 2
ﬁu 5" 28 a2cos(e)anae = ) 5 23 )a’cos(9)aN80
sp-1 p-1
np-1 3 ﬁ'g')\
= 1y ¢ 5€(§ YaZcos(B)AAAD
sp-1
- 2
and J o ®vcos(e) EY a’AAAe = ] ¢ é%(z—%ggggl)azAXAe
NLON
- 1 9 ,vicos(6) 2
2q’np.g at( 2 ) ,1a AAAB *
i=1
-1 ———f NLON
9 v cos(B8) .2, 1 v2cos(8)
§¢ ¢at(—_§—"“ )a Ler+2¢s zlat( ) %ijAe
sp~1 Pi=

Combining these two expressions gives

np-1
) ¢ cos(@)a ANAD + Z ¢ vcos(e)——a AMNAB
sp-
NLON 2
9 vecos(0)
l ————
nE—l 5 )
+ ® ¢§?e a“cos(0)ANAD +
sp-1
NLON ,
9 ,vicos(8) 2
+ % — —
2¢SP1£1 Bt( 2 )sp—%,ia ArAB
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o) NLON 2
— np v cos(8)
=% {25 ()

It~

. .a2ANAB +
np-s,1

i=1

4

np-1
E dea?cos(6)ANAB
sp-1 :

. Psp NIfON(_V_Z_cgEﬁ)_)
2 L4 2

2
sp—} & 4r0 ]

99 NLON v2cos(0)

- { 3 ) (——) a?ArAB +
ot i21 2 np-3%

+ ) e a2cos(e)arne

8¢sg N NEON (vzcds(e))
i=1 2 Sp-3

a?A)Ae ) (1.25)
The identity (1.25) shows that provided we neglect the
formal lack of ehergy conservation in the rotation terms,
the work done by the gradient forces can be balanced by

a consistent conversion to potential energy provided we

define
1 1 NLON ,
- 1
enp %cos(enp_%) NTOR izl 3 (v COS(G))np—%,i
and (1.26)
NLON

_ 1
zsp - %cos(esp_%) NLON izl 1(v2cos(8))

sp-3,1

(iii) Conservation of vorticity and the rotation terms near the poles

By taking a finite difference CURL of the momentum equations
(1.9) and (1.10) we obtain the finite difference vorticity
equation
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2 { £aCo8(8) + 6,v-¢ (ucos(8)) } +

+o,0 T 1+ 5 1 oos(0)'2° } = 0 ; (1.27)
1 ———0 ,
Note =z =— { facos(6) + dkv—ée(ucos(e)) 1
acos(6)o

Obvioﬁsly, because (1.27) is in £1lux form and is valid
at all z points we have vorticity conservation for
arbitrary U and V. Our computations require

=A0 =A =A0=A . .
(U Z )np—% and (U "=z )Sp_JzL which in turn needs a

specification for Unp and Usp. These "polar" mass fluxes
could, of course, be derived arbitrarily by some inter-
polation but, in fact, the forms for Unp and USp can be
derived by insisting that (1.27) is compatible with the
finite difference continuity equation. If we set z =1

in (1027) we have

= Facosey 0 + akﬁxe + 8 (Veos(o)%) = o, (1.28)

and at points np-3 (1.28) becomes

3 —A
s { 3(dacos(8)) + 3 (¢np_1acos(6np_1)) }
=A =\

1 1
+ 8, {3 Unp 3 Unp—l 1
+ { 0-3 r'(vl cos (6 ) + VA cos(8 Y | }/n8

: np-} np-4 np-2 np-2" -
=0 . V (1.29)

Using the continuity equation at the points on row np-1

we may re-write (1.29) as

1, =2 _ 1
26,0 - 5V 3088,

A np aé_e_ np ,) = 0 (1.30)
2

9
o (9cos(8))  + oo
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Comparing (1.30) with (1.23) and noting that cosG% )—ﬂxs(e

1)
np-z
we can derive the following equation for Unp’ namely

1 1 1 NION
(SkUnp)i o) Vnp—%, .cos(9 p—%)=_£ RION ZV l,JLCOS(enp—%)
2 k 2

(1.31)

which determines Ub up to a constant. We have chosen to add
the extra condition

NEON
U =
g=1 BP.L

I
)

(1.32)

For the south pole we have

(8, U_ ). + 1 V ;cos (6  )=_1_ 1 NIX_ON ., ,cos(8 )
A“sp’i A8 "sp-},i sp-%’ A8 NION -, Vep-1,2°%Cspy
2 2 '
(1:.33)
and
NEON o
) U = 0. : 3 o (1.34)
g=1 P,k |
(iv) Potential enstrophy conservation
With our choices for Unp and USp it is easy to show that

the continuity equations and the flux equation (1.27)

may be combined to arrive at the conservation law

NCD

g%(¢acos(6) z?) + 6 (U')\6 2y + 8 (VCOS(@)
(1.35)

for the potential enstrophy abaucos(e)k6

‘where (22) = z(A+AX,0)z(A,0)
AN
A+AA
5
and  (229) e = 2(1,08 +88)z(X,8).

0+3-
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1.3 Integrations on a sphere

One of the first technical difficulties that has to be
overcome for global grid point models using spherical
coordinate systems is the computational constraints imposed
by the convergence of the meridians to the poles. A great
variety of techniques have been used to overcome this
problem which have met with varying degrees of success.

The Kurihara (1965) grid, which is a non-uniform grid
giving an almost equal area representation over the globe,
has been used by Kurihara and Holloway (1967). The problems
with this grid are well known (see for example Holloway and
Manabe, 1971, and Holloway et al., 1973), the development
of excessive high pressure calls near the poles being the
main deficiency. The use of a regular latitude/longitude
grid to overcome this particular problem necessitates

using excessively small time-steps with explicit time-
stepping schemes in order to prevent linear computational
instability. Grimmer and Shaw (1967) used this grid with

a time-step that is a function of latitude and they were
able to use quite large time-steps except near the poles.
The most favoured approach, particularly with a regular
latitude/longitude grid, in recent years has been to filter
out or dampen the amplitudes of short scale features near
the poles or to reduce high frequencies by filtering.

Mintz and Arakawa (Gates et al., 1971) used weighted
averaging of the zonal pressure gradient and zonal mass flux
terms in the model equations, with the degree of filtering
increasing towards the poles. Holloway et al. (1973)

have successfully used a regular latitude/longitude grid
with Fourier chopping on all variables at the end of each
time-step. Holloway et al's integrations with this
approach were certainly superior ‘to those performed on a

modified Kurihara grid.

