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1.

Introduction

The Fast Fourier Transform (FFT) algorithm has a number

of important applications in numerical weather prediction.

Among these we may list the following

(1)

(2)

(3)

In gridpoint models based on a regular latitude-
longitude grid, the convergence of meridians towards
the poles leads to a severe restriction on the length
of the timestep in order to maintain computational
stability. This difficulty can be removed by Fourier
filtering the higher zonal wavenumbers in the fields
(or their time tendencies) near the poles

(Holloway et al., 1973; Williamson, 1976; Burridge
and Haseler,1977). The operational model currently
envisaged for ECMWF, with 15 levels and 1%0
horizontal resolution, will require ~ 7500 real
Fourier transforms of length 240 at each timestep

using an explicit time integration scheme.

The TFFT may be used as a basis for very fast direct
methods of solving discrete elliptic equations.

In particular it may be used to solve the Helmholtz
equations which arise at each timestep in a semi-
implicit gridpoint model (Burridge and Haseler,1978)
in either spherical or channel geometry. The semi-
implicit version of the operational model referred to
above will require -~ 15000 real Fourier transforms

per timestep.

The most important application is in spectral
prediction models. At each timestep, the nonlinear
interactions are computed by transforming certain
fields to gridpoint space, carrying out the required
multiplications, and then transforming back to wave-

number space ( e.g. Orszag,1971). To obtain a grid-




The implementation of specific problems on the vector-
processing Cray-1 computer has been considered by Buzbee

et al, (1977) (point relaxation methods for solving elliptic
partial differential equations), and Jordan and Fong (1977)
(various methods for matrix inversion and the solution of

linear systems).

This report is concerned with the efficient implementation
of Tast Fourier Transforms on the Cray-1. Section 2
discusses relevant features of Cray-1 architecture and
vector processing. Section 3 describes the IFT algorithm,
In Sections 4-6, various approaches to the problem are
evaluated using Fortran FIT routines. Finally, Section 7
discusses the implementation of the FFT algorithm using

CAL (Cray Assembly Language) routines.

2., The Cray-1 : a vector processing computer

This section introduces some relevant features of the
Cray-1, and some of the concepts and jargon of vector

processing. For further details see e.g. Johnson (1877).

The architectural feature which distinguishes the Cray-1
from other computers is the provision of eight vector
registers, each capable of holding 64 words (floating-point
numbers in the nresent apnlication). In addition to the
usual scalar capability, these provide scope for logical
and arithmetic operations on vectors, (A vector in

this context is just a string of numbers, not necessarily

having geometrical significancej.

All vector arithmetic operations are register-to-register,
so the vectors must be loaded from memory into the
registers before the arithmetic is nerformed, and the
results stored back in memory afterwards. To transfer

a vector between memory and a register, one first




By changing the details of the addressing, the sequence
of instructions above could also handle a loop of the

form:

NN = 2 * N

DO 10 I = 1,NN,2

D(I) = A(I) + B * C (I + 1)
10 CONTINUE

or even:

J
K
DO 10 I = 1,N
D(I) = A(J) + B * C (K)
J = J+3
K=K-1

10 CONTINUE

1l
o

but a loop of the form

DO 10 I = 1,N
D(INDEX (I)) = A(I) + B * C (I)

10 CONTINUE

could not be handled by vector processing techniques,
since the array D no longer satisfies the definition of

a vector,

It is essential that the operations on each element of the
vector are logically independent of those on the other

elements; thus a recursive calculation of the form

DO 10 I = 2,N
A(I) = B(I) + A(I-1)
10 CONTINUE




initially free, the functional units will operate in

parallel during the sequence

VO <+ load from memory
Vi <« V2 + VO
V4 <« V5 * V1,

The second instruction will issue 9 cycles after the

first (at chain slot time for a vector load), and the

third will issue 8 cycles after the second (at chain slot
time for a vector floating-point addition). The three

instructions will then be executing in parallel.

