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1. INTRODUCTION

The European Centre for Medium Range Weather Forecasts is
an intergovernmental institution devoted to weather forecasts
for periods up to 10 days. The Centre has recently started
its first operational phase, and we are starting to issue
forecasts to the Member States on an experimental basis.
The present operational weather prediction model and the
other models available at the Centre are developed using
the best available parameterisation schemes and the numerical
schemes which in our experience function well and have good
accuracy. It is obvious that the staff of the Centre has
drawn heavily on the research work done in the past by the
meteorologists who developed the methods for short-range
prediction and for simulations of the general circulation
of the atmosphere. These developments are in turn based

on our present knowledge of the dynamics and thermo-
dynamics of the atmosphere. It is thus seen that a further
improvement of the medium-range prediction models depends
ultimately on an increase in our understanding of the
dynamics of the atmospheric processeé. Due to this fact

it is entirely appropriate that the annual seminar is
devoted to dynamical meteorology and numerical weather

prediction.

The concept of scale has been extremely useful in the
development of numerical weather prediction. The observing
network - inhomogeneous as it is - defines at most the
large scale motion of the atmosphere, while the micro-
and meso-scale motion almost by definition cannot be
resolved by the synoptic network. We are therefore
resigned to the fact that only the large-scale motion and
structure can be predicted directly and explicitly by

our models. We know also that many of the physical
processes in the atmosphere are of a microphysical nature
(radiation, condensation, evaporation, precipitation,

convection etec.). For the dynamicist who wants to



contribute to the development of a prediction model it is
not only required that he must understand the basic
dynamics of a given physical process, but he must also be
able to express the essential parts of the dynamiecs in
terms which involve the large scale parameters carried

in the model (parameterisation).

The prediction model designer should for each physical
process - to the extent it can be considered in isolation -
decide

(i) whether or not the dynamics of the process
is known

(ii) whether or not the effects of the process
influences the large scale state of the

atmosphere, and, if so,

(iii) how can the essential dynamics be expressed

in terms of the parameters used in the model.

This chain of events, although logically simple, represents
nevertheless some of the most difficult problems in
meteorology. I am personally convinced that the improve-
ment of our models in the future to a large extent depends
on our ability to make realistic parameterisation schemes
for the physical processes of fhe atmosphere. This

statement applies particularly to medium-range forecasts.

In the following sections we shall discuss some of the
basic aspects of the medium-range prediction problem

and other related problems in atmospheric dynamics.



2.- NON-LINEAR INTERACTIONS

In inspecting the programme for this seminar it is
unavoidable to notice that many of the contributions deal
with linear or quasi-linear problems. While I agree that
much can be learned from linear equations, and that these
equations due to the state of the art in mathematics are
just about the only equations from which solutions can be
obtained, we must nevertheless remember that very important
aspects of atmospheric dynamics is basically non-linear.
To remind all of us about this fact I reproduce a summary
of calculations recently carried out by Chen and
Wiin-Nielsen (1978). We calculated the non-linear inter-
action of kinetic energy In, of enstrophy Jh, and of
available potential energy Ln from atmospheric data

(10 levels, December 19, 1971 - February 27, 1972,

00 and 12 GMT). The results are displayed in our paper

as a function of the meridional index n, but here we shall
be satisfied with a summary where the results have been
grouped as follows: 1 <n <7, 8 <n < 14, 15 <n < 31.

Table 1 shows the results.

Table 1
2 -1 . .. -18 -3 2 -1
n In,erg cm s Jn,lo s Ln,erg cm sec
1 -7 830 , 39 -3786
8 - 14 -877 -328 2604
15 - 31 47 289 1182

Table 1 shows at a glance that the non-linear transfer of
available potential energy is from the larger scale
(mainly n=2) to the medium and shorter scales while the
kinetic energy and the enstrophy are transferred from the
middle scale where they are created by conversion from
available potential energy to the larger and smaller

scales. In agreement with Fjgrtoft's (1953) theoretical




deductions the larger fraction of the kinetic energy is
transferred to the large scale while the larger fraction

of the enstrophy is transferred to the small scale.