The filtering techniques that we have adopted are based on

the scheme described by Arakawa and Lamb (1977), in which
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they selectively applied a latitudinally dependent linear
filtering operator to the longitudinal derivatives in the
terms involving gravity wave propagation and also, in order
to maintain energy conservation, to some parts of the non-
linear advection terms. Their use of this particular filter
increasingly reduces the phase speeds of small scale gravity
waves as the poles are approached, rather than simply
dampening amplitudes or removing short waves. This phase
speed reduction enables much longer time-steps to be taken
than would otherwise be allowed by the linear computational
stability criterion for the unfiltered equations. The

Arakawa-Lamb filter, gﬁ can be formally expressed as

-1

F=9"b¢ | (1.36)
where ¢ is a finite Fourier transform of grid point values
along a line of latitude, 2_1 its inverse and

=

(1.37)

= A(6) = diag { Ak(e), .....
(8) . . th .

where Ak is the reduction factor for the k Fourier

mode of the term being filtered. The operator for

'Fourier chopping' can also be written in the form of (3.1),

with A having some zero elements.

For the barotropic integrations discussed in this lecture
I have applied the Arakawa filter to all terms in the

equations (total tendency filtering) and I have chosen

cos(9) 1

A, (6) = minimum {
k 1cos(£) sin(k%;)

1 (1.38)

k =1,. . .,NLON/2.

This choice for Ak(e) ensures that the maximum response of

1 .
the operator EBET@TGX occurs for the two grid length wave,
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k = ﬁ%?ﬁ’ at the latitudes 8 = t /4.

In order to test the performance of the model and the
360

filtering scheme an N32 version, AA=A6=128—2.81250, was

integrated to 10 days with and without filtering. Two

sets of initial conditions were chosen, namely, Rossby-
Haurwitz wavenumbers 4 and 1. Wave number 1 providing
the very important test of strong flow across the poles.
The initial winds were determined from the analytic stream
function using the model's finite difference scheme and
balanced heights were obtained by solving the reverse
balance equation. The mean geopotential height for both
initial states was 7.84 x 10"m?s 2. The filtered and
unfiltered models were integrated with the leapfrog time-
stepping scheme; no other space oOr time filters were used
to suppress computational modes. For all the unfiltered
integrations a time-step of 20 seconds was used, whereas
for the filtered integrations a time-step of 240 seconds
was used for the wave number-4 tests and a 180 second

time-step was used for the wave number~1 tests.

The initial data for the two initial states are shown in
figures (1.3) and (1.4). The unfiltered (labelled CONTROL)
and filtered (labelled FILTERED) forecasts of the geo-
potential for day-10 are compared in figures (1.5) and
(1.6) for the wave number-4 tests and in figures (1.7) and
(1.8) for the wave number-1 tests. Obviously, the unfiltered
and filtered integrations compare very accurately with each
other, and very little difference can be discerned either
visually or objectively. The unfiltered and filtered zonal
mean geopotentials day-10 are plotted against latitude in
figure (1.9) for the wavenumber-4 integrations, and in
figure (1.10) for the wavenumber-1 integrations. Both
forecasts are identical in this aspect and obviously there
is no evidence of spurious rising heights near or at the

poles.
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2. VERTICAL DIFFERENCING SCHEMES FOR BAROCLINIC
PRIMITIVE EQUATION MODELS (

In this lecture I shall discuss the methodology  underlying
the design of the centres vertical differencing scheme.
The approach is again based on the imposition of some

important conservation laws.

2.1 Governing equations

The equations for a dry adiabatic version of our model

are
Py (pv) + 2(p_6) = 0, co |
- +V_ . (p V) + (D =0, conservation L
ot o S 9078 of mass, (2.1)
ov 9V
5T + Z EAK + & §E-+V0(¢+e) +RTV02npS =0
momentum, (2.2)
oT . dT kTw _
Pyt * P V.V,T * psO55 - 5 = 0,
aliter
) . 3 BRTw _ .~
E{(pstT) + Vg. (psKCpT) + 58(ps6CpT) - — = 0
' thermodynamics, (2.3)
38 - _ RT (hydrostatic equation)'(2“4)
o4no yATe

the vertical coordinate is 0 and is defined by

o = p/Pg, - | | - (2.5)
s _ 1 1 v 3 : L ‘
Z = 5; f + Zoos(e) |ax §§(acos(6)) .
e =1% (u? +v?®) = tv.v ,
op

. s
w=p=po+ 0{7ﬁ; + V.V Dy }
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In order to complete the system we require upper and lower

boundary conditions; we have selected the 'mo flux"

conditions
(psc)c=0 - 0

and (2.6)
(pso)c=1 = 0 ’

For our model we required mass and energy conservation.
In particular, we wanted the work done by pressure forces
to be balanced by the changes in the total potential

energy arising from Egﬂ, the w-term,
Integration of the continuity equation gives

1 1
Bps

E Vo, (Pg¥)do -

- 1
T _Psé} = -V PSKdO' (2.7)

ag.
. o
(6] (0]

The divergence term in (2.7) integrates to zero ogver the globe,

which means that the total mass is conserved.

A "kinetic energy" equation can be derived from the

momentum equations in the form

0V. 5= + st'Voe + psz.(vc¢+RTV02npS) = 0

or

Je ,0€e _
ps_a..JE + pSX'VOe + psoga + psz.(vo¢+RTV02npS) = 0 (2.8)

Using the continuity equation, (2.1), (2.8) may be

rewritten as

d D . _
st(p.e) + |V (pgve) + gm(p oe) |+ p_V.(V_¢+RTV fnp. ) = O

(2.9)
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In order to construct the total energy equation we need to
express the pressure gradient terms in another form.

Using the continuity and hydrostatic equations we have

il

P V.V 9 = Ve(p Vd) = ¢ V .PV

aps 9
Vé(Pszé) + ¢(—7; + §E(Psé))

op ap
9 . S o¢ S
Vs (Ps¥0) + 55(¢ (055 *Pg))- 550 5% *PsY)

(2.10)

Combining (2.9) and (2.10) we have

a(pse) 3 . ’ s BPS
ot + Vom(psze)+.§§<psd?>+Vc(st¢)+ 20 “jTETfkpsd)¢)

é¢ Bps ' ‘
- 5% {o 5T * PO } + RTp_v.V fnp_ = 0
Now
| - 3¢ {OEEE + p.5 } + RTp_v.V _&np
90 ot s s='"0 s
op ‘
-~ RT S _ RTw
o (o ot * psd) * RTX'VOPS c

Addition of the kinetic energy equation and the flux form
of the thermodynamic equation and integration from o=0 to 1

gives
1 1
g% { PS¢S + ps(e+CpT)d0 }+ VU.J psz(e+CpT+¢)d0 = 0
° © (2.11)
Equation (2.11) is an expression of the energy cénservation
law for the o system (2.1) to (2.5). The divergence term

in (2.11) integrates to zero over the whole globe which
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means that the total. energy, potential plus kinetie,,is

conserved.