By using the functional units either in parallel or in
sequences of chained instructions, very high proceésing
rates may be achieved. Speeds on Cray-1 are generally
quoted in megaflops (millions of floating-point operations
per second) rather than mips (millions of instructions

per second), since one machine instruction may generate

up to 64 floating-point operations. With a basic

machine cycle time of 12.5 nsec (=80 million cycles per
second), if two functional units can be kept continuously
busy a rate of 160 megaflops will be achieved. ' Speeds of
this order can be realised for comnutations such as matrix

multiplication.

Execution speeds are slowed down for short vectors, since
the overheads (e.g. vector start-up times) remain the

same as for long vectors; however, this problem is nowhere
near as serious as for other vector machines, e.g. the

CDC STAR-100.

In some computations, memory references are the main
bottleneck:; this is particularly the case if the vectors
are stored with 16 words (or less seriously, 8 words)

between consecutive elements. Memory is divided into 16




(e) wuse functional units in parallel or in chained
sequences. Requirements (a), (b), (c¢) and to a large
extent (d) can be met with FORTRAN programs; in order
to satisfy (e) it may (depending on the level of
sophistication of the compiler) be necessary to use

assembly language (CAL).

3. The Fast Fourier Transform

In this report we will consider only complex periodic
Fourier transforms of the form
N--1

z, =) c, exp(2 ijkmr/N), 0 zj<N-1,
J g2o K

where zj and Ci are complex numbers, and i =/ -1. In

normal meteorological applications we use real/"half-

complex" transforms of the form

N-1
x, =) ¢, exp(2 ijkmw/N), 0<j<N-1, (1)
J e k
k=0
i = X *
where Xj is real, and CN-k cx (* denotes complex

conjugate). Eq. (1) is often rewritten as

N§ . .
_ 23ikm . 2jkm
X, { 2y COS ——— + bk sin } (2)

where the real coefficients P bk are simnly related to

the real and imaginary parts of c The transforms (1)

and (2) are usually handled by adﬁing a pre- or post-pro-
cessing step to a complex transform of length N/2
(Cooley, Lewis and Welch, 1970). This extra step is
readily vectorized. An alternative procedure suggested
by Bergland (1968) leads to an algorithm whose structure

is very similar to that of the complex FFT.
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For simplicity we assume that the complex data in A are
stored contiguously, with real and imaginary parts
occupying alternate words of memory. C is a work space
of the same size as A. Then the passes through the data

are made as follows

COMPLEX A(N), C(N), W(N)
INTEGER IFAC(NFAX)

LA = 1

DO 10 I = 1,NFAX

CALL PASS (A,C,W,IFAC(I),N,LA)
LA = LA * IFAC (I)

exchange r&les of arrays A & C

10 CONTINUE

The variable LA is equal to the product of all factors
of N used in previous passes, and controls the indexing

within each pass.

The subroutine PASS contains a nested loop for each per-
mitted value of IFAC(I); on p. 14 we outline the code
required for IFAC(I)=2.

For any value of IFAC, each pass through the inner loop
references IFAC complex values in each of the arrays A and
C. If K> 1, then (IFAC-1) of the values in C are
multiplied by complex numbers (phase factors) from the

array W.

The Cooley-Tukey/Gentleman-Sande versions of the FFT have
the same loop structure, but the indexing is different.
Notice that the IF statement within the inner loop removes
redundant but harmless multiplications, since W(1)=1.
Also, some Fortran compilers may generate more efficient
code if the complex arithmetic statements are expanded

into their real equivalents. For a typical scalar
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(b) the increment for the storage of vectors in memory
is 1 complex = 2 real words, so there will be no

memory bank conflicts;

(¢) redundant multiplications by W(1) have been removed

by providing the extra (DO 10) loop;

(d) the vector length for the inner loops is LA,which
will be 1 for the first pass, increasing with

successive passes.