These recent results are of course only confirming earlier
results obtained by Steinberg, Wiin-Nielsen and Yang (1971),
Saltzman (1970) and Yang (1967), but the most recent
results are the first which use the spectral index n as the

scale parameter.

The non-linear interactions are not negligible as compared

to other energy parameters. A useful yardstick is the esti-
mated total energy conversion from available potential energy
to kinetic energy which is about 5 Wm"2 = 5000 erg cm_2 s_l.
It is thus seen that the non-linear interactions must be
included somehow in any realistic model of dealing with

the various scales of motion.

It has been suggested from time to time that it should be
attempted to formulate a numerical model which describes
the large scales only. This suggestion makes sense because
the large scale motion defines the major waves which in
turn determine the type of weather in a given geographical
region. The results displayed here show that such a model
must contain a correct parameterization of the interaction
between the large scale and all the other scales. No
successful parameterization of the non-linear transfer

has been made so far.



3. A VERY SIMPLE NONLINEAR MODEL

Continuing on the theme of nonlinear behaviour I shall next
demonstrate some recent results obtained in collaboration
with E. K41lén and so far unpublished. We have elaborated
on some results obtained by me in 1975 and published in

the proceedings of the first ECMWF seminar. In some areas

we have even succeeded in generalising the early results.

The basic equation is the advective equation with forcing
and dissipation, i.e.

Bty T Ux 3x. T 7 eUgx F B(upy - ouy) (3.1)

Without forcing and dissipation this equation is energy

but not enstrophy conserving.

The equation (3.1) is transformed into the spectral domain
by considering a distance 0 < x, <L, and u, = 0 for

Xy = 0, x, = L. In this case we can use an expansion in
sine-functions only. After expansion in the spectral
domain, after non dimensionalisation, and after reduction
to a two-component system, where U(1l) = x and U(2) =y,

we have the equations

1
T TRt g
(3.2)
dy _ 1 .2
E_..._2-X_37+YE

The two-component system is possible, because the basic

system has only one conservative property.

(3.2) is the system considered in 1975. At that time the
E = 0 and

Vg # 0. We shall now consider the general case where

#F 0 and Vg # 0,

whole investigation was limited to the case x

g



The first problem is to find the steady states, i.e. those
states where dx/dt = dy/dt = 0.

Denoting a steady state by (XS, ys) we find that all steady

states are solutions to the equations

1
5 %X, (y. - 2) + x, =20
2 7 s s E (3.3)
1 _2 -
g Xy "~ VgtV =0
leading to the equation
x3-2(y-2)x-4x=0 (3.4)
s E s E )

The equations (3.3) may be considered as curves in the

(XS, ys) plane. The steady states are given by the
intersections of these curves. The parabola in Figure 1
represents the curve dy/dt = 0, while the hyperbola
corresponds to dx/dt = 0. Vg determines the maximum of
the parabola while X determines the shape of the hyperbola.
It is thus seen that when Vg is smaller than a certain
critical value there is only one intersection between the
curves, i.e. one steady state. Three intersections (three
steady states) will exist when Vg is larger than the
critical value. The critical value is Xp dependent and

we must thus investigate the number of real roots in (3.4).
They are determined by the quantity

2

2 3
E - 37 g

A= 4(x - 2)7) (3.5)
according to the classical theory of the cubic equation.
A < 0 indicates three real roots. A > 0 is the case of

one real and two complex roots. Three steady states exist
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Fig. 1 Representation of the steady states Pl, Py and P5. The parabola is the curve
on which dy/dt = 0, while dx/dt = O on the hyperbola. The horizonal line through

(0,2) is an asymptote for the hyperbola.

