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ABSTRACT

The generalized Lagrangian-mean description is motivated and
illustrated by means of some simple examples of interactions
between waves and mean flows, confining attention for the
most part to waves of infinitesimal amplitude. The direct
manner in which the theoretical description leads to the
wave—-action concept and related results, and also to the
various 'noninteraction' theorems, more accurately non-

acceleration theorems, is brought out as simply as possible.

Variational formulations are not needed in the analysis,

which uses elementary principles dnly.

The significance of the generalized Eliassen-Palm relations

as conservation equations for wave activity is discussed
briefly, as is the significance of the temporal nonuniformity
of the generalized Lagrangian-mean description for dissipating

disturbances.
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1. INTRODUCTION

- A topic which has fascinated me for a number of years now (so
. much so that I have rashly. undertaken to wrlte a book on it!)
is the interaction of waves and mean flows seen ‘both from a
general viewpoint and also 1n connectlon W1th spe01flc appll—
cations -including those in stratospherlc meteorology Phenomena
associated with wave transport processes and nonllnear rectlfl—
catlon have long been familiar in s1mpler contexts such as-
Aacoustlcs.— e.g. radiation stress (Brillouin, 1936), acoustlc
streaming (Lighthill, 1978) — but the subject has been revital-
ized by recent evidence that wave-induced streamlng effects
take place on a very large scale in the mlddle atmosphere*(e.g.
~Holton, 1975) .. These do not merely perturb its general c1rcula—
tion, but represent gross features which would otherw1se be
.. absent. The clearest example so far documented is the qua51—
.-biennial oscillation of the equatorlal zonal w1nd hereafter
"OBO". Another is the sudden warming. There has also ‘been the
realization that wave transport effects might maintain the four-
day rotation of Venus' outer atmosphere (Fels & Lindzen, 1974;
Plumb, 1975) and probably play a role in the history of the
Sun's differential rotation (E.A. Spiegel, personal communica-
tion) and in the acceleration of the solar wind (Hollweg, 1978

and refs.).

Quite independently of those developments, there has been a
revival in the literature of some long-standing controversies
on theoretical aspects of the subject of wave transport, par-
ticularly the celebrated 'Abraham-Minkowski controversy' on
electromagnetic wave 'momentum' in fluid or solid media. This
controversy and its less-publicized relatives in acoustics and
geophysical fluid dynamics typify certain misconceptions con-

cerning the generalities of the subject, which despite clarifi-

cations now available (e.g. Peierls, 1976) are still widely

perpetuated as the scientific literature proliferates with less
interdisciplinary communication. (In section 5 we shall catch a
glimpse of how these generalities relate to the fluid-dynamical

problems which are of more immediate concern to us here. )

i.e. the mesosphere and stratosphere
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It has become increasingly evident in recent years that the
underlying theoretical structure of the subject becomes immeas-

urably clearer if one describes wave disturbances in terms of

particle displacements about the mean flow, in place of the
more usual eddy velocity fields. There are deep reasons for
this, associated for instance with the connection between sym-
metries and conservation relations (e.g. Bretherton, 1979;
Andrews & McIntyre, 1978c). How best to define a disturbance-
associated particle displacement for arbitrary, finite-amplitude
waves on an arbitrary mean flow is not a trivial question; and
it is linked to the equally nontrivial question of how to de-
fine the notion of Lagrangian-mean flow in a general manner.
However, significant progress has recently been made towards
answering these questions, as a result of several lines<1fwdrk
traceable back at least as far as that of Frieman & Rotenberg
(1960) and Eckart (1963), and developed by Dewar (1970),
Bretherton (1971, 1979), who was perhaps the first to see the
importance of the ideas for geophysiéal fluid dynamics, Soward.
(1972) (in MHD dynamo theory), Grimshaw (1975), and culminating
in a-very general theory developed and discussed by Andrews &
McIntyre. (1978b, hereafter AM; see McIntyre (1979) for further
discussion). This theory may be called the GLM ('generalized
Lagrangian-mean') theory of wave, mean-flow interaction. It
draws together a number of threads in the subject which seem
unconnected when viewed more conventionally; and in particular
it shows where the Eulerian-mean results of Eliassen & Palm
(1961), Charney & Drazin (1961), Dickinson (1969), Fels &
Lindzen (1975), Plumb (1975), Boyd (1976) and Andrews &
McIntyre (1976, 1978a) really come from, and how they are
connected with such things as the wave-action concept and the
energy-momentum-tensor formalism of theoretical physics
(Andrews & McIntyre,1978c). These general results, and many

others, emerge in an analytically very simple way.

On a more practical level, the GLM theory might help us toward
a better understanding of the general circulation of the middle
atmosphere — one in which the theoretical description of plan-

etary waves and other departures from the zonal-mean state fits
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more naturally with observatlons of tracer motions. Some of the

. ideas.involved are dlscussed by Dunkerton (1978) and by Matsuno

(1979); they have 1mportant precedents in the work of Riehl &
Fultz (1957), Krlshnamurtl (1961), Danlelsen (1968), Mahlman
(1969) and others. Our understanding of how to use the theory
in this context is far from complete; however a dlscu551on of
some of the. technical dlfflcultles yet to be overcome is at—
tempted in McIntyre (1979).

- In this review T shall concentrate on some prototypical ideal—
ized problems concerning the 1nteractlon of waves and mean
flows, with a view to bringing out the s1mpllc1ty and intuitive
appeal of the ideas which originally led to the GLM theory I
.shall also try to show by example why such problems are in-
triguing for the fluid dynamicist as well as the meteorologlst
The two sub-problems comprising the problem of wave, mean—flow
interaction, namely

(i) How the waves create or change the mean flow, and

(ii)How mean-flow profiles react back on the waves,:i

are both well illustrated by the simple example of two- dlmen—
sional internal gravity waves, as was. 1llum1nat1nglj brought
out in a recent paper by Plumb (1977). We use this spe01al ex-
ample in sections 2 and 3 in order to motlvate a discussion
of the more general case of waves involving Coriolis forces
— and the power of the GLM theory in dealing with them — whlch
follows in sections 4 and 5. A closely related topic, discussed
briefly in section 6, is the use of generalized Eliassen-Palm
relations' in sub-problem (11), this in turn suggests dlagnos—
tics which are likely to prove 1mportant for 1nterpret1ng ob-
servational data on planetary waves in the middle atmosphere.
Finally in section 7 we indicate briefly the ideas 1nvolved in

the GLM description of finite-amplitude dlsturbances, and its

possible application to the middle atmosphere.
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2. TWO-DIMENSIONAL INTERNAL GRAVITY WAVES -

One class of problems of special meteorological :(and
astrophysical) interest is that of 'léhgitudinally symmetric'
mean flow, independent of a coordinate x which is either
longitude or its cartesian 'channel' equivalent. A special fea-
ture of such problems is that there is no longitudinal mean
pressure gradient 9p/9x ; thus the fluid is free to accelerate
in the =x direction in response to the wave effects (sub-
'prbblem (i)) . The simplest model example is that of two-dimen-
" sional internal gravity waves being generated by a slippery,
corrugated boundary moving parallel to itself with constant
velocity c¢ , as suggested in Fig.l. It is well known that,
if the waves are transient or are being' dissipated in some
layer QZ at the top of the picture, then the mean flow accel-
-erates there. The wave-drag force which the boundary exerts on
“the fluid is not felt at the boundary, as far as the mean flow
is concerned; it is felt at 5& . This ‘illustrates the well-
known ability of waves to set up a mean stress, whereby the
effect of a mean force (in this case the horizontal force ex-

erted bv the boundary} can be transferred over considerable

Fig. 1 1Internal gravity waves, being generated in a
resting, stably-stratified fluid by a rigidly-
moving boundary. The sloping lines are lines of
constant phase; the disturbance particle paths
are parallel to those lines. The buoyancy
frequency N 1is assumed constant. The dotted
line L represents an isentropic surface approx-
imately, and Lo a fixed, horizontal surface.
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distances (in this case vertically, up to the layer QC, ) -