With reference to point (d), it can be seen that the order
in which the factors of N are used will influence the
vector length LA. TFor example, for N=120=2.3.4.5, if the
factors are used in ascending order then the vector length
in successive passes will be 1,2,6,24; while if they are
used in descending order the vector lengths will be 1,5,
20,60,

Times and megaflop rates are given in Table 2 for complex

FI'T's using vectorization scheme A, for ascending and

descending orderings of the factors of N. With the exception

of N=1OO=4.52, where other considerations are evidently
at work, there is clearly an advantage to be gained by

using the factors in descending order.

Table 1 : Scalar FI'T

N time (us) megaflops
30=4° 157 3.3
36=4.3° 180 4.3
48=42.3 235 4.2
50=52.2 275 5.1
64=4° 302 4.2
96=42.3.2 557 4.4

100=52.4 552 5.7
120=5.4.3.2 743 5.1
128=4° .2 736 4.3
1024=4° 7477 5.0
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Vectorization scheme A

DO 10 L=1,IA
C(JA) = A(IA) + A(IB)
C(JB) = A(IA) - A(IB)
IA = IA + 1

IB=1IB + 1
JA = JA+ 1
JB = JB + 1

10 CONTINUE
IT (LA. EQ.M) RETURN
LA1 = LA + 1
JA = JA + JUMP
JB JB + JUMP
DO 30 K = LA1, M, LA
DO 20 L = 1,LA
C(JA) A(IA) + A(IB)
C(JB) W(K)* (A(IA) - A(IB))
IA = IA + 1
IB=1IB + 1
JA = JA + 1
JB = JB + 1
20 CONTINUE
JA = JA + JUMP
JB = JB + JUMP

30 CONTINUE
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(b) -continued:
For many frequently used combinations of factors
of N these increments will become multiples of 8,
leading to memory bank conflicts during the later

stages of the transforms;

(c¢) redundant multiplications by W(1)=1 have to be carried

out;

(d) the vector length for the inner loops is (M/LA) =
= N/(IFAC*LA), which decreases on successive passes,
becoming 1 on the last pass. For Scheme B the vector
lengths are maximized by using the factors of N in

ascending order.

Times and megaflop rates for Scheme B are given in Table 3.
Redundant complex multiplications have been ignored in

the operation count, so that we have slightly redefined
megaflops as '"millions of useful floating-point operations
per second'". Comparing Tables 2 and 3, we see that

Scheme B is slower than Scheme A, a consequence of the
extra arithmetic, additional vector loads, and in some
cases memory bank confliicts. Moreover, comparison with
Table 1 shows that for the shorter transforms (N £64)

Scheme B is slower than the original scalar implementation.
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Scheme B + A

Since Schemes A and B produce identical results, there
is nothing to prevent us from choosing the more
appropriate scheme at each stage of the transform.

The optimum combination is clearly to use Scheme B
initially, and to switch to Scheme A for the later
stages of the transform. This combined scheme has the

following properties

(a) W(K) is only a 'vector' during the initial passes,

while Scheme B is being used;

(b) memory bank conflicts will not occur provided that

the switch to Scheme A is made sufficiently early;

(c) there will only be a few redundant multiplications
by W(1);

(d) the vector length will be N/IFAC(1) in the first

pass, falling with subsequent passes using Scheme B

and then rising again after the switch to Scheme A

For example, if N = 22p and the switch is made at the

halfway point (i.e. p passes with Scheme B followed

by p passes with Scheme A), then the minimum vector

length will be 2P = VN,

The optimum ordering of the factors of N is no longer so

easy to choose. In preparing Table 4, both ascending
and descending orders were tried, and the faster time
reported; other orderings (where possible) might prove
even faster. Again, redundant complex multiplications

do not contribute towards the operation count.