2.2 A finite difference‘scheme'Which maintains

The disposition of variables and the grid structure in
the vertical for the ECMWF primitive equation models is
illustrated in figure.(z 1). The primary variables v and
T are kept at the full 1evels and the Vertlcal velocity 6
and the geopotentlal are kept at half 1eve1s The

variable grid spacing Ao, is defined by
'k Opsr ~ Ok_% T ; T a’,.§2.12)

(1) The equatlon of contlnulty

The contlnulty equatlon is taken 1n the form

ap ACp G)k
5] S
=T + Vv ,(pSV] ) + —ie " 0 ‘ a (2.13)

Multiplying (2.13) by Ack and summing (integration) from

k=1, ..., K gives
op, K
Ol+y BT +k£1 V, (pvy )0y +.p O,y = O (2.14)
(p 6y = 0)

For K = N we have

3P N | N
=t = -kzlvg.(pszk)Ack = —Vg;kzlvg(pszk)Ack (2.15)

Equation (2.15) is a finite difference analogue of (2.7)
which obv1ous1y conserves ‘the total- (global) mass of the
model atmosphere. '
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) : ‘ c'7=0,¢;a=01/2=0
1 ———— e e e e e e e e e e — VTw o= 04

% o,¢,0=0%
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k —_——————————————— _\L,f,w; =0=0y
k+% 6,(}[); ar=ok+,/2
N—12 0,0, 0=0nN_1,

N & —t—,e—————————————— e e —_— y,T,w;0=GN

N+% b'¢=¢s?U=UN+yz= 1

Fig. 2.1 Vertical disposition of variables.
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(ii) Energy conservation

The finite difference momentum equation is

4N Oy e Vi) * Oy (YY1
ot T EYg t e o
9 e ok
+ Vg {¢k + ek} + RT,V &npg = O, (2.16)

The finite difference kinetic energy equation is

v

+ PV -V e t P Yy AV O * BTV S0P } =0,

k

and this may be rewritten as

dey ' 3 (Psck+%2k+1-zk—psék_%zk.gk_l)_ o AP 6y
Pg ot 2 AG PR Vi —
k Kk

(2.17)

Using the finite difference continuity equation we may
rewrite equation (2.17) in the flux form

~r O
P ov?
2 (p o) + Vo (pvye ) + A (—5—) + py . (V0 +R,V fnp } =
(2.18)
where (Xz)k+% = Kk¥1'zk (geometric mean).

In order to derive the analogue of the identity (2.10) we

need a hydrostatic equation; we use

AO¢

Afno k (2.19)

k
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For the finite difference model we have

Pe¥ic- Vol = Vor IPg¥ptpd = o Vo (pgyy)
op A (p o)
- S g s 'k
= Vo lpgyyd b + 0y {57 + Ao, }
cbk Bps .
= Vo {pgVydpt + 55, "o As(o—5g + Pl
v (oo + oo THPO )
o \Ps¥k Y3

(B9 ) . 9D
T Aoy k(03T Bt T Pgo )k+?!2=+ O (O~ + psé)k—%

(2.20)

(Note: ¢k(Ak+%_Ak—%) =(ak¢k+%+8k¢k—%) (wk+%- wk_%)

= (¢k+%Ak+% - ¢k—% Ak—%)

= iy Og) Brhpag™® Oy y)-
If we require total energy conservation then the form of
the last term in (2.20) is a constraint on our choice for

K
the w term, ;gﬁ, in the thermodynamic equation,.

The thermodynamic equation for our model is

i S (0343 Ty T %033 e )1 emy
P53t * Pe¥ke Yo'k Ps L Aoy A
» oLk
=0 (2.21)

If the w term is chosen to maintain energy conservation

we have
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+'Eﬂk3k'Vp%]
= é;::RTk(é%gg)k Bk(oi;? + psé)k+%+uk(5%2?+-psﬁ)k_%
4-R$kpszk.V£np%] (2.22)
Adno

The term ( e )k can be interpreted as a definition of

Cj;) for the model.
Ok

From (2.22) we note that we still have a degree of freedom

remaining, namely the choice of Oy and Bk’ subject to

[

Oy + Bk = 1, For our operational model we use 0y =‘Bki=
But these weights can be chosen 1in such a way that no

spurious angular momentum 1is generated by pressure forces,
Simmons (1979).

2.3 Comments on the stability of the three dimensional

baroclinic model

The finite difference scheme for the centre's global grid
point model is a combination of the horizontal and
vertical schemes described in this lecture and lecture 1,
and it is fully described in Burridge, Haseler's (1977)
report. As a demonstration of the stability of the finite
difference scheme, two 10-day integrations we performed
with the full operational model (N48, AX = A® = 1.875%;

15 levels; physical parameterization as described by
Tiedtke et al (1979)). The firét integration (labelled
R70) had no horizontal dissipation/diffusion, whereas

the second (labelled R54) used a non-linear fourth order
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Fig. 2.2 10 day forecasts of the 1000 mb height field from the
undiffused (R70) and the diffused (R54) integrations.
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Fig. 2.3 Spectrum of kinetic energy. KJ/(M2 x BAR). Day 4.5 to 8.0.
Mean between 40 and 60. .
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horizontal smoothing operator designed by Hollingsworth et
al. (1977). The two 10-day forecasts are illustrated in
figure (2.2) by 1000mb contour maps; the spectrum (up to
zonal wave number 20) of kinetic energy for the two
forecasts is compared with an NMC analysed spectrum in
figure (2.3). The performance of the undiffused model

is remarkable. My purpose in presenting this comparison
is not to advocate models with little or no horizontal
diffusion but simply to emphasize the stability that can
be achieved by a careful choice of the finite difference
scheme. In fact, objective and subjective comparisons of
horizontally smoothed and unsmoothed forecasts made with our
model show that smoothing improves the quality of the

forecasts.
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3. A SEMI-IMPLICIT TIME-STEPPING SCHEME FOR THE
ECMWF GLOBAL GRID POINT MODEL