In this particular case the mean stress involved is simply the
- Reynolds stress —pu'w' associated with the waves. Its diver-
gence appears as the wave-induced contribution to the mean-

* flow acceleration
du/ot = -3 (u'w')/9z - X , (2.1a)

where -X (the sign is chosen for later convenience) is any

. mean force per unit mass which might also be present (such as

a mean viscous force «32U/9z?). The overbars and primes denote
_+the usual zonal or longitudinal Eulerian average with respect
to x , and fluctuations about it. We have assumed a Boussinesq
fluid with constant density p . Clearly u'w' > 0 below .
“in the picture (the disturbance velocity being directed parall-
.el to the Sloping lines of constant phase because the motion is
.incompressible), and u'w' = 0 above X. if no disturbancs
~exists there. Then d(u'w') /0z has to be nonzero somewhere in

-~ between, which is why the mean flow must accelerate there, apart

from any additional effect from X .

If the waves were generated not at a boundary but by a moving
system of heat sources and sinks in some layer in the interior
of the fluid, then total momentum integrated over the whole
depth of the fluid would have to be constant, and the mean ac-
celeration at rz' would be accompanied by a corresponding de-
celeration where the waves are generated. The latter effect has
been proposed as a mechanism for maintaining the fast zonal
flow observed in Venus' outer atmosphere (Fels & Lindzen, 1974;
Plumb, 1975, & refs.)

If we had used the GLM description instead of the convention-

al one;'the analogue of Eqg.(2.la) would have been

/3t = p T ATIpT) /32 - X

(2.1b)
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\ :for'small amplitude, almost-plarne waves in the same Boussinesq
“fluid. (This involves some approximation; the corresponding ex-
act equation is (8.7a) of AM, or rather, the specialization of
- that equation to two-dimensional motion with constant gravity

- and zero rotation; see also AM Eq. (8.12).) Here T_TL denotes a

mean along a line of fluid particles distorted by the waves,

such as the wavy dotted line L in Fig.l; if the motion were
exactly adiabatic, I would exactly coincide with an isentro-
S pic surface corrugated by the wave motion. The vertical dis-
placement of the fluid particles about their mean poSition LO
is the quantity ¢¢' , whose x-derivative appears, correlated
with the disturbance pressure p' , on the right of Eg. (2.1lb).
In section 7 I shall say more precisely how the GLM theory de-
fines (_)L and the disturbance-associated particle-displacement
vector, of which ' 1is the vertical component; the definition
will in fact apply to finite—amplitude, arbitrary waves. Note
that Eqg. (2.1b) makes immediate physical sense; just as Eq. (2.
2.la) can be obtained by considering the mean stress across
fixed, horizontal control surfaces like L0 ; SO can Eqg. (2.1lb)
be obtained by considering the mean horizontal force -pr' ex-
erted by the fluid below the wavy, material surface L upon
“the fluid above it, via the correlation between negative slope

"~—cx and positive pressure anomaly. (This is exactly the same

-+ thing as the wave drag on the boundary itself; the boundary can

be regarded as a particular case of a material surface L .)
Eg. (2.1b) and its generalizations turn out, as we shall see in
section 5, to lead to the easiest way of expressing the connec-

tion between mean flow changes and wave dissipation, forcing or

- transience, in cases more general than that of Fig.l, for in-

stance when a nontrivial mean flow u(z) is present. The con-
nection is then a good deal less obvious. But first we digress
to look a little more closely at some specific phenomena des-
cribed by Egns. (2.la) and (2.lb). These show in yet another way
that there is more to the subject of wave, mean-flow inter-

action than meets the eye!
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3. THE SIMPLEST EXAMPLE OF VACILLATION DUE TO WAVE, MEAN-FLOW
INTERACTION: PLUMB AND MCEWAN S LABORATORY ANALOGUE OF
THE 0BO. ’

If the waves in Fig.l are dissipating throughout the depth of

the fluid, then the height scale D for wave attenuation tends
to be proportional to the vertical compbnent Wg of the group
velocity. For uniform dissipation the mean flow will initially

develop as in Fig.2a [g < exp (- z/D” , with the biggest change
near the boundary* z = 0 . But now sub-problem (ii) comes in:

the feedback of the mean-flow changes onto the waves affects D.

LA LLA L

o (b)*“ ' (o)t (f)
L___._lwl <—
Fig.2 (a),(b): Effect on the mean-flow profile G(z) of a
single internal gravity wave with phase speed . +cC
at two successive times. (¢) = (f): effect of two

waves with phase speed +c, after Plumb,(1977).

When the intrinisc phase speed c - u gets small enough,: wg
becomes small too (a fact which we shall use again, and which
is easily verified from the dispersion properties of plane in-
ternal gravity waves); therefore D decreases and also becomes

a function of z — we may still speak of it as the local
height scale for wave dissipation — and it is smallest of all
near z = 0 . Clearly this cannot go on forever since there is
a limiting situation, shown schematically in Fig.2b, in which
u=cat z =0 , and no more waves are generated and no more

wave-induced mean-flow change takes place. Actually linear

theory must break down near 2z = 0 before this situation is

*
It should be pointed out here that a contrasting situation
can occur in the non-Boussinesqg case where the density scale
‘height is smaller than D : the greatest mean-velocity change
then occurs far above the boundary. This point has been made
by Dunkerton (1979a).
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reached, but the idea is qualitatively right. We are tacitly
assuming that viscosity has a negligible effect on the mean

flow, especially near z = 0.

If we now add to the input of waves at z-=,0 a”componeht
travelling with equal and opposite phase speed =G something
very interesting happens. (The first theory demonstratlng the
effect was that of Holton & Llndzen (1972),‘and our understand—
ing of it has been greatly 1mproved by the recent work ofPlumb
(1977) .) Suppose for simplicity that the two waves, with phase
speeds +Cc, have equal amplitudes so that the boundary 1s now
executing a standing wave

z = h(x,t)

asink(x - ct) + asink(x + ct) o
o (3.1)

2a sinkx cos ket ;

and suppose moreover that 2kc 1is less that 0. 816 tlmes the
buoyancy frequency N of the stratification. Then not only can
the leftward-travelling component propagate even 1f u.=,+c, but
it can also be shown that the relation between wg and 1ntr1n-
sic horizontal phase speed is strictly monotonic,_so;thetﬁiwg
and therefore D for the leftward-travelling component is
necessarily larger for all values of =z , than it was, for the
rightward-travelling component before the mean flow developed
Thus, it is easy to see that the leftward—travelllugswavenwlll
now induce a negative acceleration du/dt throughout a compar-
atively deep layer, leading to the appeerance‘ofya“downward—
~moving zero in the mean-velocity profile as shown in Figs.2c-e.
In Fig.2e, D for the leftward-travelling wave. has bepomee
small just above the narrow shear layer at the bottoﬁ;_however,
the leftward-travelling wave cannot quite. destroy the shear
layer by itself because if u were to become slightly differ-
ent from +c at z = 0 the effect of the rightward-travelling
wave would reassert itself in a very shallow layer near z = 0.
The shear layer must nevertheless get destroyed sooner”orlaten
either because mean viscous effects become dominant (Plumb,

1977) or, more likely in a real fluid, because the Richardson
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ﬁUmber becomes smaller and the shear layer goes turbulent. This
will qulckly wipe out the shear layer and leave us all of a
sudden with something like the profile of Fig.2f — i.e. quall—
tatively like Fig.2b, but with the sign changed. Plumb (op.cit.)
refers to this transition between the profiles of Figs. 2e and
' 2f as "switching". At this point, we can see that the same se-

'?quénce of events will take place all over again, with the signs

'fchanged The double feedback loop, sub-problems (i) and (ii),

:'between the mean flow and the d1551pat1ng waves, has led to a

" vacillation cycle in which the mean flow reverses agaln and

again, entlrely because of the constant input of waves. Figs.