With the combined vectorization scheme, the benefits
of vector processing are at last becoming apparent.
For N = 32 the vectorized code runs twice as fast as

the scalar code, and for N = 1024 nearly seven times

is

faster.




Scheme P has the following properties

(a) as in Scheme B, W(K) is a'vector' within the inner

loop, requiring extra vector loads;

(b) the storage increment for vector loads is 2 real
words; and for vector stores is 2*¥IFAC real words;
memory bank conflicts will only arise during vector
stores when IFAC=4 (these too could bhe eliminated if
all real parts were stored in one array, and all

imaginary parts in another);

(¢) redundant complex multiplications (when W(K)=1) have
to be carried out. Since W(K)=1 for 1 £ K= LA,
a refinement is possible (at the expense of decreased
vector lengths) in which the loop is split into two
separate loops, the first for 1 < K < LA without the
multiplication and the second for LA + 1 < K< M
including it. In practice it was usually found worth-
while only to provide a special loop for the last pass,
in which W(K)=1 for all K. For the very long transform
N=1024 it was worth providing a special loop for the last

two passes.

(d) apart from this special case, the vector length is
M=N/IFAC throughout. |

The major disadvantage of this form of the FFT is that the
results emerge in scrambled order; in some circumstances
this may be acceptable., but if for example the complex
followed by a (vectorizable) postprocessing step, then the

results must be unscrambled by a scalar loop of the form:
DO 10 I = 1,N

A(I) = B(INDEX(I))
10 CONTINUE




-923-

Table 5 : Vectorization Scheme P

without

reordering reorderxring overall Mflops

N ' time Mflops time total
(us) Us) time (Us) (including reordering)

32=2,4°2 68 8 15 82 6
36=32.4 75 10 17 92 8
48=3.4° 81 12 22 103 10
50=2.5° 92 15 23 115 12
64=4° 90 14 29 119 11
96=2.3.4° 124 20 43 167 15
100=4.5% 132 24 45 177 18
120=2.3.4.5 149 25 53 203 19
128=2.4° 142 22 57 199 16
1024=4° 921 41 449 1371 27

6. Vectorization of multiple FFT

So far we have considered vectorization of the FFT
algorithm applied to a single set of data. Although

this approach is currently fashionable arnong theorists

in the field of parallel computation (e.g. Heller,1978),
it ignores one important aspect of the problem; as
mentioned in the Introduction, we usually want to perform
many FFT's simultaneously. Provided only that the

sets of data.to be transformed are separated in memory

by a constant increment, the multiple FFT problem is

readily vectorized in the form shown on p.25.

Here LOT is the number of transforms being performed
simultaneously, and INC is the increment between them.

The inner loop simply steps from one transform to the
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Scheme M (multiple)

M = N/IFAC
JUMP = (IFAC-1) * LA
IABASE = 1
IBBASE = IABASE + M
JABASE = 1
JBBASE = JABASE + LA
£ o o e o e o o it i e e i S e o o . e e i . e e e e
DO 30 K =1, M, LA
DO 20 L =1, LA

IA = IABASE
IB = IBBASE
JA = JABASE
JB = JBBASE
DO 10 IJK = 1, LOT
C(JA) = A(IA) + A(IB)
C(JB)= W(K)*(A(IA) -A(IB))
IA = IA + INC
IB = IB + INC
JA = JA + INC
JB = JB + INC

10 CONTINUE
IABASE = IABASE
IBBASE = IBBASE
JABASE = JABASE
JBBASE = JBBASE

O

+ 4+ o+ o+

20 CONTINUE
JABASE JABASE + JUMP
JBBASE = JBBASE + JUMP

30 CONTINUE
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of Table 6 are 10-15 times the scalar speeds given
in Table 1. However, we will show in the next section
that a further doubling in speed can be achieved by

writing a multiple FFT routine in the assembly language
CAL.

