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1. Introduction

From the point of view of radiation the needs of a General
Circulation Model (GCH) and of a Medium—-Range Forecasting
Model (MI'M) are not the same. Let us take an example:
there are two important equilibria that a radiation scheme
applied to the real state of the atmosphere should represent.
First, the energy balance at the top of the atmosphere (for
the whole earth and a sufficiently long time: averaged net
flux equal zero at p = 0). Secondly, the radiative
equilibrium in the parts of the atmosphere, especially the
stratosphere, where the radiation is the only important
diabatic phenomenon (for a sufficiently long time: averaged
net flux constant with height).

For a GCM only the second condition is important: if we
have an equilibrium with a net flux constant but not egual
to zero, the ocean provides the infinite source or sink of
energy whlch enables the atmosphere to remain in ike right
state of temperature.

TFor a MFM the situatidn is the reverse: at a ziven moment

of its history the atmosphere is not in equilibrium but tends
to come back to it, and the speed of this change, which we
shall represent in a forecast, is governed by the internal .
energy, controlled by the flux balance at the top of the
atmospher

Therefore, and also to allow an immediate effect for a
maximum of feed back processes, the accent is put,; in the
scheme described here, on the fluxes and on overall effects
“without overrating of the input information rather than on
careful computation of some local phenomena with neglect

of their interaction.

However, the basic formulation of the problem is the samc as
in GCM's and we have a similar task of balancing accuracy
and time consumption. Thus we have to apply many of the
methods already used in GCM radiation codes to simplify the
treatment of the basic equations (see for example MANABE and
STRICKLER (1964), KATAYAMK (1974), TIEDTKE and GELEYN (1976)
or the comparison of these three schemes in the Research
Paper 1/16/E/RD4/019/1976).

After describing the radiative transfer equation we shall
explain in this paper the few simple hypotheses whose application
to this equa tion allows a fast computation of the radiative
fluxes without any arbitrary suppression of phenomena. Then

we shall show some results which justify our choices and some
comparisons with another radiation code.




2. The monochromatic equation of radiative transfer

At a given frequency v we can write
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with Iv : intensity of the diffuse radiation
Sov : intensity of the solar parallel radiation

at the top of the atmosphere. The multiplication

by "ty /Mo gives us the local intensity as
solution of the equation
as,, (t,)

for parallel radiation: »»uo-~"atv

Sy (ty)

optical thickness of the atmosphere used as
vertical cocrdinate : 0 at the top and
increasing downward

u : cosine of the
radiation and

g le between the direction of
che upward directed vertical

b DO

¢ :azimuth angle of the direction of
radiation

~“Hg,¢, T H cznd ¢ for the solar parallel radiation

k : ratio of absorption to extinction
(absorption plus scattering)

P . scattering phase function normalised to
v the mean value 1 and with axial symmetry:
P(u,d,u'¢') = P(u-u‘+\k1mnz)-(1~u‘2)-008(umu‘hﬁp(cosa)
Bv : Planck function
T : Temperature

The four terms on the right hand side of (1) represent
respectively

- The loss of energy by absorption and scattering

~ The gain of energy coming from the scattered solar
parallel radiation

- The gain of energy corming from the scattering of
radiation from other directions

~ The gain of energy through thermal emission



Supposing we know the vertical profiles of t,, T, ky and
Pv(cosG) and the boundary condition for Iv at the bottom
cf the atmosphere (at the top 8 )ty are only dependent
on geography and time) we can compute I, everywhere and
therefore the spectral upward net flux is
2n | +1 - ~ty, /U

- + 3 - 0 (2
Fo(t,) = Lyt ) n.du.de - u .5,,.e (2)
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A spectral integration allows us to compute our final
goal: the net upward radiation flux

F(p) = | T, (t (p))dv / (35
O

with p pressure as vertical coordinate

The signification of all the previous equations and
definitions is more or less intuitive. For more complete
information see CHANDRASEKHAR (1950).

The exact solution of the radiative transfer equation
involves three types of integration: over angles, over the
vertical coordinate and over the wave length spectirum. We
shall describe here successively the way of solving the
three problems arising from these integrations.

3. The spectral integration problem

We first suppose that we can separate the whole spectrum
into two intervals: the long waves whers we put Sy = 0
and the short waves with By,(T) = 0. Because of the
difference between the radiative temperatures of the

sun (5750°K) and of the earth (254°K) this simplification
is very reliable.

Let us then suppose that we are able to do the necessary
computations to solve the monochromatic problem in both
spectral ranges. In order to avoid a great number of such
computations at different frequencies we have to find how
to determine and use t, k and P(cos8) representative for
wide parts of the spectrum.