2b - 2f qualitatively depict just half this vacillation cycle.

-That such phenomena unquestionably occur in real fluids has re-
cently been most beautifully demonstrated in the laboratory by
Plumb & McEwan (1978) . They took an annulus of salt-stratified

%fiuia (not fotating) and introduced a standing wave via the

" motion of a rubber membrane at the bottom, so that equal amounts

“7 oF clockwise and anti-clockwise-travelling waves (with periods

‘of a fraction of a minute) were generated. The initial conditions
"invdlveaygg mean flow — an almost completely symmetrical situa-
tibnﬁé yet sooner or later substantial mean flows would appear,
.Mgoihgvthrough a vacillation cycle just as in Figs. 2b - 2f. The
‘initial state is unstable to the vacillation cycle (Plumb,1977).
The'peridd of the cycle depended of course on the wave ampli-
‘tude a , but was typically an hour or so. No mean flow devel~-
oped if the wave amplitude a was too small, owing to the
‘stabilizing effect of mean viscous forces. Plumb & McEwan (pers.
communication) have produced a moving picture dramatically

" showing the existence of the mean flow evolving just as sug-
geStéd in Fig.2, together with the constant-amplitude standing

wave on the boundary which causes the whole sequence of events.

As is well known by now (e.g. Holton, 1975), there is good evi-
" dence that a precisely similar mechanism underlies the quasi-
biennial reversal, every 26 months or so, of the zonal mean

wind in the equatorial lower stratosphere. (The 26 months (or
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' 50') is thus to do with the amplitudes which the relevant
(tropospherically—generated) waves happen to have — and nothing
to do with any 'obvious' periodicity such as the annual cycle
as was thought at one time.) Plumb & McEwan's finding that the

" mechanism is rather easily killed off by viscous diffusion of

“the mean flow immediately suggests one of the reasons why
‘geheral circulation models, which tend to have rather large

" artificial viscosities (as well as resolutions too coarse to
describe the waves very well), have not yet succeeded in pro-
ducing a QBO.

Other; less simple, examples of vacillation cycles due to wave,
mean-flow interaction have recently been noted by Holton & Mass
(1976) and Holton & Dunkerton (1978). The waves involved are
"extratropical planetary waves. In those examples, which model
aspects of the behaviour of the wintertime stratosphere in high
latitudes, wave transience plays an important role in the va-

“cillation dynamics.

4, WAVES INVOLVING CORIOLIS FORCES.

jfThe waves involved in the equatorial QBO — mainly the equator-
ial planetary waves, but possibly stationary planetary waves
i"t‘i’from mid-latitudes as well (Andrews & McIntyre,1976a, §11lb and
refs.) — involve Coriolis forces and are structurally more
complicated than pure internal gravity waves. It is character-
istic of such problems that a description of wave-induced
momentum transfer of the type given by Eq.2.1lb) — a Lagrangian-
~mean description — turns out to be more direct than that given
by Eg.(2.l1la). The Lagrangian-mean description gives by far the
- simplest route, for instance, to computing the striking effect
of different wave dissipation mechanisms on the latitudinal
‘profiles of 23Ju/dt for equatofial waves (Andrews & McIntyre,
op. cit.), an effect which is really quite arduous to compute,
even to leading order, by conventional methods (ibid.,1976b) .
Other examples where computations of wave-induced mean effects

'simplify in a similarly drastic manner have been given by
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Grimshaw (1979) and Leibovich (1979) — the latter concerning a
possible mechanism for generating Langmuir vortices in the
oceanic mixed layer.

I -shall not repeat the analysis for equatorlal waves here, since
three different versions are already given elsewhere (in the
papers Jjust cited, together with AM §9). Rather, I want to il-
lustrate and compare both types of descrlptlon (Eulerlan—mean
and Lagrangian-mean) by means of the simplest relevant preblem,
namely that of Fig.l, but with a Coriolis force added whose

x,y and z components are (2Qv, -2Qu, 0) when the velocity com-
ponents are u,v,w): fQ 1is assumed_cqnstanr,for the moment, In
the Boussinesqg approximation the linearized disturbance equa—
tions may be written, now allowing for three-dimensional motion,
and setting the constant reference’density - p equal to unity,

as

Dou' + (- 20)v' +Tw' + py = X' | o (4.1)
D v + 20u’ +py =Y O (4.2)
| btw' | -8 +p. = -z SR )
D6 o AR = ;Q- o | (4.4)

ul + v§ + w; : =0 (4.5)

where © is the buoyancy acceleration, Dt 3/9t + ud/dx the
rate of change following the mean flow, the latter being assum-
ed to be of the form {u(y,z),0,0} + 0(a?),i.e. directed almost
parallel to x . Just as we allowed for a mean viscous or other
‘extra' force -X 1in Eqg.(2.la), here we permit a correspond-
ingly arbitrary O0(a) force -X' on the right of Eg. (4.1) ,toge-
ther with corresponding components Y' and Z' in Egs. (4.2),
(4.3), and an arbitrary heating rate -Q' in the buoyancy Edg.
(4.4). As with all other primed quantities we have

X7 = ¥' = %' =1Q' = 0 . The buoyancy frequency N is equal to
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N

@ in the present notation. A
To obtain a physically well—posed problem for the mean:flow
it is simplest to suppose that the flow is bounded laterally by
a pair of wvertical walls yv = 0 , b on which the normal compo-
nent of velocity vanishes (see Fig.4 below) implying that:

vT=%"=0 on y=0,b. (4.6)

Since the bottom boundary is a rigid surface which is imperme-

able to the fluid, it is plausible (and in fact true for steady
waves) that the Lagrangian-mean vertical velocity is zero there
also:

= 0 on z =0 . : - (4.7)

We must beware, however, of assuming that the Eulerian-mean

velocity w vanishes at =z = 0 ; in fact, for a rigidly- -
translating, corrugated boundary whose shape is described by a
given function 2z = h'(x - ct,y) , where h' = 0(a), h¥ =0,
and ¢ is a (real) constant as before, it can be shown -that
(for more detail see Andrews, 1979) . L

w = 3(v'n')/3y + 0(a®) on z =0.. - S (4.8)

This is one of the ways in which the conventional Eulerian-mean
description is more complicated that a Lagrangian-mean descrip-
tion. The Eulerian-mean velocity w , which is an. average along

a horizontal line such as £ in Fig.3, is associated with a

/

Fig. 3 The reason why w # 0 at 2z =0 in the rotating
problem. (The forward slope of the wave crests is
correct when N2 (=6 ) > 402 .,)
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vertical mass flux, into or out of the thin region between ¥
'and the actual boundary. That flux must satisfy continuity with
a horizontal, 0(a?) mass flux within that region, associated
‘with any tendency for the disturbance velocity to be one way
along valleys and the other way along ridges in the boundary
(Fig.3).