7. FFT's in CAL

Despite the development of sophisticated Fortran compilers,
it is commonly found on scalar machines that a programmer
who knows what is actually going on in a program, and has
some knowledge of the machine's architecture, can write
assembly language programs which execute considerably
faster than the compiler-produced code - typically by a
factor of 2. In this section it is demonstrated that the

same is (currently) true on the Cray-1.

Following the experiments described in previous sections,
a CAL version was written of the multiple FFT routine.
Here we need only consider the innermost loops, where all
the significant computation is done. Also, since

the relatively small amount of addressing arithmetic

can be overlapped with the vector floating-point

computation, we need only consider the latter.

On p.30 we show the innermost loops in Fortran (now

using real arithmetic) and CAL for the case IFAC=2, both
with and without the multiplication by the phase factor
W(K). Corresponding timing analyses, in terms of machine
cycles, are shown on p.31 & 32for a vector length VL=64,

i.e. 64 simultaneous transforms.

In case (a) there are eight memory references (four loads
and four stores), and four arithmetic instructions (all
additions/subtractions). 1In case (b) there are again

eight memory references, but ten arithmetic instructions
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intermediate results are always ready by the time they

are needed.

For IFAC greater than 2 the rate could in fact be
improved slightly by reorganizing the loops so the first
vector load is performed near the end of the preceding
loop,and the last vector store near the beginning of

the following loop.

The last two columns show the megaflop rates achieved
by the corresponding FORTRAN loops, and the CAL: FORTRAN

speed ratio, which in most cases is not far from 2.

Table 8 shows the times and megaflop rates for multiple
complex FFT's implemented in CAL for M transforms per-
formed in parallel, for M=4,16,64 and 128. Comparison
with Table 6 shows that the CAL code runs ~ 2.2 times
faster than FORTRAN for M=4, 2,05 times faster for M=16,

and 1.9 times faster for M=64.
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Timing analysis for W(K)=1

operands functional result

. . free i free
issue chain slot ee units free

VO « A(IA) 0 9 68 73
V1l < A(IB) 68 77 136 141
V2 « B(IA) 136 145 204 209
V4 « VO+V1 141 149 205 209 213
V3 « B(IB) 204 213 272 277
V5 « VO-V1l 209 217 273 277 281
V4 ~ C(JA) 272 336 341

V6 « V2+V3 277 285 341 345 349
V5 -~ C(JB) 341 405 410

V7 <« V2-V3 345 353 409 413 417
Vé -~ D(JA) 410 474 479

V7 -~ D(JB) 479 543 548
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Table 8 : FFT's in CAL

N M=4 M=16 M= 64 M=128
us Mflops Us Mflops Us Mflops Uus Mflops

32=2.4° 30 17 11 a5 7 75 7 78
36=32. 4 36 21 14 56 9 90 8 93
48=3 .42 45 22 18 55 11 86 11 88
50=2 .52 56 25 22 63 14 97 14 100
64=43 56 23 23 54 15 82 15 84
96=2.3. 42 109 22 43 . 56 28 87 28 87
100=4.52 106 30 45 70 31 100 31 102
120=2.3.4.5 148 25 59 64 39 97 38 398
128=2 .43 139 23 58 55 37 84 37 85
1024=4° 1357 28 &0l 62 416 90 415 90

8. Conclusions

Fast Fourier Transforms are most efficiently implemented

on Cray-1 by performing them in parallel, provided a

(quite small) number of transforms can be done simultaneous-
ly. Processing rates of ~ 50 megaflops can be achieved
using FORTRAN routines, and 80 - 100 megaflops in CAL.