The European Centre's first operational forecasting model
is the primitive equation model described in my

first two lectures. It has 18624 grid points on each of
its 15 horizontal levels, ( X=A6=1.8750), and it includes
parameterizations of all the atmospheric physical
processes that are thought to be important for forecasting
the weather up to ten days ahead (see Tiedtke et al. (1979)
for a description of the ECMWF physical parameterization
scheme). It is well known that integrations with explicit
time-stepping algorithms, such as the leap-frog scheme,
requires the use of very small time-steps; the size of the
time-step being determined by the highest frequency
external gravity wave modes of the model. Over the last
ten years we have seen the emergence of two particularly
.successful optimising techniques, namely (a) semi-implicit
methods - Robert et al.(1972), Burridge (1975), Hoskins
and Simmons (1975) and Gauntlett and Leslie (1976); and
(b) economical explicit schemes based on the method of
fractional time-steps -Gadd (1978) and, to some extent,
Burridge (1975). In both these methods the approach is

to design'an efficient algorithm to handle the terms in
the model's equations that govern the motion of small
amplitude gravity waves. The semi-implicit algorithms,

in general, use the undamped Crank-Nicholson scheme with
large time-steps, whereas the economic methods, as
designed by Gadd (1978) use a sequence of short time-
steps for the gravity wave terms. The implicit methods
have been criticised because when used with large time-
steps the numerical errors incurred may not allow accurate
simulation of the process-of geostrophic adjustment, Janic
and Wiin-Nielsen (1978). This has not been borne out in

practice, see Robert et al. (1972) and Burridge (1975).

The efficiency and implementation of semi-implicit algorithms

can be best appreciated by considering the following model
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problem: -
3% o jux with w = w_ + o L (3.1)
3t ’ B SI SRR
Wg = wE(x) " and Wg independent of x and t.
The algorithm
x(t+ t)-x(t- t) “s1
AL = 1wEX(t)+1—§—(x(t+At)+x(t-At) (3.2)
is a typical semi-implicit approximation to (3.1).
If Wg is constant then (2) is stable provided
m 2 2
(wEAt) < 1 + (wSIAt) (3.3)

w2 = maximum (wo)
E Wg/-

If Wgt (>> wE) is large, corresponding to the frequency of
the external gravity wave modes, then (3.2) is, to all
intents and purposes, an unconditionally stable algorithm.
For three-dimensional primitive equation models Wp and

wgy are matrices and the solution of (3.3) requires the
inversion of Wgy- For the scheme described in section
(3.1) below, this amounts to solving a coupled set of
Helmholtz equations on a sphere. The simple stability
analysis that results in the criterion (3.3) does not

give an accurate indication of the performance of the
algorithm for baroclinic models (see Simmons et al. (1978)

for a discussion of this point).

Although semi-implicit schemes are currently being used

for operational'weather forecasting in many national weather
services, there have been very few publications of quantitive
comparisons between explicit and semi-~implicit integrations.

In particular, Janic and Wiin-Nielsen's criticisms have
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not received any answer. In this lecture I shall describe
the semi-implicit scheme that has been designed for the
centre's global grid point model, section (3.1), and
present results of a case study, section (3.2), which
provide at least a partial reply to Janic and Wiin-

Nielsen's criticisms.

3.1 The semi-implicit algorithm

The differencing scheme

The complete spatial differencing scheme and the three-
dimensional grid was introduced in lecture 2. For the
purposes of this lecture we shall consider the following

abbreviated set of equations:-

3ps + 1 : v . Aops{j

st * 3oos(ey | SxUtSg(Veos(8)) b + Ao - 0 (3.4)

7t * 2cos(0) { 6A¢ + RT 6A(£nps) 1} = a. (3.5)

v+ 1 o =0 . _ :

5T Py { 69¢ + RT Ge(znps) } = a (3.6)
58 T o

oT 1 Pgo8st KT . P 5 _

3t " 5; A0 -5 (P8 * o [ T Ap (3.7)

for a dry adiabatic version of the model.

The terms a,s 2y and Arp contain the remaining terms.

We shall need the upper and lower boundary conditions for

a K level model
(Psff); = 0 ) (3.8)
2

(Po)gay = O | (3.9)
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and the finite difference hydrostatic equation in the
form

AG¢

ey~ RT (3.10)

The special treatment required for the polar boundary
conditions will only complicate our discussions and so
for this lecture we shall disregard this part of the
model.

Our semi-implicit scheme follows that of Robert et al.
(1972) and is based on a centred scheme in which the
linear terms that are responsible for describing the
evolution of gravity waves are treated implicitly. For

the semi-implicit version we have

1 S

— 1 A
af(lnpS ) + 5; EEBET@S'{HGAPS + vcos(e)depS }
—2t : .
A G : ’
o 1 -2t -2t _
+ AGO + PYTEICD) { §,u +66(V cos(B)) } =0
(3.11)
—2t 2t
-t 1 -0
étu * acos(06) { 6A¢ * RToaxlnps }
R(TA—TO)
* acos(9) GA(Rnps) Y , (3.12)
—2t 2t
-t 1 -0
Gtv + 2 {Ge¢ +Rq§e(2nps ) 1
R(T%-T_)
+..______a 66(2’nps) = aV (3.13)
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g""A T KT of
=t lofle) o ,=2t -t
GtT +: AOG - =3 (g” "+ cﬁt(lnps) )
5h_(T-T )° K(T-T_) 3
+ g2 - °" (g+o|6, Tnp.C| )y =2
Ao o St s | T
o ex
(3.14)
where
A&
—-T 1 1 o
§, Anp :] + e §.U + 6,(Vcos(6)) + —=0
[:t S lex Pg acos(9) A 0 . Ao
(3.15)
2t _ .. '
and u = I(u(t+At)+u(t-At) ), etec. (3.16)

Equation (3.15) is used to compute & for the terms that are

treated explicitly and

e —t
‘ftlnps]
ex

The temperature TO To(o) is a standard profile.
In the absence of time truncation, equations (3.11) to
(3.14) have the same conservation properties as those of

the set (3.4) to (3.7); this may be easily demonstrated
using the finite difference rule

D W —
6, (A"B) = BS,A" + AS,B (3.17)

If we introduce the operator Att’ defined as

A {W(t+at)+p(t~-At)-2y(t)}

¥
(3.18)