The intersections are the steady

states. The arrows indicate the direction of the trajectory at points on the
parabola or the hyperbola as deduced from the basic equations.
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thus when
. %-
2 3]
(3.6) can be satisfied only if Vg > 2.
The values of the three real roots are

[2(v5-2) R
_ E 1 .. 20y ._ »
ij = 2 ——3— cos (§¢+J ?T),J—O,I,Z : (3.7)

where ¢ is evaluated from the expression

X
cos ¢ = E . . ‘ (3.8)

‘/2 NEE

Returning to Figure 1 which corresponds to the case of

3 steady states we may investigate the trajectories in the
1°Po
and P3. Using the basic equations for the system and the
facts that dx/dt = 0 on the hyperbola and dy/dt = 0 on the

parabola we may deduce the direction of the trajectory in

~immediate neighborhood of the three intersections b

four points surrounding the steady state. In this way we
find that P1 and P3 are so-called spiral points, while P2
is a saddle point. P2 is therefore an unstable steady
whether the spiral approaches the steady state -or goes
away from it. This question can be settled by a linear

stability analysis.

We consider therefore an arbitrary steady state (XS, ys).

Linearising the basic equations we get



12

dx' _ 1 ;l-_ R 1
at . = 2 %s Vit g Vg % X
(3.9)
a%_‘? T XX -y
“where perturbation quantities are denoted by primes.
_‘We seek solutions of the form
(x',5') = (x,,y,0e°" | | ©(3.10)
cr O’ fo) : -

where ¢ is the eigenvalue. o, > 0 indicates instability.
Using the usual procedure of substituting (3.10) in (3.9)
and finding the conditions for nontrivial solutions by

setting the determinant to zero we find that

0—=

[(ys e 8XSZ‘] | (3.11)

Considering first the region in which y;3< SX;? we find

that o, > 0 if y, > 4. On the other hand, if y2>8x 2,

then ¢ is real. ¢ will certainly be positive if Vg > 4.

N

In addition, ¢ will be positive for Ve <4 if

2 2 2 A
Vg - SXS > (4 - ys) , (3.12)
or
2
Vg > X + 2 (3.13)

Figure 2 shows the stable and unstable regions in the
(XS, ys) plane. It is naturally preferable to express
the stability criteria

2
X + 2 < Vg < 4 and Ve > 4 (3.14)
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"

"ig. 2 The stability diagram in the (xs,ys) plane. The straight lines through the origin
are yg = +2 /2 Xy, U and S indicate unstable and stable regions, respectively.
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in terms of Xp and Vg and to derive a stability diagram

in the (XE,yE) plane. We consider first the region

2 _
X + 2 < Vg < 4 (3.15)
Since = + 1 x2 we find that 2 <y, < 5 and furthermore
g Vs 2 7s E '
that
2 < 2 ‘
X 3 (yE - 2) (3.16)

Using the expression (3.7) for x, we find that (3.16) is

equivalent to

1 1 . 27 1 .
-5 < cos(gwb+ j 7?) <~§ (3.17)

Since Xg >0 it follows that 0 < ¢ <-%1rand thus
0 <-%¢ <-%n. It is thus easy to see that the roots
corresponding to j = 0 and j = 1 do not satisfy (3.17)
and consequently are stable steady states while the root
corresponding to J = 2 does satisfy (2.17) and therefore

is the only unstable steady state. From

0 <cos¢<1

we find that

2 3
XE-<‘J§7 (yE—Z) , 2 < Vg <5 (3.18)
as a region with one unstable and two stable steady states.

We consider next the region

v, >4 (3.19)

leading to

2 .
X < 2(yE - 4); Vg >4 (3.20)
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Using again (3.7) for X, we find from (3.20) that it leads

to the inequalities

Vg -4 y.—4
3 j 2w 3 Y'E
L < cos (3 ¢ *J 3 )<‘/Z Vg2 | (3.21)

It is convenient to define the angle 8 by

-4
- 3 VE . < < T

cos € = ) 57-}'3":5 5 0 8 5 (3.22)
and we get from (3.21) that it will be satisfied if

6 <ip + A <4y | (3.23)