In the classification of Jordan & Tong (1977), TFFT's can
be performed at "supervector' speed, i.e. the processing
rate is limited only by the number of registers and/or
functional units available; however, to achieve a

really significant increase in speed a '"super-Cray' would
need more ports to memory as well as more registers and
functional units.
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Appendix 2 : Radix-4 v. radix-2 transforms

FFT routines designed for scalar machines often allow 4
as a factor of N, since this reduces the operation count to
80 % - 85 % of the work required in a simple radix-2-
formulation ( e.g. Singleton, 1969). On the Cray-1

the radix-4 scheme has an additional advantage, namely

that the number of passes through the data (and hence

the number of vector loads and stores) is reduced by a
factor of two. As shown in Table 9, times for the radix-4
transform are ~ 75 % of the times for the radix-2
transform. (One pass with IFAC=2 will still of course be

required if N is an odd power of 2).

Table 9 : Times per transform for N a power of 2

( multiple CAL routine, 64 transforms in parallel )

N ; time (us)

radix-4 radix-2
16 3 4
32 7 10
64 15 22
128 37 50
© 256 82 114
. 512 193 255

11024 428 571

PPN




TIBASE=LBASE+INCY - . S

CONTLNUE

JBASE=JIBASE+INC2 o S
CONTINUE - CieEcT TS T e
IF (LALEQ.M) RETURN ’

LAT=LA+Y c e omEmEe L O Bt s

JEASE= JHA5E+JUMP

DO 40 K=LAT,M,LA ST T F

15
20
Coliwnd
25
3
Ly
C
C
¢
50)
COIK®
55
6y

KB=K+K=2

CI=TRIGS(KB+1) , S
STI=TRIGS (KB+2) ,

DO 30 L=1,LA T L EEL
[=IBASE

J=JBASE

IVDEP , _

DO 25 I1JK=1,L07

CCJA+J)I=ACTIA+II+ACLIB+])
DUJA+II=RIA+II+3(1IB+1)
CCIB+II=CIx(ACLIA+T)=A(LIB+L))=ST1*(B(IA+1)=B(IB+1))
D(JB+J)I=SI*(ACIA+1)~A(IB+I) ) +CI*(BCIA+I)~B(IB+I))
[=1+1NC3

J=JHINCA

CONTINUE

IBASE=IBASE+INCT

JBASESJBASF+INC?2

CONTINUE

JEASESJBASE+JUMNY

COnTINUE

RETURN

COpING FOR FACTOUR 3

1A=1

Ja=1

=l A+ T INK
JE=JA+JINK
TC=In+ TINK
JC=dli+d INK

pU 6L L=TsLA
I=IBASE

J=JHBASE

IVDEP

DO 5% TJK=1,L0T
CAJA+II=ACIA+IIH(AUIBHIIFACICH+IY) -

DA+ I=B(IA+I)+(BUIB+L)+B(IC+D))

C(JBH+II=(A(TIA+] ) =U. S*(A(IB+;)+A(IC*I))) (SINGUX(R(IB+I)=B(IC+I)))
ClICH+dI=(ACIA+1)=U.5% (ACIB+ID+ACIC+I)))+(SINGUX(B(IB+I)=B(IC+I)))
PCIBH+IIS(BUIA+L)=0.5%x(B(IB+I)+BLICHI) I )+(SINGOX(A(IB+I)=ACIC+1)))
D(JCHIIS(E(LA+T) =0 S%(B(IB+I)+B(IC+I)))=(SIN6UX(A(CIB+I)=A(IC+I)))
I=1+INCS ‘ ' :

J=J+INCA . )
CONTInUE =
TBASE=IBASE+INCT

JBASE=JBASE+INCZ =

CUNT INUE

IF (LA.EQR.M) RETURN
Lal=LA+1

i
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CCID+I)=CACLA+L)=ACIC+T) I+ (BUIB+I)=B(1D4I))
PEJBHIIS(B{IA+1)=B(ICHT I Y+CA(IBI)I=A(ID+I3 5
D(JO+I)I=(B(IA+I)=BCIC+I))=(ACIB+I)=A(ID+I))