252 -y

and define

o —1
f'tslnps ] by
SI
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—t _ [ —t T ——t
Gtznps = I_St np :] + _Gtznps :I ; (3.19)
: ex : SI

equations (3.11) to (3.14) mayvbe rewritten in the forms

1 : A G

5, 5 _9_ _
'ft”nps >] * bo moos(ey | U * Sg(Veos(e)) 3+ 5 = O
‘(3.20)

LFthp—f] + ——fl——— {6A(%Attu) + 66(%Attvcos(a))}

s acos(9)
SI
A _(3A_.05)
o tt _
+ T = 0 (3.21)
t P— _ t _ o
Gtznps - '_dtslnpsil = I_Gtznps:l = ApS (3.22)
‘ SI ex
5.4 + — 1 8, (%A, .39+ RT 6. (3A np )\' = A
t acos(6) ATt o A ?Ttt s u
4 (3.23)
1[5 (36,,8%) + RT_8.(3A,_ 2n )l (3.24)
a l 8 %%¢tt 0P V )
0 «
~and { OA T KTo - £
— 1 o =
| L A o -5 (zAtt“o_‘St“ps)] ) Tp
~ | SI 4
(3.25)

where Aps, Au, AV and AT include all the terms that are
computed explicitly.

The stability criterion for this scheme depends on the maximum
horizontal wind speed, u/max, and the shortest grid length,
As_. , and takes the form
min
ASmin
At < y
max /u/maX

- (3.26)
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This criterion is quite restrictive because of the convergence
of the meridians to the poles, and it is necessary to incor-
porate the spatial filter described in lecture 1. For our
operational system this is implemented by filfering the
tendencies of the dependent variables znps, u, v and T.

The interaction of the filter and the semi-implicit algorithm

is discussed in the next sub-section.

The solution of the semi-implicit system

We first introduce a vector notation in which we define K

component vectors by

u
u
u = . etc. (3.27)
UK-1
Ug
where the ul( =1,...,K) are the u-velocities for levels
%. In addition we define ~new variables P by
_ =0
P =¢ + RTO(lnpS) | (3.28)

The momentum equations become

8 ﬁt + __:{;__.5 (30, P) = HFA 3.29
t acos(0) Attt/ T J2u (3.29)
-t ’

557 + = 8,(30 P) - 7, (3.30)

o
where 7 = 9&6) is the Fourier filtering operator described

in my first lecture.

By summation (vertical integration) of the thermodynamic
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and continuity equations and use of the hydrostatic

equation it can be shown that P satisfies the equation

=t aF 1 - : : k
8,0 +F g (30, &) =  Fa, (3.31)
where d = EEE%?@T {619 + Ge(gcos(e))} (3.32)

and G is a (K)x(K) matrix.

G is a function of the standard temperature profile TO(O);

We now define

P(t+At) - P(t-At) * 2EFA (L) : | (3.33)
then we have

P(t+ t) - %(t+At) + 2Atgfﬁk%Attg)»= 0 ', , .(5_34)

Also we rewrite (3.29) and (3.30) as

~ At . a_, ~ —
u(t+At) - u(t+At) + EEBETETW/SK(E(t+At)—E(t—At)) =0
(3.35)
and .
v(t+at) - y(t+at) + &5 Fo (R(t+A4) - P(t-At) = O
(3.36)
where -
a(t+At) = u(t-At) + 24t 37§u(t)
oAt g (1;(t+At) + P(t-At) - 2P(t)
acos(6) AN : - e ‘
(3.37)
V(t+At) = v(t-At) + 2AtFA (%)

- %} Q%A(é(t+At) + P(t-At) - 2P(t) (3.38)
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The divergence of (3.35) and (3.36) gives

1 F

A(e+at)-d(ErALIFAL  5o557EY Oy aos(0)

SA(P(t+ It )—%(tmt))

+ ———l——éﬁv(cos(e) ?% (P(t+At)—B(t+At))
acos(6) © a 0 < A ‘

-0 . ' (3.39)

The elimination of (E(t+At)—E(t+At)) between (3.34) and
(3.39) gives

2 1 i GFA
G(t+At)-d(t+At)-At (=;'6>\a.c:os(6)57\(9.cos(6)6)\(‘%Att(51
1 _ _
* acos(e)ae(cos(e) ESBQ%Attg)) - 0( )
: ‘ 3.40

a set of coupled finite‘différence "partial differential
equations" for the divergence vector g. Sincejwe need
only compute (57Attd) we may rewrite (3.40) as
- ' T

aF 1 7 T
(acos(e)sk acos(e)ak(d%Attg)

1 F

* woos(ay0A(eos(®) 7 (Agp@))

=f%ka(t+At) + d(t-At) - 2d(t)) (3.41)

The K eigenvalues of the matrix G are the squares of the
phase speeds, Cﬁ (k=1,---,k) of the model's gfavity waves
in a resting atmosphere with the vertical temperature
structure To(d).' The cofreéponding eigenfunctions,
Qk(k=1,...,K), of G describe the vertical structure of
these gravity waves. The system of equations (3.41) may

be diagonalized or uncoupled using the matrix

i

= (U5 eoly) | (3.42)
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“where columns are the eigenfunctions of G. This diagonal-
ization is achieved by defining the vector Y by the

.-1linear transformation

Cx=ENFL D o a (3.483)

and using the well known result g_lgg = diag(Ci)Ito--w

give

Y - At2C2 1 —Z s (Y,0))
k— 7 k acos(e) A acos(e) A
+ L___s 0 g@ Y. )) =if. (3.44)
acos(8) o0 (¢0s(0) 58 (Yp)) =1y :

~for the indivual components of Y, where

£ = E-L(d(t+at) + d(t-At) - 2d(t))

Polar boundary conditions are required for (3;44) and
these may be derived from the special forms‘of'the finite
difference equations near the poles. These boundary

conditions can be put in the form

G- 6 O g T4 Iy cos(s g+é9)(Y (2 2) ¥ (£5709)
- geos(igty) asm
NI "  .i | :‘%k3fh5)

where the Y
+

g A8) are the zonal means of Yk on the
‘latitudes 6.

(%
g:A Equation (3.45) is a Neumann boundary
condition for the zonal means of Yk’ zonal wavenumber zero;
all other zonal wavenumbers are zero at the poles. With
these polar boundary conditions, (3.44) is solved for
Y (k=1 ,k) using a direct method involving Fourier
ana1y81s in the longitudinal direction and Gauss1an eLmun—

-ation in the meridional direction. We can recover (f?httg)
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(Fbi8) = E X T (3.46)

Having determined (5?Attg) we may compute xnps (t+At1-and.
T(t+At), from the filtered forms of equations (3.22),
(3.23) and (3.25). This in turn gives P(t+At) from which
u(t+At) and v(t+At) can be computed (equations (3.35) and
(3.36)).