In fact, such a tendency turns out to be the rule rather than
'”ﬁhe exception when Coriolis effects matter; for instance if h'
is of the form asink(x - ct) then the disturbance y-velocity
v' = for conservative, plane inertio-gravity waves on a uni-
formly stratified basic state of rest turnsbout to be in quad-

rature with the z-velocity w' and therefore in phase with h'

at z = 0 (ignoring signs). This can easily be verified (for
further details see Andrews, 1979) by setting N? = Ez =
constant,  u = Gy =0, and X' = 0, Q' = 0, and calculating the
structure of elementary plane-wave solutions « exp 1 (kx+mz-wt)
of:: the linearised disturbance Egs.(4.1) - (4.5). Other
fpertinent.features of such plane-wave solutions are that g' ,
‘the disturbance buoyancy acceleration, being proportional to
the vertical displacement ' through the basic stable strati-
fication Ez , is (like h' at z = 0) in quadrature with the
vertical velocity w' ; also incompressibility dictates that

u' - is in phase with w' since Eg.(4.5) implies that iku' +

imw' = 0 . Note therefore that u'w' , v'6' are nonzero, and
"VY'w' , wW'6' =zero, in a plane inertio-gravity wave. The
frequency of such a wave, w(=kec) , satisfies the well-known

dispersion relation

w? (N2k? + 4Q*m?)/(k? + m?) (4.9)

when @ = 0 . (It should be noted that this implies that c?
must lie between 402/k? and N2 /k?* for the inertid—gravity

waves to be generated.)

Coming back to the mean-flow problem, and still assuming that

u = (4,0,0) + 0(a?) , I shall write the mean-flow equations

for both the conventional and Lagrangian-mean descriptions
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correct to 0(a?)  next to each other for easy comparison,

starting with the counterparts to Egs.(2.la) and (2.1lb):

U/t + u.vu =-2Qv +X =—=(u'v')_ - (u'w') (4.10a)
* * Yy x 2
Ly Lol _sasl,gbh. (= =T '
Lo L /ot+ uvVu 20V +X (nxp )y + (gxp )Z (4.10b)
* -
dv/3t + 2Qu 4+ Ey +Y = 0(a?) forcing (4.11a)
* *
VU ot 20T° + (EL); ¥ = 0(a?) forcing (4.11b)
* - *
{BW/Bt -5 + 57 + 7Z = 0(a?) forcing (4.12a)
* * 7
pw/at =B +(") + Z" = 0(a?) forcing (4.12b)
‘ * * ' (
. (3B/%t + VO, +wh_+Q = =(v'e' - IR .
{ / v, Wb, Q (v* )Y (w'e') (4.13a)
3B/t + V- (EL)Y+ w"(§") * Q" = ZERO (4.13b)
2 ) .
{VY f W, = 0 | (4.14a)
* * 4.14Db)
—L L o [, ——= — (
= —f L L] ]
(v )y + (W), Bt[Z(n' )yy + (n C')yz + %(E'z)zz] .
*

*

”fhé‘explicit form of the 0(a?) forcing on the right of Egs.
"(4.11) and (4.12) will not be needed. The terms distinguished

by asterisks are those which survive in the case of almost-
plane inertio—gravity waves on a mean flow that is sufficiently
slowly—varying in space and time. This turns out to imply that

" the mean flow is approximately geostrophic and hydrostatic, and
'"inkparticular that the forcing terms on the right of Egs.(4.11l)

and (4.12) can be neglected (Andrews, 1979). Time scales for

~ the mean flow must be long compared with both (Ez)—% and (20)°%.

The vertical particle displacement ' appears as before, and

~ there is now also a particle displacement n' in the y-
direction; Eq.(4.10b) can be seen at once to be a plausible
‘generalization of Eg,(2.lb). The Eulerian-mean "a" equations
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ERE o o P ) . ) ‘ * ' o v ) S -»‘3.,; )
equations are ‘derived -succinctly ‘in AMSI alternatively.it 1is

stralghtforward (although somewhat tedious) to derive them from

the Eulerlan—mean or "a" equatlons by applying the formula for
—ILi
the "Stokes correctlons“ Wthh are deflned as uS-u -u,
‘ES = EL - Py etc., “and are glven correct to 0(a?) by
3 - TVeT ¥ AnTTE,. +MCTE, +R0Tu o (4.15)

Yy vz - zz

and similarly for ES ot any“othet’stekes.ebrreetidh,fwhere V
E' = (&mn,z) is the vector particle dlsplacement defined in §5

"below. Note that the Stokes correctlonsLO(a ) wave propertles

(i.e. can be evaluated to 0(a?): from a llneralzed wave solu-
tion). As explalned further in McIntyre (1979 §3), the terms in
Eq. (4.15) involving the second derivatives of U are not usu-
ally mentioned in classical accounts of Stokes correctlons,
note that in evaluatlng those terms it is. 1mmater1al whether u
or EL (=0 + 0(a?)) appears. Note also that for con51stency
with our assumptions that v and w are 0(a?) (and thus VL
and WL also) it is expedient to assume also that X Y 7 and

O are 0(a?) (and thus XL, - and Q also).

A particularly crucial difference between the two descriptions
of mean-flow evolution is the difference between the right-hand
sides of Egs.(4.13a) and (4.13b). The Lagrangian?mean equation
(4.13b) has zero wave-induced forcing on the right; aud‘this,
incidentally,-remains exactly true at finite amplitude. For
adiabatic motion (Q = 0) the Lagrangian-mean descrlptlon says
very naturally that the mean buoyancy field e (v,24 t)}tist

simply advected by the Lagrangian-mean flow. ThlS 1s not SO in
the Eulerian-mean description; the 'eddy heat@flux; termsnon

*Eqs. (4.10b) -~ (4.13b) are simply the result of applylng the

operator (—7 to the correspondlng equatlons for the total flow,
using Eq.(4.15) with Vp in place of ﬁ,, and u31ng the ba51c
(exact) result that (3¢/dt + u.V¢)vw— 8¢ /Bt } u .V¢ for any

b(x,t) (AM Eq.(2.15)); see also Mqlntyre, 1979 §3
X YRS




the right of Eqg.(4.13a) are not generally zero. So even when
the motion is completely adiabatic the equations say (if we are
using the Eulerian-mean description) that the mean flow feels a

wave-induced heating or cooling!