3 3

or

r+e <%+ <z2r- g ' (3.24)

The object is now to investigate if the three roots satisfy
either (3.23) or (3.24). We start by noting from (3.22)
that the right hand side will vary monotonically between

0 for Vg = 4 and-—\/~ for Vg approaching infinity. It
follows that

<o < I (3.25)

Considering first the case j=0 we have

1 1
0<35¢ <gmn <o (3.26)

showing that the first steady state is stable.
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For j = 1 we find

27 St

2 1

EL <:-3'¢+——:'3 <~'6— (3.27)

1 2 . . :
If 3¢ + g shall be in the interval [6,7n-6]
we must require that

%¢ + %n < m-6
or

¢ < w— 38 (3.28)
Since ¢ is positive it is seen that (3.28) cannot be
satisfied if

T - 306 <O (3.29)
leading to

1

cos 8 < 5 (3.30)
and therefore

Vg < 5 (3.31)
The second steady state is therefore stable for Vg < 5.
For Vg > 5 we find that (3.28) will be satisfied if

Vo.—4
2 3 ) 3 'E
X > - Jﬁ (yE—Z) cos [3 arccos a ——yE_z] (3.32)

The second steady state is therefore unstable if yEI> 5
and (3.32) is satisfied.
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For j = 2 we have
Tn< T o+ gn < o (3.33)
If %¢ + %n shall be in the interval [« + 8, 21 - 8]

we must require

4

: 1
TT+6<—37¢+'§TT

or

¢ > 38 - 7 (3.34)
(3.34) is always satisfied if 38 - 7 < 0 leading to
Vg > 5 (3.35)

The third steady state is thus unstable if yEZ> 5. For
VE < 5 we must require that (3.34) is satisfied leading to

2 3 3 YE~
xp < -‘/-2—7 (yg-2)" cos [3 arccosq/ 7 —y—-E—_-—i] (3.36)

The results of these analyses are summarised in Figure 3
showing the regions in which the second and third steady
states are unstable.

In the calculations above we have considered the case of
three steady states. We shall finally consider the case
when only one steady state exists. As shown below this
state is always stable. The region of our steady state in
the (xg, yg) plane is given by ‘

9 _ 2 3
Xp >-§7 (yE—2) (3.37)
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Since
_ i _2
Vg T Vs T3 %g
(3.38)
x = - = x_ (y_-2) :
B 2 s s
we find after some calculations that (3.37) in the (Xs, yS)
plane can be written in the form
( 2 2)2(8( _2) +x2)<o0 (3.39)
Yg ~ - g Vs S )
(3.37) corresponds therefore in the (XS, yS) plane to the
region '
y <2 - g%’ | (3.40)

which is entirely in the stable region of Figure 2.

The stability analysis in this section may be repeated
for Xp < 0. The result is a stability diagram symmetrical .
to the diagram in Figure 3 around the yy - axis. The ’

dashed curve in Figure 3 will be explained below.

Figure 3 shows that in the region of three steady states
there are two very different sub-regions. The region to the
right hand side, i.e. for large values of Xp and Vg is
characterised by 2 unstable and 1 stable steady state. It is
to be expected and numerical experiments havé confirmed

that the single stable steady state is the asymptotic

state, or, in other words, all trajectories wherever they
start will eventually approach the stable steady state.

The remaining part of the region is characterised by 1
unstable and 2 stable steady states. In this case we know
only that if we start a trajectory close to the unstable
steady state it will move away from the state, but the

linear stability analysis cannot tell us which steady



Fig. 3

5 , ' 10 - 15

The stability diagram in the (xE,yE) plane. The lower curve separates the region
of one stable steady state below and three steady states above. The other full
curve from (VE, 5) upwards separates the region to the left of one unstable and
two stable steady states and the region to the right of the two unstable and one
stable steady state. The dashed curve, determined by numerical experiments,
separates the regions with and without "limit cycles".
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state will be the asymptotic state. For all the points

in the region with one unstable and two stable steady
states we carried out a numerical experiment. We selected
36 initial states on a small circle with the unstable
steady state as centre. For each initial state we

carried out a numerical integration until a steady state
was reached. Based upon the results of these numerical
experiments it is possible to sub-divide the region of

one unstable and two stable steady states in two sub-

regions sub-divided by the dashed line entered on Figure 3.