3.2 Comparative semi-implicit and explicit forecasts

The models and the initial data sets

In this section we shall consider the results of two sets
of global ten day forecasts using an explicit versioh of
the ECMWF model and the semi-implicit version described in
section 1 above. The resolution of both models is defined
by:

. _ 360 _ o
Ax = BT 5.625
_ 180 _ o

A = 78 = 3.75

9 unequally spaced levels with

o, = 8,2(3-28,) for k=i,1,1%,...5,09%.

8 = (k-1)/9
The physical parameterization used was developed at the
Geophysical Fluid Dynamics Laboratory (GFDL); the "1965"

version of their parameterization package. The spatial
filter used is defined by

A, = 1 for gggé%é%l sin (X34) <1
= 0 for 2%%%%%%; sin (E%l) >1,

that is, total tendeney chepping. The explicit medel
used the leap-frog time-stepping scheme with a time=Btep
of five minutes, whereas the semi-implicit model used a
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time-step of 30 minutes. Both models used a weak time
filter to suppress temporal computational modes. In the.
early stages of the development of the semi-implicit scheme
the reference temperature profile To(c) was chosen to be
the horizontal mean of the initial data and this frequently
led to instability.

The instability usually occurred in polar regions with the
maximum amplitudes near the tropopause (dry convective
adjustment is included in the parameterization scheme
which precludes the possibility of static instability
being a contributing factor). The reasons for the insta-
bility are now understood and have been described]by
Simmons et al. (1978). For the semi-implicit integrations
presented here T, = 300°K. |

The initial data was derived from a GFDL global data set .
for 1 March 1965. Two data sets were constructed. The
first, the uninitialized data, was obtained by bi-linear
interpolation from their modified Kurihara grid. The
second set, the initialized data, was produced by
"balancing'" the uninitialized data using the normal mode
initialization scheme developed by Temperton and Williamson
(1978). The uninitialized data is illustrated by 1000mb

and 500mb contour maps in figure (3.1).

The results

Each model was integrated for 10 days from both initial
data sets. We shall first deal with the forecasts from
the uninitialized data. The five day forecasts of the
1000mb and 500mb northern hemisphere are illustrated in
figures (3.2) and (3.3). A synoptic comparison of both
forecasts up to five days shows that both models give
very similar results with only small differences in

amplitude and phase.

In figure (3.4) we have the evolution in time of the
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standard: deviation. and anomoly correlations betweenmthe
two forecasts for most of the northern hemlsphere In ,
_the early part of the forecasts we see that we. have qulte
large differences which reach a maximum at around day one,
thereafter the two scores indicate that the models become
closer together until about day five. After day five the
models again diverge. The large differences between the
two models in the first two days presumably arise from
some initial imbalance between the mass and wind fields.
This conjecture is supported by the results of the fore-
casts from the initialized data. The forecasts from_the
initialized are illustrated in figures .(3.5), (3.6) (day
5 maps) and (3.7) (standard deviation. and cdrrelatiops).
In this second set of forecasts both models agree
remarkably well and the differences becomevsignificant
only after 7 days. As the two objective scores show the
semi-implicit and explicit forecasts do eventually differ
from each other but, as can be seen from figure (3.8)
which shows explicit and semi-implicit ten day,forecasts
of the 1000mb contour heights, these differences are not

significant;synoptically.

These resilts are in accord with Janjié and Wiin—Nielsen's
(1978) conclusions. Namely, provided the initial data is
well balanced we can expect semi-implicit integrations
with large time-steps to be as accurate as explicit

integrations.
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upper frame,
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4, LATERAL BOUNDARY CONDITIONS FOR LIMITED AREA MODELS

INTRODUCTION

Most operational forecasting models in use in the national
weather services are limited area models, and as such
require boundary values and special "boundary schemes'
at the lateral boundaries. This is understandable since
the cost of integrating global models with adequate
resolution (grid lengths between 50 and 200km say) for
short range operational fofecasting is enormous and pro-
hibitive for most national centres. Numerical studies
of small scale phenomena such as convection, fronts, sea
breezes are usually carried out with fine mesh (grid
lengths between 10 and 20km) limited area grid point
"models. The boundary conditions for these integrations
are usually maintained constant throughout the period of
the forecast or are derived from forecasts made with

another model which covers a larger area.

In this lecture I shall discuss lateral boundary conditions
for'simple one dimensional models and give an example of
boundary induced instabilities with an otherwise stable
finite difference scheme. Some of the problems arising-
with two and three dimensional primitive equation models
are discussed. Finally, some results using a boundary
relaxation technique are described. It is obviously -
impossible within the space of a single lecture to cover
the many schemes that have been tried and the interested
reader is referred to the comprehensive review paper by
Sundstrbdm and Elvius (1979).

4.1 The linear advection equation

Firstly, we consider the following initial value problem

Q
-
Q2
S

|
[
S
|

=0 0<x<a, t>20,u>0 (4.1)

3
ct
[<%)
b
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9(x;0 ) = £(x) | N € 2>

Equation (4.1) and initial conditions (4.2) have the ~

solution

o(x,t) = f(x+ut) 5
(4.3)

for 0 ¢ xtut £ a.

In order to prescribe the solution for times t > (a-x)/u.
we need boundary conditions for t > 0. From physical .
considerations, the velocity u advects ¢ from right to .

left, we could choose

¢(a,t) = g(t) t >0 (4.4)
and this leads to the solution
(x,t) = g (t + ) . (4.5)

for t > (a-x)/u.

The solution comprising (4.3) and (4.5) obviously satisfies

our initial boundary value problem for (4.1).

In figure (4.1) we can see which parts of the space-
time diagram that are influenced by the boundary and
initial values. The lines x+ut = constant are called
characteristics, along which the solution is constant.
As a consequence the solution at the "outflow" boundary,
x = 0, is determined by "interior" values. With the.
pboundary condition (4.4) the initial value problem (4. 1)
and (4.2) is properly posed in the sense of Hadamard,

in that the solution depends centinuously on the initial
and boundary values. Any discontinuities arise from the
initial and boundary values only. If the boundary values
are prescribed at x=0, the problem is in general "ill-

posed'.
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Fig. 4.1 "Spa»ce/time diagram for equation (4.1).