The simplest illustration of this artificiality of the Eulerian-

mean description is our model example, in which the waves- are

4

supposed to have propagated upwards as far as the layer fZ in
Fig.4, either because they are being dissipated: there, or
3 I z

E
%
H
s

WAVES

'MEATING” "

-
L d

| ' | su/atee ST /3t)

Fig.4 Left: end view (looking along the x—-axis)of the
‘inertio-gravity-wave problem. Right:- typical profile
of the mean acceleration in the longitudinal or x--
direction. The left-hand picture indicates how the
Eulerian-mean meridional circulation v,w 1is closed
by a mass flux 'within' the bottom boundary, ‘as sug-
gested in Fig.3. Hr is the Rossby height Qb/N.. The
time scale for mean-flow changes is assumed much
longer EEan both 1/Q and 1/N. The longitudinal Stokes
drift u - u 4is negligible in this problem, but not
the meridional and vertical Stokes drift. ’ '

because a finite time has elapsed since the bottom boundary
started moving. Well below }(ﬁ we shall take.the waves to have
reached a steady state and the motion to be cénservatiVe;ias we
originally did in section 2 — we assume that X' and Q' are

zero there, and also z and Q . To keep life as simple as



214

~possible we shall assume that u = 0 initially, again as in
~section 2. We also take the buoyancy frequency N = (52)%' =
‘wconstant + 0(a?) for the moment. The simplest kind of mathema-
tical analysis for the waves (again for further details see
Andrews, 1979) makes the usual kind of 'slowly-varying' approx-
“imation, 'in which the plane-wave solution is assumed locally )

valid. This involves inter alia an assumption that the layern‘
2

is deep compared with a vertical wavelength and also that ;(,
is deep compared to the Rossby height ‘HR = Qb/N . We take

h to be of the form a.f(y).sink(x-ct) , where £(y) is a
slowly-varying function which vanishes at the side wall y= 0,b.
Then it follows from the properties of plane inertio-gravity
waves already noted that the most important term on the right of
the x-component of the Eulerian-mean Eq. (4.10a) is -(u'w"),
and that on the right of Eq.(4.1l3a) is —(V'Q')y . The remaining
terms are not exactly zero, because plane waves represent only
the leading approximation; but in fact it is consistent to
neglect them. The response of the mean flow to the forcing

—(VTET)Y together with the forcing represented by the inhomo-
geneous boundary condition (4.8) involves an Eulerian-mean
'secondary circulation' indicated schematically by the arrows
in Fig.4. The picture assumes that the wave amplitude is a max-
imum near y = 5b and falls monotonically~to'zero on either side
so that (GTET)Y changes sign once more, near y = 3b . The mean
flow feels an apparent 'heating' on one side of the channel,
and 'cooling' on the other. This gives rise to an 0 (a?) mean
_vertical velocity w (the asterisked terms in Eq.(4.13a) are in
balance, with Q = O);‘moreover”thisUsame ’W just satisfies the
bdundary condition (4.8). By continuity there must then be a
- mean mdtion across the channgl, i.e. a contribution to v , in
the vicinity of the layer ;ii where the wave amplitude goes to
zero with height. The Coriolis force associated with this 0(a?)
contribution to Vv produces a contribution to 3u/8t which is

generally comparable with that from the Reynolds stress diver-

~gence e(u'w')z in Eq.(4.10a). Thus the 'heating' and 'cooling'
on the right of Eqg.(4.13a) is important at leading order, in
this problem.



-y

215

' The problem for the Lagrangian-mean flow is simpler in signifi-

cant respects; for one thing, there is no Lagrangian-mean flow

across ahy of the boundaries, including the bottom one. This

'togethér with the fact that there is also no forcing on the

right of Eq. (4. 13b) means that the Lagrangian-mean vertical

velocity is negligible, sufficiently far below \I, . In a region

*.0f steady waves, when Q = 0 , the fluid particles merely os-

‘cillate about a constant mean level, and have no systematic

tendency to migrate up or down. This is no more than might be
expected for adiabatic motion in stable stratification; and the
Lagrangian-mean description expresses this fact more directly

and naturally. Since there is no Lagrangian-mean vertical cir-

:éulation'linking the regions of wave generation and dissipation,

and thus no 'Coriolis' contribution to the net wave-induced

" transport of momentum from one region to the other, the ana-
“logue, in the Lagrangian-mean momentum Eq. (4.10b), of the
"Reynolds stress in the Eulerian-mean momentum Eq. (4.10a), gives

“@"more direct description of the momentum transport. This im-

* Portant fact was recognized intuitively by Bretherton (1969),
“13and'£he extent to which the result carries over into exact
b= 'tdheory is discussed in AMSS.

Tt has often been assumed in the literature, for instance in
" connection with thermodynamical, "heat-engine versus refriger-
“ator" arguments, that the nonzero value of v'0' eignifies a

~ tendency for the waves to transport heat across the channel. It

is clear from the foregoing that while this is true-in the

- sense that Eqg.(4.13a) holds -it is also misleading. For a start,

(4,13a) is not the only way of describing the heat budget. But

more important than the theoretical description chosen isg the

fact, deducible by solving the problem in any correct descrip-
tion, that there is no tendency at all for the mean temperature

actually to rise on one side and fall on the other if we are

" sufficiently far below - . In the Eulerian-mean description,

" the adiabatic heating or cooling associated with w compen-

sates the divergence of v'08' . This compensation is intrinsic

to the nature of the wave motion, as is underlined by the
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‘already-mentioned consideration that individual fluid partlcles
are not being heated or cooled below ;Z ‘because the motion was
assumed adiabatic there. In this sense, v'6' and w are
purely artifacts of the Eulerian-mean description. (Similarly,
there isvnbthing in the slightest remarkable about v' Qﬂ .in
the lower stratosphere being 'countergradient'. Rather, as was
noted earlier, the sign of v'0' for wave-like disturbances
depends on the phase relations of the disturbance fields, i.e.
on the shapes of particle trajectories, which in turn are de-
termined by the wave dynamics and by which way the waves are

_ propagating — not exclusively by local gradients!)

‘The right- hand half of Fig.4 schematically 1ndlcates the pro-
file of the mean acceleration du/dt . If the layer ;f is.
shallower than the Rossby height HR , then additional contri-
butions VR,WR to the mean merldlonal circulation arise in a
layer of depth HR centred on 11 . These adjust the values of
98/3t and 0Ju/9t in such a way as to keep the thermal-wind
equation satisfied; there is 'room' for such a circulation only
in a layer of depth HR . The vertical integral of ZQVRaVis
zero; therefore the vertical integral of 3Ju/d%t is unaffected.
Further detail concerning the Eulerian-mean problem can be
found in McIntyre (1977,84) and in Andrews -(1979). Incidentally,
if we were to relax our assumption that mean time scales are
long compared with (29)—1, as might sometimes be appropriate in
the transient case where the layer ;é, moves upwards with velo-
city Wg , then the 23/3t terms would become important in Egs.
(4.11) and the mean response would no longer be confined to
within a‘Rossby height belOW'ﬁZ; . In-such a case the response
would take the form of a pattern of zonally-symmetric inertio-
gravity waves trailing beneath the moving layer , .,.
One point we have glossed over so far is the role of the right-
hand side of the Lagrangian-mean continuity Eq.(4.14b). Being
in the form of a time derivative, it is zero for the steady,

. ~/ : . .
conservative waves below -~ ; but in any case it turns out to
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be negligible everywhere in our simple problem*; This is by no
means true, however, in all problems of interest: one example
is that of equatorial planetary waves. The latitudinal wave-
guide structure involved makes some of the derivatives on the
right of Eq.(4.14b) important (AM,§9); the same is true of the
second derivatives on the right of the eXpreSSioh (4.15) for
the Stokes drift, a point to be watched when checking directly
that the Eulerian and Lagrangian-mean descriptions do, indeed,
give equivalent answers (ibid.). Some further eiamplés"whén the
right-hand side of Eq.(4.14b) is important — we call this the
"divergence effect' — are discussed in McIntyre (1973, 1979)
and in Uryu (1979). o o

A more subtle point is that it is generally necessary for ‘the .
waves to be conservative as well as steady, in order for the
right-hand side of Eqg. (4.14b) to vanish exactly. If the waves
are being dissipated by radiative heating and cOoling;'fér ex-
ample, the wavy material line L in Fig.l must be'eXpectéd to
become gradually less and less related to the shapes of nearby
isentropic surfaces. Such temporally nonuniform behaviour,
which is in fact characteristic of any Lagrahgian description
of real fluid motion, can obviously lead to quantities like
the right-hand side of (4.14b) differing from zero even for

steady waves; therefore if wave dissipation and transience

are both strong the theory does not unequivocally distinguish
between the two. In section 7 we shall mention one way of
overcoming the temporally nonuniform behaviour of (_7L which
may prove to be of some practical importance in studies of
planetary waves in the stratosphere; further discussion is
given in McIntyre (1979). The temporal nonuniformity reflects
an important physical reality, being intimately bound up with
the effects of the waves on the apparent large—sdale diffusion
of chemical tracers about the Lagrangian-mean motion (e.g.
Rhines, 1977; Rhines & Holland, 1979; McIntyre, 1979).