The region to the right of the dashed line in Figure 3
consists of points where all the trajectories surrounding
the point P2 in Figure 1 will have the point P1 as the .

asymptotic steady state.

The region to the left of the dashed line, on the other
hand, are those points where some of the trajectories
will have P1 as the asymptotic state while others

approach P3 for large times.

To illustrate the behaviour in some of the cases mentioned
above we have prepared the following figures. Figure 4
shows a case of two unstable and one stable steady state.
The dashed lines in Figure 4 show the parabola and the
hyperbola used in Figure 1. In this case both P2 and P3
are unstable steady states although PZ is an unstable
saddle point and P3 is an unstable spiral point. A
trajectory starting close to P2 will either go to the right
and approach P1 in a spiral for large times or it will go
to the left, go around P3 and then approach P1 in a spiral.
On the other hand, a trajectory starting close to P

3

will spiral out, approach P but since this state is

27

unstable it will eventually deviate from P, and will

2
finally approach Pl' These trajectories are indicated

on Figure 4.
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Figure 5 shows a case of one unstable and two stable steady
states. The unstable steady state is as usual marked by P2
and thevtwo stable states as P1 and P3. It is seen that
any trajectory starting close to P2 will eventually
approach Pl' The behayiour in the region surrounding P3
can be explored by numerical integrations in which the

time is reversed.' An initial state close to P3 is
selected, and an integration of the basic nonlinear
equations with t replaced by -t is carried out. It turns
out that the "reversed" trajectory is a spiral which at
large times approaches a curve, normally called an unstable
"limit cycle'. This means that any trajectory starting
inside the "limit cycle" will approach P3 for large
positive times. On the other hand, a trajectory starting
Jjust outside the "limit cycle" will first depart from

the limit curve, then approach P2 and eventually come to

P1 as indicated on Figure 5.

We remarked earlier in connection with Figure 3 that the
Stability_diagram is symmetric around the yE—aXis. The
non-linear trajectories are also symmetrical around the

y-axis. An example is shown in Figure 6 in which the

left side shows a '""limit cycle" calculated for Xp = 1.9
and Vg = 6.0 with the initial condition X, = -2.1,

Vo = 3.8 and t replaced by -t. The right hand side of
Figure 6 shows the corresponding calculation for x, = -1.9,

E

= 6.0, x =2.1, y_ = 3.8.
o) o)

YE
To summarise the results obtained in this section a
"catastrophe surface'" for the model has been constructed.
Investigation of the number of steady states obtained for
various values of Xp and g, can be seen as a bifurcation
problem with respect to the two parameters Xp and Vg
Equation (3.4) gives the form of the '"catastrophe surface',

and rewriting it as

(vg - 2) (3.41)
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Fig. 5

Trajectories for the caée = 3, y.

= 20 with one unstable steady

state P, and two stable steady states P, and P,. The dashed curves are
again tﬁe parabola and the hyperbola from Figure 1. is a stable

spiral point surrounded by a "limit cycle" determined gy a backward
numerical integration.
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enables us to plot the surface. Figure 7 shows this surface
from different angles of view. It can be seen from the
figure that we have a cusp catastrophe, the bifurcation
point occurring at Xp = 0, Vg T 2. For Xp— and yE—values
inside the cusp (bounded by the folds on the surface) we
have three values of X for each pair of Xp, Vg outside the
cusp only one Xy is possible. Going back to Figure 3, the
curve separating the regions of one and three steady states
is a projection of the cusp on to the XE,yE—plane. The
only difference is that Fig. 7 also involves negative x, -~

E .
values. '

Looking at the catastrophe surface denoted 3731 0 0, we
see the surface from above. The top pleat corresponds fo
the xs—value of Pi for a given value of (XE,yE). The
bottom pleat is P3, while the middle pleat (inside the
fold) gives the X of P2. As P2 always is unstable, the
middle pleat represents an unstable steady-state while the
top and bottom pleats are unstable near the fold and
stable further away from it. The unstable part of the top
pleat is hatched in Figure 7.