I=I+TNCS ) _ ST rE AT =
J=Jd+iInCsa
CONTINUE
IBASE=IBASE+INCAT )
JRASE=JHASE+INCZ e T
CONTINUE
IF (LA, EG.M) RETURN
Ltal=LA+]
JBASE=JRASE+JUNP
DO 120 kKk=LAT,M,LA
KR=k+K=2
K(=kB+KB
KD=KC+KRB
Ci=IRIGS(KB+T)
S1=TRIGS (KBY2)
CZ=TRIGS(K{+T)
S2=TRIGS(KC+2)
C3=TRIGS(KD+T)
S5=TRIGS(KD+2)
PO 110 L=1-LA
I=IBASE
J=JBASE
IVDEP
pe TUS LJK=1,L0T
CCJA+J)=(ACTIA+I)+ACICH+INI)IH(ACIB+IIV+A(CIDHI))
D(JA#J)=(B(IA*I)+b(IC+I))+(H(18+I)+8(10*1))
C(JC+y)=
‘Cd*((A(IA+I)+A(lC+J))-(A(IB+I)+A(ID+1)))
=S2* ((RUIA+II+B(IC+IN)I=(BCIR+LI+BLIDHI) )
NCIC+HI)=
S2*((ACIA+I)+ACIC+II)=(ACIB4+TI)+A(ID+1)))
+C2x((BCIA+)+BCIC+II)=(BCIR+I1I4BC(ID+1)))
C(dB+d)=
CT*((ACLA+I)~ACIC+I))=(BUIB+L)=-BLLID+1ID))
O =STx(((1A+I)=BCIC+I) I+ (ACIH+II=A(ID+I)))
Nn(Jj+d)=
ST*(CA(IA+I)=ACIC+II)=(B(IR+I)=B(ID+I)))
$CTR((BCLA+L) =B CICHII)H(ACLIBFII~A(LID+1)))
C{(JD+JI= ,
CA3% CCACTIA+L)=ACIC+ 1))+ ((IB+1)=BCID+I)))
~CE%k ((B(IA+1)=B(IC+IM)~CALIB+I)=A(CLID+I)))
DAJL+y)=
Sj*((A(Iﬁ+1)-A(IC+I))+(8§IB+I)-B(ID+I)))
$+C3.((B(IA+I)=BIC+I))=(ACLIB+I)=ACID+1)))
[=1+InC3 :
JEJ+INCS
CONTINUE
[HASE=TIHASE+TINC
JEBASE=JBASE+INCY
CONTINUE
JBASE=JRASE+JUMP
ConTInlEe
RETURN
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i