*
The assumption that wave amplitude varies slowly in y is
used here. :
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5. CONSERVATION RELATIONS FOR WAVE ACTIVITY: WAVE-ACTION
 AND ITS RELATIVES. '

We are now almost in a position to see the connection between

‘ mean—flow evolutlon and wave dissipation, forcing or trans-

ience, in a far more general way than before - not dependlng on’

any - spec1al approx1matlons or mean-flow profiles. This can be

‘,__done (to the present accuracy, 0(a®)) via either the Eulerian-

mean Egs.(4.10a) - (4.14a) or the Lagrangian-mean Egs. (4.10b) -
(4.14Db) ; but the latter route is a good deal qulcker, and ap-—
pears .to be the only feasible route if we want to derive the
further generalization to finite amplitude derived and discus-
sed in AM and in McIntyre (1979). Either route depends on a

; fundamental conservation relation whose derivation and general

.significance:I shall now indicate.

We éhall need all three components &£',n',z’ of thetiisturbance
,partlcle displacement E(x t) . Correct to 0(a), they satisfy

E,= 0 and (with D_ = a/at + u3/3x as before)
. 1 _..‘ L
o o
DeEt = (5.1b)
D E' —ulzur s EVE = uw +n'T, + C'0 (5.1c)
t ~ Y z ' -
together with
,V.EJ =0 , : (5.2)

if the fluid is incompressible. The manipulations to get the
conservation equation are quite simple, and remihiscent of
those involved in the familiar operatlon of forming a kinetic
energy equation. However, 1nstead of taking the scalar product

of the momentum equation with velocity, we multiply it scalarly

by -Bﬁ'/ax and average (with respect to x).

Tt is convenient first to recast the linearized momentum EQs -
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(4.1),(4.2),(4.3) in terms of the quantity u‘ , which is the
longitudinal disturbance velocity for the displaced fluid par-

ticle, as evidenced by the correction term £'.Vu in Eq.(5.1lc).

 , We may éall'-uz' the Lagrangian disturbance velocity, correct

ba

“to lb(a); In vector notation with Eﬁ = (u,v'w') we have,
after a little manipulation in which (4.1),(4.2),(4.3) are
added to E'.V {(4.10),(4.11),(4.12)} with 0(a?) terms neglected

in the latter three equations,

£ £

L ~ —
DtB + ZJ%XI';'LJ +5q' + Vp'! +5'.V(Vp) + X = o, (5.3)
where 2z is a unit vertical vector, and
| - L _ 1 [y {Rrey
q' = -7 = -8' - n'é_-1z'6_ . (5.4a)

'_The gquantity gq' is a measure of the departure from adiabatic

. :wﬁOtiQn, because it is easy to see from Eq.(4.4) and &E'.V of

(4.13) that it satisfies

i -
: ;_co;réct to 0(a); we have also defined §@ = X' + g'.vi .
ST pE o DE' X L. 3¢
eoi TaxDe® T Deltg) F WDy

-.: and. the last term is uE 8u€/8>< by (5.1c) = 3(%u£2V8x'= 0

e Similarly

- R e o
A D (=5 V')
_9%'y v = I
3% De¥ = Dl w) -
Finally
3 i E _ 8 ] _ a ¥
280Xy = 2@ XD = 28'.2% (Dygp)

.é4'(since MS'-Q}{Dtg')/BX =0 )
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E‘gz__gxlél) ,

= -2( D 25 . gxg = Dt( ok

(the end result being half the sum of the second and fourth ex-
pressions). Therefore (recalllng Eq.(5.2)) the result of scal-

arly multiplying (5.3) by ‘—BE’/QX; and averaglng w1th respect‘.
to x is simply '

B, T L, T L s,

correct to 0(a?), where

pe=-. s axg - . 5.6

Of course D, can be replaced by 3/%t in Eq. (5.5)} v.{ } by
-9 (n,"p') /3y — (T, 'P')/0,, and £ 1QXE EagxE' by -2E) (as in
Andrews & McIntyre, l976a, Eqg. (A15)), but I wanted to exhlblt
both Eq.(5.5), and its derlvatlon, in a form suggestlve of gen=-.
eralizations for other kinds of averaging. For instance if ()

were a time average we would have scalarly multiplied Eq. (5.3)

by 3g'/dt , and if () were an ensemble average over some en-
semble label- a — for instance the phase of the waves if we

are using either the 'random phase' idea or the slowly—varylng,‘-

'two-timing' idea — then we would have multlplled Eqg. (5. 3) by
8%}/8@ . In all these cases the foreg01ng derlvatlon goes
through almost word for word. In Andrews & McIntyre (1978c)
it is shown that Eqg.(5.5), with o ' in place of x , and with
right-hand side zero, reduces to Bretherton & Garrett's (1968)

form of thewave-action equation under their assumption of slowly—

varying, conservative waves. (This incidentally provides a
simple yet general derivation of Bretherton & Garrett's equa-
tion which does not depend on using a variational principle -
it was previously thought that the variational approacn is not

only illnminating, but essential).

Thus the wave property fD is closely related to the wave-

action. However, since /ﬂ itself‘ariee5~from'spatial, rather



than ensemble or phase, averaging — so that conservation,of’ﬁ

is associated with translational invariance of the mean flow —
/D should strictly speaking be called the pseudomomentum,

following the usage established in solid-state physics*. In the

case of slowly-varying waves, it is easy to see (Andrews &
McIntyre, 1978c) that /b reduces to Bretherton & Garrett's
wave—-action times the x component of the wavenumber, k .

Coming back now to our problem of wave, mean-flow interaction.
with its two sub—problems (1) (waves changing mean flow), and
(ii) (mean flow influencing waves), we can now see how Eq.(5.5)
plays a role in both. For sub-problem (ii) it evidently compri--
ses a useful tool for both calculating and describing the gen-
eratlon, propagation and dlSSlpatlon of waves in a given mean
zonal flow with arbitrary profiles u(y,z), B(y,z) . (Clearly
one wants for this purpose a measure of wave act1v1ty5which is
conserved when the waves are not being dissipated or generated;
one could then draw ‘'arrow' pictures of the flux, for instance
- perhaps superposed on contours of its divergence — and thus
get a direct feel for where (in the meridional (yz) domain) the

waves are piling up, or belng dissipated. By contrast, the-

divergence of the usual wave-energy flux p'v', p'w‘ does not
indicate any such thing.) |
Second, Eqg. (5 5) reveals the basic structure of the mean—flow—

evolution sub-problem (i). Putting it together with thebp
Lagrangian-mean-flow Eq. (4.10b) we see at once that the rlght—