The surface denoted 3731135-20 in Figure 7 shows the same
catastrophe surface seen from another angle. The left
hand upsloping side of the surface corresponds to the

top pleat in the surface above, while the bottom pleat
corresponds to the right hand downsloping side. On the
bottom surface‘the middle pleat is clearly seen, while

the bifurcation point is more clear on the top surface.
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4. A THREE COMPONENT MODEL

The model used in Section 3 may naturally be applied with
an arbitrary number of components. The two component

model analysed in the previous section will in this section
be replaced by a three component model without'forcing and
dissipation. = The purpose is to show the variety of solu-

tions obtained even in this simple case.

The equations for the model are reproduced from
Wiin-Nielsen (1975). With the scaling used in this paper

they become

d 1 1

w=g W rgys (@)

dy _ 1.2 -

qgt - " g X *txz () (4.1)
dz _ 3 ‘

- " a®m (e

It is seen from the last equation in (4.1) that a steady -
state must have either x = 0, vy #0; x #0, y = 0; or
Xx =0, v = 0. In the first case we note that (b) and (c)
of (4.1) are satisfied and that (a) requires z = 0. A .-
steady state is therefore (O, Vg 0). In the second case .
we satisfy (a) and (c), while (b) leads to X, = Zzs.
Another steady state is therefore (Zzs, 0, zs). In the
third case we find that all equations in (4.1) are
satisfied for an arbitrary value of Zg, . The final steady
state is (0, O, Zs)' From (4.1) we can furthermore derive
the result that x2 + y2 + 22 is a conservative quantity
for the system (4.1), i.e. the kinetic energy is constant
along the trajectory. Without loss of generality we
shall in the following select an initial state for which

2 2 2

X + Y5 + z, = 1. In this case we find that the
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steady states are:

il jro

(0, +1,0), (+2,0,+), (0, 0,% 1).
5

Our next goal is to determine the stability of these six

steady states. The linearised equations are for an arbitrary

steady state (XS, Vg zs)
dx' _ 1 ' 1 : B3
at 2 Vs X T glxg * 2)y" + 57 2
1
-%%— = - X X' + Zg x! + Xg z' (4.2)
dz' _ _ 3 , 3 '
dt = -3 Y X -2 %Y

where the primes indicate infinitesimal deviations from
the steady state. We seek solutions to (4.2) of the form
exp.(gt) where ¢ is the eigenvalue which may be real or
complex. In either case, if the real part of o is positive
we will have an unstable steady state. Substitution of
this form of solution in (4.2) leads to a set of three
homogeneous linear equations. They will have nontrivial
solutions if the determinant is zero. This condition

leads to the frequency equation

1 2 . 1 2 2 2 3
o T2V’ +7(8 s ¥ 3yg -~ 2zg )ot g Xy (227x ) =0

, (4.3)
(4.3) is solved for each of the six steady states listed

above. The roots of (4.3) are listed below in the six

cases:
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Trajectories of a three component system without forcing and dissipation.
All trajectories are on the surface of the unit sphere. The unstable
spiral point in the lower right part of the figufe is (0,1,0), while the
stable spiral point (dashed curve) on the back of the sphere is

(0,-1,0). The neutral point surrounded by trajectories in the left

side of the figure is CEL , 0, JLO, while -the saddle pdint at the top
of the figure is (0,0,1)? V5 | |
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_ ~ 1.1
(0,1,0) o, = 0, 02’3—4i41\ﬁ‘5_
o 11,
(0,-1,0) 630, 53" -7%7% i i1
201y oo o .-snE
= 1 2,3 5
2 1,. _ - 3
- 2,0, -1 o, =0, op 5=t iy3
V' 5
(0,0,1) o, = 0 6, n =t A
1M 1 : 2,3 ”‘¢g
(0,0 1) g4 = 0 o | = % L
0, 1 =0 2,3 [
; 2