DO 15U L=1,LA
I=IBASE ‘
J=JBASE
COLIR® TVDEP o
DO 145 LJIK=1,L07
CCJA+J)=ACTIA+T)+(ACIB+I)+ACTE+I I+ CACIC+I)+ACID+I))
D(JA+Y)I=RB(TA+I)+(ECIB+IV4RCIE+T) )+ (BCIC+I)+B(ID+I))
C(dg+d)=
* CI1*CCACIA+I)+COS72%(ACIB+HI)+ACIE+I))=COS36*(ACLIC+1)+A(ID+I)))
" = (SIN72% (B(IB+I)=BC(IE+I))+SINZEx(B(IC+1)=8(ID+1))))
* wS Tk ((H(LA+I)+COST2x (BCIB+I)+B(IE+I))=CO0S36%x(B(IC+1)+B(ID+I)))
* 4 (SINP2%x(A(LIB+1)=ACLE+I))+SINBEX(A(IC+I)=A(LID+I))))
pJB+Id=
ST ((ACLA+I)+COST72% (ACIB+I)+A(IE+I))=COS36x (A(IC+I)+A(TL+1)))
- (SIN72x (B(IB+1)=B(LE+I))+5IN36x(B(IC+1)=B(ID+I))))
FCTR((BCIATTII+COSP2* (RCIB+I)#ECIE+T))I=COS36%x(B(IC+II+BCID+T)))
F(SIHP2*(ACLBHI)=A(LE+T1))+SINS6%(A(IC+I)=A(ID+I))))
C({JE+d)=
Cax((a(IA+I)+COSV2Xx(ACTIB+I)+ACIE+L))=COS836x(A(TIC+1)+A(ID+1)))
F(SINI2*(B(IB+I)=BC(IE+I))+SINS6X(B(IC+I)=B(ID+1))))
wSax ((BOIA+TI4CUST2%x(B(IB+1)+B(IE+1))=COS836*x(B(IC+D)+R(1L+I)))
= (SIHNT?2*(ACLIB+I)=ACIE+I)I+SINIG*CACIC+I)=A(ID+T))))
D(Jt+d )=
SL* ((ACTA+T)+COUSTZ*(ACIBFI)IH+A(IE+I))I=COS36Xx(A(IC+I)+A(ID+1)))
F(SIN/2%(BCIB+T)=B(IE+I))+SINS6X(B(IC+1I)=B8(ID+I))))
+C4x((B(LA+1)+COST2*x(RCIB+I)+R(IE+I))I=COS36%(B(IC+I)+B(ID+I)))
- (SIN/2* (A CIHR+I)=ACLE+T) ) +SINSO*x(ACIC+I)=A(ID+I))))
C i+ =
Cox((ACLIA+I)=COS36%(ACIB+I)+ACTE+L))+COS72x(ACIC+I)+A(ID+1)))
~(SINZOX(R(IFR+T)=R(IE+1))=S1IN72%x(B(IC+1)=B(ID+1))))
=5 2% ((BULA+L)=COS6% (BCIB+I)F+B(TE+L)I+COS72*(BCICHI) +B(TD+I)))
F(SIN36%(ACIE+T)=ACIE+I))=SIN/2%(ACIC+I)=ACID+1))))
D(JC+I) =
% Sex L(ACIA+L)=COSS6%(ACIB+I)+ACTE+L))+COS72*x(ALIC+I)+AC(ID+I)))
* ~(SIN36x(BIG+L)=B(IF+1))=S{N/2x(B(IC+I)=B(ID+1))))
*
k4

A X % A * o % % * o % X%

* % % %

+C2*((B(IA+I)-C0$36*(R(IB+I)+B(IE+1))+C0872*(B(IC+1)+8(ID+I)))
F(SINSAXR(AULIHFTI=ACLIE+]))=SINZ2x(ACIC+ID)=A(LID+]))))
C(dD+g)=
' Cj*((A(}A+i)*COS&O*(A(IH+I)+A(IE+1))+COSY&*(A(IC+I)+A(ID+I)))
+(SIH56*(B(IB+I)“B(IE+I))'SINI2*(B(IC+I)-8(ID*I))))
—Sé*((b(IA+I)—CDSjb*(H(IB+I)+B(IE+I))+COS?2*(B(IC+I)+E(ID+I)))
e SIHSAX(A(IB+I)=ACTIE+I))=SINY?Z*(ACIC+I)=ACID+1I))))
PDID+S )=
S4x((A(IA+I)=COS36%x(ACIB+II+ACIEFIII+COST2A(A(ICH+I)+A(ID+I)))
+(SINMNIOR(E(IR+I)=BC(IE+I))=SIN/2x(B(IC+1)=B(ID+1))))
+C5*((H(1ﬁ+1)-COssb*(B(IB+1)+B(IE+1))+COs?2*(8(IC+I)+B(ID+I)))
“(SINSOX(ACIH4T)=ACLE+I))=SINTZ2x(ACIC+I)=ACID+T))))
I=I+INCS
J=Jd+InCé
145 COMVINUE
IBASE=IBASE+LINCT
JUASE=JHASE+INCZ
150 CONTINUE
JBASE=ZJHASE+JUMP
1eu CONTINUE
RETURN
EnD

* % o

* A A X
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