*
The distinction between pseudomomentum and momentum,vwhose
conservation is associated with translational invariance of
the total problem, mean flow plus waves, has long been recog-
nized in solid-state physics, and has recently proved to be
the main key to unravelling the Abraham-Minkowski controversy
mentioned in the introduction (Peierls, 1976). Surprising as
it may seem, the controversy stemmed partly from a failure
to recognize that translational invariance of the propagatlng
medium is logically not the same thing as translational in-
variance of the total problem. Another source of confusion has
‘been the fact that in certain special examples turns out
to be numerically equal to the mean momentum; it happens that
the problem of section 2 is one such example, in the purely
transient, conservative case.
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hand side of that equation can be written (correct, as always,
“to 0(a?)) ' '

R _ | | - S
2p-EAL-Te . G

showing the dependence of the wave-induced forcing upon wave
transience, dissipation, or generation (the remarks at the end
~of section 4 should be borne in mind) . The reason why the re-
sults come out this way is again to do w1th the connectlon be~
tween conservation relations and symmetries, as has been clearly
brought out by Bretherton (1979) and further discussed in
Andrews & McIntyre (19780) It turns out that the result of
putting Egs.(4.10b) and (5.5) together can, in the case of con-
servative waves (5, Q, g' all zero), be derived more_dlrectly
by applying Kelvin's circulation theorem to a wavy line like L
in Fig.l. The most general form of this idea appears to be that
expressed by Theorem I of AM for finite-amplitude waves.
However, the argument is not complete w1thout con51der1ng the
complete set of mean-flow equatlons (after all, if we had naiv-
- ely forgotten about the right- -hand side of Eq (4.13a) in the

Eulerian-mean problem — not to mention the boundary condition

(4.8) — we would have got a completely wrong answer for the

effective transfer of mean momentum from the boundary to the
layer i, in Fig.4!). Nevertheless, there is not much ‘more -that
need be said, because the right-hand side of Eq.(4.13b) is zero
; and so we have to worry only about the right-hand sides of
~(4.11b), (4.12b), and (4.14b). The last of these is already in
the form of a time derivative. The precise form of the forcing
‘in (4.11b) and (4.12b) is not critical, because those two equa-
tions enter the problem for the rate of change of u and §©

‘only in time-differentiated form (cf. Andrews & McIntvre 1976a,

Egs. (5.7),(5.8)). That is, since we are 1nterested in solving
for the mean—-flow tendency at a glven moment we may regard
L —L}

fout /s, 998Y/3t, op-/et, Vo, W (5.8)
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as our basic set of dependent variables and take, as our basic
complete set of equations, (4.10b),(4.13b) and (4.14b) together
with the time derivatives of (4.11b) and (4.12b). The right-

hand sides of the latter must necessarily take the form of time

derivatives! The foregoing arguments do not depend on any ap-
proximations based on almost-plane waves or special mean-flow
pfofiles, and demonstrate rather generally how mean-flow accel-
eration is linked to wave dissipation, generation, and trans-
ience, in the sense that all wave-induced forcing terms are
either time dérivatives, like the first term in (5.7), or ex-
ﬁlicitiy involve departures from conservative motion, like the

second and third terms in (5.7).

A corollary of the analysis is that for steady, conservative
waves there is no mean acceleration, as first shown by Charney
"& Drazin, (1961) for quasi-geostrophic waves; and this is some-
times called a 'noninteraction theorem'. Fundamentally speaking

‘it should really be called a 'nonacceleration theorem',6 however:

“there is an interaction inasmuch as the right-hand sides of Egs.
(4.11b) and (4.12b) are not zero when steady waves are present,
" "and this upsets thermal-wind balance statically by 0(a?). Such
| interactions, while not always negligible in a description of
the mean flow correct to 0(a?), are probably not very important
in most meteorological examples; but there are other examples,
such as the radiation pressure of sound waves in a box
{(Brillouin, 1925), the acceleration of the solar wind by
Alfvén waves (e.g. Hollweg, 1978), and the 'parametric' trans-
 mitter in underwater acoustics, (e.g. Moffett,et al., 1971),

where analogous interactions are extremely important.

6. CONSERVATION RELATIONS FOR WAVE ACTIVITY: THE GENERALIZED
ELIASSEN-PALM RELATION.

The foregoing results (and various others similarly revealing
basic structure in the theory of acoustic. and surface-gravity
waves on- nontrivial mean flows; see AM§6) leave one in no

doubt that the description in terms of disturbance-associated
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particle displacements and Lagrangian means is absolutely fund-
- amental from a theoretical point of view. However, it mlght
still be asked whether the basic conservatlon relatlon, Eqg.(5. 5),
could be manipulated into a form not 1nvolv1ng the dlsturbance
particle displacements; this would be convenient for observa—
tional studies of stratospheric wave act1v1ty, for 1nstance.
The answer appears to be 'no';however one can flnd a conserva—
+tion relation, Eq.(5.5a) of Andrews & McIntyre, (l976a), in
which the flux, at least, does not depend on the dlsturbance
.displacements. The derivation is given in Appendlx A of the
same reference, in which. the present Eq.(5.5) appears as Eq.
(Al15) . The result has the form ' | / | 4

R e - v'or
} o+ =~ {u W a+(uy 20) 5

z Z

} = D.(6.1)

- Here *A is a wave, property equal to /b plus a number of extra
terms involving - E' ,, and D is another expressron 1nvolv1ng
E' which, like the rlght—hand side of the present Eqg. (5.5),
is zero for conservative motion (X, Q, g' zero). The flux whose
- divergence appears in this equation does not 1nvolve g ; it
~is the fundamental entity arising in the analysis of ﬁliessen
~and Palm, (1961). Eq.(6.1l) and its generalizations torspherical
geometry (Andrews & McIntyre,1976a, 1978a) mav,approprietely be
- called "generalized Eliassen-Palm relations". They -

play a role in the theory of the Eulerian-mean flow
like that of'Equation (5.5) for the Lagrangian-mean

" flow; and like Eg. (5.5) can also be used as conservation
relations for wave activity. This dual role, in sub- problems

(i) and (ii), .of the Eliassen-Palm flux {u'v" —qu v'oe!' /e , a'w'
+ (ﬁ& - 2Q)v'e’ /6 . suggests that it should be regarded as a
" fhore fundamental dlagnostlc than the associated wave—energy
fluxes' also discussed by Eliassen and - Palm.‘Merldlonal cross-—
sections of the.Ellassen—Palm flux and its divergence calcula-

ted from general circulation statistics are‘presented and

*
A is minus the lengthy expre551on w1th1n heavy square brack-
ets in Eg. (5.5a) of Andrews & McIntyre, (1976a), with nonhydro-
static terms added; see p.2034 of same reference.
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discussed by Edmon et al. (1979). One question which such
observational cross-sections should help to answer is: the
question of whether a singular (zero-wind) line for topography-
linked planetary waves behaves more like an absorber (as pre-
dicted by linear theory and numerical experiment) or a reflect-
or (as predicted by a certain class of idealized nonlinear
theories, e.g. Tung (1979)).
/
Eliassen and Palm pointed out that their flux reduces to
{u'vT, —ZQEﬁﬁTfﬁ'Z} for quasi-geostrophic waves, and it is
interesting to note that in the same approximation we have
A=W+%FF"2=Q nqt ., - (6.2)

<f\y e z A

., g *
where %  is the gquasi-geostrophic potential vorticity . For

the conservative case 2 ' = —?fyn' and so Eqg.(6.2) reduces
still further to

A== 52N | (6.3)

A significant consequence is that the rate of change of densitz
A of wave activity, in the generalized Eliassen-Palm relatibn,
becomes the flux of quasi-geostrophic potential vorticity in the
y—-direction (Dickinson, 1969; Bretherton & Haidvogel, 1976) be-
cause from (6.3) and (5.1la)

dA/3t = —;\‘,”_y n'vt =v'72 "' .