From these results we observe that the only stablersteady
'state is (0,-1,0). The steady states (0,1 0), (O 0, 1) |
’and (0,0,-1) are unstable, while the states '——) and
(- Ei, 0o, - ;L) are neutral. The non-zero \[- Vr
im;g%nary pa}% in the states (0,1,0) and (0,-1,0) 1ndlcates
that the first state is an unstable spiral point while the A
second is a stable spiral point. The two neutral states
are characterised by closed trajectories in the linear

case because the real part is zero. The two unstable
states (0,0,1) and (0,0,-1) are saddle points. These

types apply naturally to the solutions to the linearized

equations (4.2), and they are therefore only applicable

in the immediate vicinity of the steady state.

The nature of the solutions to the non-linear equations
(4.1) is found by numerical integrations of these equations.
The general behaviour of the solutions is shown in

Figure 8. The trajectories shown in this figure are on -
the unit sphere. The spiral point in the lower right

hand side of the figure is the unstable state (0,1,0):
Trajectories starting close to this point will eventually

end up in the stable spiral point (0,-1,0) as indicated
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by the dashed curve (on the backside of the sphere). The
saddle point (0,0,1) is also seen on the figure. - The -
fseperatrices have been constructed by numerical precedures:‘
Note, in particular,. the region‘fo the lower left ofgthe;;f
point (0,0,1). Within this‘region all trajectories are
closed curves on the sphere around the neutral p01nt | ;
(ilw, 0, J;). The region is limited by the closed . curvev‘e
Wﬁach is égde up by a pair of separatrices to- the saddle:
point. (0,0,1). A corresponding region surrounds the neutral

point (- jl, 0,- ), but this point is not 1nd1cated on the

VE,
can be divided in three regions: one region surrounds

JL), All trajectories‘inside  :
this region which comes infinitesimaliy‘close to (010’1)10
areclosed .curves on the surface of the sphere‘ Thebseconde‘
region is analogous to the first, but surrounds the neutral'
0,- l). This region comes 1nf1n1te81mally -
close to the unstable saddle point (0,0,-1). -The third
region is the remaining part of the unit sphere. _‘Allj~ e
trajectories in this reglon will eventually end in. the
stable point (0,-1,0). ’ '

figure. is thus seen that the surface of the sphere

the neutrel point 2 0,

b

|m

point. (-

o5
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5. CONCLUSIONS

The purpose of this paper is to stress the nonlinear
behaviour of the atmospheric systems. We have demonstrated
the main aspects of the nonlinear interactions among
atmospheric systems of different scales based on data

from the northern hemisphere. These results show that

any model which is limited to an explicit description of
the largest scales of atmospheric motion should include

-a realistic parameterisation of the interaction between

these large scales and the medium and short scales. Lo

The behaviour of the atmosphere on medium and large time
scales is of a nonlinear nature. It is likely that the
atmosphere for a given forcing and dissipation has a
multitude of climatic states. The determination of these
states is a difficult problem, and it is significant that
all general circulation models result in a climatic state
which resembles the present climate. In an attempt to
illustrate this problem by particularly simple examples
we have analysed the behaviour of some extremely simple
nonlinear systems restricted to a few spectral components.
For these systems it is relatively straightforward to
determine the steady states and to explore the linear
stability of these states. The nonlinear behaviour of
the systems can be determined by numerical experimentation.
Sections 3 and 4 describe the main result of such an
analysis. Similar analyses can be found in papers by
Wiin-Nielsen (1979), Vickroy and Dutton (1979).

Generalisations from the behaviour of these simple systems
to that of the atmosphere is difficult if not impossible.
It is nevertheless believed that such analysis may point

the way to more general studies of multi-component systems.
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