5
7
X

We now tﬁrn to'agfinite difference approximation for ¢.
Our discussion_invthé rest of this section is based on
Kreiss's (1971) paper. We first consider the right hand

quater plane problem

2280 - o, uwxo )
x>0, t30 ‘ g | (4.6)
$(x,0) =‘f(x), Imlf(x)|2dx < )
1o
The solution of (4.6) is
p(x,t) = f(x+ut) (4.7)

for all t > 0. Again we note the absence of ‘any condition
at x = 0. For our finite difference approximation we use
the space-time grid defined by

x3 = jix Ax = 1/N (N integral)
ty, = nit » ,

n—-

¢j = ¢(Xj, t,)
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The derivatives in (4.1) are approximated'by centred
differences to give

n+1 n-1 nf' n
q)J - (b,] _ (¢J+1 ¢J 1) -0
2At S2Ax% .
. n+l _ n-1 n’ n . _ ult
for j =1,2,........
ith ° = f(x,
wi | ¢J ‘,f(fJ)

For the finite difference solution ¢§ we need to specify

¢1

j and for our -analysis - -we assume

1__" . - . A : P
by =y (A9

For our discussion we shall conSider the bQunQary condition

n _ . n
o0 = Bo- o | S (410

The Ryabenkii-Godunow condition for stability requires
that there exists no solutions of the form

=z'%., P. %0

n
%3 it i

(4.11)
with |Z|>1 and zjlpjlex < o

Note that the space dependence is bounded. If there are
solutions of this form, then choosing the bounded initial
conditions ¢§ = ZPj,f¢§»='ZPj for the appropriate Pj and
Z will result in instability. " In addition we shall assume
that the Courant Friedrichs Lewy criterion |A| < 1 is"

satisfied.
Substitution of (4.11) into (4.8) gives
2 _ = _
(z2-1)P, AZ(Pj+1 LI (4.12)

which has solutions of the form
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P. = oy Ky + o J (4.13)
with the K4 (i=1,2) satisfying the equation

(Z%-1) « = A(k2%-1)Z (4.14)
Either both roots of (4.14) lie on the unit circle or one
(K=K1) root lies inside and the other (K=K2) outside. If

Al < 1 and |z| is large enough, [Z]| > 1, we have [ky| <1
and |k,| > 1 with

_ (Z2-1.1 z2-1.% 1
<1 = (g3 “\/<—zz—> etl. <0, forZ >0

211 2 _ 2 1 o k
‘= Gs +\/<Z—2z—1‘> ®+1 >0, for Z <0.

P
In order to satisfy ) leIZAx < » we select
j=1

P. = alKg' |K1| < 1.
The boundary condition (4.10) gives

KyB = 1 (4.15)
and therefore if |B] < 1 we have no amplifying solutions of

the form (4.15). For |Z| large we have unstable solutions
at least for

B < -1 (Z > 0)

1
*V'xz' 1 (Z < 0)

Our stability analysis indicates a region of stability,

namely |B8:1| < 1, but the initial value problem with

> =

and R >
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B =1 3

0% =1 for j = 1

J : ' ¢
= 0 for j > 1

1 :

¢j =0 all j J

which is stable according to the Ryabenkii-Godunow criterion
has a solution

o]

N |¢j|2Ax ~ constant vn = constant,ct/At)%' (4.16)
j=1 :

an algebraic growth in time which can easily be controlled
by smoothing. This type of solution is not covered by

the exponential form 7™ of the Ryabenkii-Godunow conditions.
We next show that restricting the "area'" of integration

to a finite interval leads to exponentially growing
solutions for the scheme (4.8), (4.9) and (4.10). VWe

now consider fhe finite difference solution of

29 39 -
5t T Yo% 0

0 < x < a b (4.17)
0(x,0) = £(x)
¢(0,t) =0

/

using the centred scheme (4.8) with the boundary conditions

dp = ¢7(B = 1)

i
o
1

¢(a,t)
NAX = a

-0 (4.18)

Again we look for solutions of the form

n n n J

.
[}

Thé boundary conditions at x = 0 and x = a give
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(4.19)
al(Kl-l) + uz(Kz—l) =0

(Note « = =1)

1¥2

which for non-trivial solutions for ai(i=1,2) requires

2N N
< (-1)
= 0
(k,=1) =(1 + «T1)
1 1
1

that is (1+kq) (KI)ZN_

be even gives

= (1% (1-k,). Restricting N to

oN-1 17Ky

(k) = T, (4.20)

For large N (4.20) has a solution for Ky Very near 1.

We look for solutions of the form

vln(zn(N))}
N

_ 1
Ky = 1- {EN in(uN +

This gives

- 2N-1
2N-1 _ 1 vin(&nN)
(k1) = { 1 '[_EN an(uN) + “TV““]
~ exXp {—(ZN-I) (5% n(uN) + vﬂnéln(N)))l
J

exp ]—Qn(uN) exp —2v2n(£n(N))

1
= IR ©Xp {—szn(an?I,

and in order to balance the leading terms on the right hand
side of (4.20) we require u = 4 and v = -} giving the

asymptotic result
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g =1 - & amn + 0entE2E)) + o . (4.21)

for an approximate solution of (4.20) with (Kl) < 1.

For Kq > 0 we have Z < 0 and for Ky given by (4.21) a

simple calculation gives

7= - 1+ i
This gives
) n
7P = (-1 (1 + 320D,

= D" A+ gy w )°

L (=)™ expl L& gn(n)} = (-1 yut/2a)

P (4.22)

Here our finite difference solution, (4.8) and (4.18), to our

initial boundary value problem (4.17) has exponentially
growing solutions.

Kreiss (1971) and Gustaffsson (1972) have strengthened the
Ryabenkii-Godunow stability criteria to cover the possibility
of algebraically growing disturbances for the right hand
quarter plane problem (4.6). They impose the constraint

that there must be no bounded (in space) solutions for

|Z| > 1 and for |Z] =1 + €, € >0, as € > 0.

In addition they show that a finite difference solution to
(4.17) is stable if |A| < 1 and the associated right hand
(x > 0) and left-hand (x < a) quarter plane problems are
stable according to their strengthened form of the

Ryabenkii-Godunow stability criterion.