7. THE FINITE-AMPLITUDE THEQORY AND THE TEMPORAL NONUNIFORMITY

The Lagrangian-mean theory becomes even more powerful when ex-
tended to finite amplitude, and leads to what appear to be the

most general forms both of the theorems on meaanlow evolution

*

~An interesting parallel can be found in Eq. (3.3) of McIntyre &
Weissman (1978), which applies to the two-dimensional problem
of 82 above.
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(sub-problem (i)) and of the conservation relation for wave
activity (sub-problem (ii)). The most fundamental question is
how to define the idea of Lagrangian-mean flow E} and dis-
turbance particle displacement E}(E,t) at finite amplitude.
. At first sight there appears to be an infinite number of
choices; but it turns out that the following definition is the
one which appears to lead to the simplest general theoretical
structure for finite—amplitude waves, in some ways just as sim-

ple as the 0(a?) Lagrangian-mean theory of sections 4 and 5.

.z. PP “ _fx*_A R.(rod)l J, T
@ yf_f_/'l]fl o777\ conecr

Rq

Py Rg (initial position of
X rod and particles) -

Fig.5 Ways of visualizing the generalized Lagrangian-mean
velocity and disturbance particle displacement for
disturbances of finite amplitude (see text).

Suppose that there is no disturbance anywhere at some initial
time t = t; . In Fig.5a, let RO be a line parallel'td the
x-axis. Fix attention on a row of marked particles which are
initially spaced at equal disténces Ax aldng Rq and then
watch these particles as they follow the fluid motion. We now
refer (fdilowing Andrews & McIntyre; 1978b) to a mechanical
analogy (which has no dynamical connection with the fluid
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motion) in which we imagine that a thin, light, rigid rod

R inifially ¢oincides with RO , but is subsequently free
to move while remaining parallel to the x-axis.The position P
of avtypical particle of fluid whose initial position was P

is joined to the point P on R which initially coincided

R
with P0 ; the ligaments joining the marked particles to R

consist of identical 'elastic bands' such that Pp is pulled
towards ‘P with a force proportional to the distance PRP ’

‘a@d similarly for the other points. The rod R is imagined to
be in static equilibrium under the pull of all the ligaments.
'Then, in the limit Ax » 0 , the velocity with which the rod

moves is defined to be .Ef ;7 and if x is the current position
of PR’ E:(ﬁft) is defined to be the 'elastic-band vector!
>

*
PRP.

It turns out (see Eqg.(7.1l) below) that EL is exactly: equal to the

velocity of the centre of mass of a thin tube of fluid dinitially
'lying in the x-direction (Fig.5b).This result was conjectured
by Matsuno (personal communication) on the basis of a calcula-
tion for small disturbance amplitude. A corollary of Matsuno's
remark is that the vertical Stokes drift weo- W gives a di-
rect measure of the rate of change of disturbance available
lpbtential energy; and this too, is given the status of an exact

‘result by the finite-amplitude theory.

The foregoing gives the generalized Lagrangian-mean operator
T—TL corresponding to a spatial (longitudinal or zonal)
Eulerian mean; the GLM operators corresponding to the time,
ensemble or two-timing varieties of Eulerian averaging opera-
tors are defined in AM, where the theory is developed in a form
which covers all these cases at once. Once we possess defini-
tions of E:(ﬁ't) and EF(§,t) , we can easily derive finite-
amplitude analogues of Eqg.(5.5) which are analytically almost
as simple, and lead to much the same consequence} as before.

(Full details are given in Andrews & McIntyre, 1978c).

*
For the corresponding analogy for zonal averaging on the sphere,
see McIntyre 1979,84.
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It should be noted that although the operator T;'I'involves'
averaglng along the curve C the average is not unlformly
welghted with respect to arc length s along C‘.fﬂnawelght—
1ng of the average along C can be expressed 1n terms ofthe
non—unlform thickness of the tube correspondlng to C in Flg.
5b, or more accurately in terms of the mass per unit length of
the tube, if we want to include the case of fully compresslble
flow. This’is because mass per unit length of C in Flg 5b
is just proportional to number of particles per unlt length of
C in Fig.5a, in thevlimit Ax > 0. Thus if dv is an element
of volume of the tube C , so that pdV is an element ofbmass,
then‘the GLM of any quantity ¢(x,t) may be defined as ‘

T = j ¢pdV/j pav , | (7.1)

¢ ¢ | | o

in the llmlt of small tube cross-section (AM§4 3) As Matsuno
(l979) and McIntyre (1979) both explaln, hermmunlfomn ‘weight-
ing is essentlal if (__ is to correspond to. Stokes"orlglnal
concept of Lagranglan mean when the latter is approx1mately
appllcable.

__The deflnltlon (7 1) can be used as it stands for taklng aver-
ages on a sphere, prOV1ded that the quantlty ¢ . being averaged
is a scalar. When it is a vector or a tensor, further discussion
is needed (Mclntyre,1979§4),

The relation (7.1) is also very suggestiVe of how to define a
_"modified GLM" 1ndependent of 1n1t1al conditions and therefore
. not subject to the temporally nonunlform behav1our noted at the
end of section 4. This could be a matter of some 1mportance for
u51ng the theory to descrlbe the long-term behaV1our of pollu—
ants ‘and planetary-wave activity in the stratosphere. The idea
arose during conversations with T. Dunkerton. Consider a hypo-
thetical motlon 1n which X and Q are 2zero, for all tlme, [=Le]
that the motion is conservatlve (and has been ever since the

initial state of no disturbance). Then since entropy S and
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potential vorticity P are both constant following this hypo-
thetical motion, we could have defined our thin material tube

C to be a tube bounded by surfaces of constant S and

S +AS , and P and P + AP . (The tube would then have a
cross—-section approximately in the form of a parallelogram, as
sﬁggested in Fig.Sc. — except in the singular case where S
and P surfaces coincide.) Now in-the real stratosphere S
and P are not constant following the motion, because of radi-
ative-photochemical effects and turbulent dissipation; but we
could still define a "modified GLM operator" by (6.1) with the
tube C still marked out by the S and ? surfaces, knowing
that the modified GLM theory would have the same mathematical
structure as the theory described in AM, apart from the dissi-

pative effects. This effectively provides a continuous re-

injitialization which eliminates the temporal nonuniformity and

expresses the distinction between wave transience and dissipa-

tion in an intuitively more satisfactory way.

On the other hand the topology of such "SP tubes" could become
complicated during strong disturbances. In studies of individual
disturbed episodes it may prove better to use the SP tubes to
initialise the (unmodified) GLM theory, during a less disturbed
state preceding the'episode in question (Dunkerton, 1979;
McIntyre, 1979). Whatever procedure is adopted, it will neces-
sarily have to cope in one way or another with the fact that
nonuniform behaviour in time is a basic feature, in practice, of
a description of real fluid motion using Lagréngian ideas in any
form. The detailed study of this temporal nonuniformity;‘and.the
associated dispersal of fluid particles, is sure to play a key
role in understanding exactly how the various 'nonacceleration'
and 'nontransport' constraints are broken by real, large-

amplitude stratospheric motions.
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