Now consider the boundary treatment

n+l _ 1 n n

¢O = iz (uAtcb1 + (Ax—uAt)¢O)
that is extrapolation using the fact that the solution is
constant along characteristics, x + ut = constant. This

can be written as
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n+l _ n n n

Kreiss (1971) has shown that (4.23) is a stable formulation
-for ¢8+1u» Also, Richtmyer & Morton (1967) (page 141) have

shown that the extrapolation

-1 +1 ’
AR (CH R M | (4.24)
. . . n+l . .
is stable,in this case ¢1 is determined from
n+l_ 1 n-1 n '
0y = 1agx (13 + My (4.25)

4,2 Advection and gravity waves

The linearized shallow water wave equations in one

dimension can be written as

u' o, du' o, 3¢’ Vo
5t T Uopx Tax —Iv =0
v’ » v’ , o ;
3t t U tT =0 - (4.26)
3¢ ' 3¢’ B du'
3t T "I, Yo% <O
y) < X < a
where U = constant, 30 /3y + fU_ = 0

The three equations in (4.26) can be reduced to a single

equation for u , namely

4 g ¢ _
[ 3 0.2, 20%ur . 2| .2 aw _
+U-)1(H+Uoﬁ) u'-c + fu +£°U 0

3X2 ‘1 09X

(4.27)

The boundary conditions for (4.27) depend only on the wvalues
of the three characteristic velocities‘Uo, UO+/5 and UO—/50°
At x = 0 we need a boundary condition for each positive

characteristic velocity; whereas at x = 0 we need a
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boundary condition for each negative characteristic
velocity. Since the Coriolis terms have no influence on
the mathematicalvproblems associated with specification of
boundary values we neglect terms in f for the remainder
of this section. If we define characteristic variables
a=u' +¢//3,, B = u'-—¢'//50, (4.26) may be rewritten
as (f = 0)

0 90 _ A

5&:{ + (UO + /50) "% 0

v v = 4,28
ot * anx 0 p : ( )
98 98 _

37 7 Uy - 3) 5x = 0 y

namely a system of three independent advection equations.
Therefore for positive UO < /50 we should specify o and

v at x = 0,and B at X = a in order to have a mathematically
well posed problem. In addition for a finite difference
treatment of (4.28) we require a stable scheme for

B at x = 0 and o and v at x = a,

4.3 The primitive equations in two and three dimensions

For the primitive equations in two or three dimensions the
problems are obviously more difficult to analyse. For

the shallow water wave equations in two dimensions Sundstrdm
and Elvius (1979) analyse the general problem for boundaries
at x = constant. Their approach is to "Fourier analyse

out" the y, tangential dependence and use a Laplace
transform in time to reduce the system to a coupled set

of ordinary differential equations in x to which a diagonal-
ization procedure similar to that described in (2.2) may

be applied.

In three dimensions the problem is further complicated by
the fact that the primitive equations do not constitute

a hyperbolic set of equations. Oliger and Sundstr8m (1978)
have suggested an approach based on expanding the vertical

dependence in terms of the eigenfunctions of the vertical
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differential operators, which for a linearized system can
be reduced to sets of uncoupled two-dimensional systems.

These two-dimensional systems are then treated individually.

4.4 A boundary relaxation scheme

In this sub-section we shall discuss an alternative to

the strictly mathematical approach described in the last
‘three sub-sections. Here we deliberately specify all
variables on the boundaries and inhibit the development

of any boundary induced instabilities that could arise by
including extra terms in the governing equations. Kgllberg
(1977) has tested such a scheme in a limited area baro-

tropic model. TFor his model the equations are

oo+ Dy + L (utev?)) = k(u-i) )

Wt (24 gyu + B (9+R(aEAYE)) = —k(v-T) (4.29)
ot - oy 2 3 :
52+ am(dw) + 2 (6v) = -K(6-F) )

where k is large in some boundary zone, U, V and ¢ are
externally prescribed fields. The finite difference
approximations to the left hand sides in (4.29) are the
cartesian equivalent of the scheme used for the centres
global grid point model. The time-stepping algorithm for
(4.29) is of the form

X(t+At)2£tX(t‘At) + F(X(t)) = ~k(X(t+At)-X(t+At) (4.30)

where X is a vector consisting of all the models variables
and F represents the spatial dependence on the left hand

sides of (4.29). Equation (4.30) can be rewritten as
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X(t+At) = X(t-At) - oAt F(X(t)) ,

sn+l on+l _ ‘ A
X(t+At) = (1-0)X + 0 X , (4.31)
and o = 2At-k/(1+2Atk) = 1-tanh(j/2) ,

where j is the number of grid lengths to the nearest

boundary. The values of o are given in table 1.

J a
o - 1.000
1 .538
2 .238
3 - .095
4 .036
5 .013
6 .005
7 . .002
8 0
Table 1 o = 1 - tanh(j/2)

This boundary scheme is a simplified version of a pro-

cedure designed by Davies (1976).

In one of Kgllberg's tests of this scheme7geostrophically
balanced waves in a cyclic B-plane (f=fO+By) channel with
Ax=Ay=300km were integrated to provide the external
boundary forcing (i) for an embedded limited area (40x40
‘grid points) with Ax=Ay=100km. In figure (4.2) the
initial fields are shown for the full cyclic area with
the limited area delineated by the inner frame. 48-hour
forecasts for the limited and coarse mesh areas are

illustrated in figure (3). The limited area and coarse
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mesh. forecasts -agree well with each other with no
discernible boundary noise. Other tests performed by
Kgllberg also demonstrated that large scale gravity waves

' ‘were successfully absorbed in the relaxation zone.

4.5 Summary

We have seen that numerical instabilities can arise as

the result of u51ng computatlonal boundary condltlons Wlth

an otherw1se stable scheme. No doubt it is best to. base '

} formulatlons for lateral boundary schemes on phys1ca1

cons1derat10ns such as the number ofkoutgolngycharacteristics;

but ad hoc techniques such as the relaXation scheme described
in (4 4) can prov1de simple stable schemes possibly at

'the expense of accuracy For studies of special phenoména;“

for example frontogenesis, cumulus convection, etc., this.

...could be‘by iar,the_most,cost’effective approach. Whatever

method is used the useful period of the limited area .
forecast depends on how quickly the errors generated at

the boundary propagate into the interior and it is partic-

ularly important”touprevent these errors with large
amplitudes from being propagated at the speed of the

external gravity waves, about SOOmS_l. Kgllberg's use of

Davies relaxation technique certainly prevents this from

occuring in barotropic models. With more and more research

groups coming to rely on limited area models for forecasting
and research the special techniques necessary'to provide
stable accurate computational boundary condltlons deserves

much more intensive 1nvest1gat10n
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'ig. 4.3 48 hour forecast. Limited area upper frames, coarse mesh lower frames.
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