The solution of the monochromatic equation being of negative
exponential type (as we shall see later on), the main
problem comes from the highly non-linear nature of the exponential
operator: -atb - -a, -b

(as e # 5
extinction cannot be combined in an intermediate one): the use of
spectrally averaged coefficients of absorption and scattering
is only valid when the real coefficients have the same order
of magnitude throughout the considered spectral interval.

a strong and a weak
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We suppose that this is the case for cloud-aerosols
absorption and scattering (less than one order of
magnitude variation for the extinction coefficients)

and Rayleigh scattering (only present in short waves)

in a small number of domains (3 for long waves, 2 for
‘short waves) and we have grey effects except for gaseous
absorption in these intervals.

The experimental data were taken from ZDUNKOWSKI, KORB
and NIELSEN (1967). ' . '

The aerosols are included in the scheme more to give a
possibility of fitting the results of the model and to
smooth the transition between cloudy and non~cloudy
conditions than to represent the poorly known effect of
natural aerosols (the dynamical model does not give their
geographical distribution and their optical prownerties
are uncertain).

There is first a dry effect proportional to the quantity
of aerosols (given climatologically and idealised) with

a constant absorption coefficient throughout the whole
spectrum and a scattering coefficicent increasing the
Rayleigh effect and modifying its phase function in short
waves, Furthermore, outside of the clouds, we assume
enpirically an adsorption of water proportional to the
quantity of aerosols and to U/(1-U) (U being the relative
humidity). The optical properties of this smog are the
same as those of clouds. ‘e hepe that the use of averaged
coefficients for cloud and aerosols will not create a
bigger error than the error caused by the poor knowledge
that we have from their optical properties themselves.

The Rayleigh effect, although highly non-linear
(coetficients proportional to v') is sufficiently small

so that we can chocse empirical coefficients for which the
effect of the firet scattering is well parameterised (by
taking into account the zenith angle of the sun) without
having important errors for the subsequent scatterings.

An extra difficulty arises in the case of gaseous abscorption,
the coefficients depending strongly on temperature and
pressure. (There is alsoc a temperature dependence for the
other effects in the long wave domains, due ito the change
of shape of the Planck function with temperature. However,
it can be well parameterized by a linear dependence of the
spectral coefficients on the inverse of temperature). For
the gases, their line-type absorption snectrum obviously
makes the averaging of coefficients hopeless, since strong
absorption and no absorption at all are present together in
the same parts of the spectrum.

We must therefore use empirical transmission functions for
the gases. The theory of gaseous absorption (see for

example GOODY (1964)) shows that these transmission functions
can be expressed over sonme spectral intervals as the product
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of the individual transmission functions for the different
gases; but we can group the effect of all the gases which
have a constant mixing ratic throughout the atmosphere as
if it would be the effect of the most important of them:
CO9. So we have only three gases to consider: water vapour,
ozone and carbon dioxide.

Furthermore, we shall use for each of them the two parameters
scaling approximation (Curtis Godson approximation): the
transmission function is expressed in terms of the unreduced

amount of absorber =]rdp (r being the mixing ratio of the
gas) and of the reduced amount U, = jrp /po. (The dimensions

of u and u., does not matter; the prodiuct with absorption
coefficien%s has only to be dimensionless).

5]

s3ion

¥,

For a narrow spectral range one can compute the transmil
T from _

] au
SN T = 4 cuy (4)
' Yi+bu [ugp

The term cu,, represents the absorption of the continuum; for
weak absorption the first term on the right hand side of (4)
becomes au and for strong absorption av/u./b. These two
formulations are the ones given by the theory of band
absorption. The coefficients a,b and < depend on temperature.

By analogy to this form we choose an empirical transnmission
for the five spectral domains or for sub-intervals of them as

T = I ’ 1 } _
Hpo, Cog, 04 [1+-2U ___ ey

T u u u

Sh— il T(%ZO’ rH,0,%Co, 7 €O, 03'ur03)
v1thu®/up

a, b, ¢ depending linearly on 1/T are fitted to experimental

datea. '

But to use these transmission functions we need to know the
encountered unreduced and reduced amounts of H?O, CO2 and 03

along the different radiation paths. We can reduce our search
to the evaluation of the mean value for each of these 6 amocunts
and introduce them in the transmission functions. Since these
are still non linear we make there an error but a smaller one
than by averaging the coefficients a priori.

I.et us see in detail this evaluation in the case of short wave
radiation. We first make a monochromatic computation without

any gaseous absorption, the resulting filux at the reference

level being Fy; the way this result is obtained will be shown

in part 4. F, can represent either the solar parallel flux or
the upward or the downward diffuse flux. Now we add each gas
(I,0, CO, and Og) in both reduced and unreduced amounts (6 cases)
with an arbitrary but very small absorption coefficient k;; the




result is Fi. We can say that the mean encountered amount

of this absorber type u; is given by uy = %: EQ%EE (5)
~kjug i i
om T, = T & T L rinal -
(Irom Fi Foe O/(1 + klul)). Finally we compute

the real flux with F = FO.T<U i=1,6),

i,
In the long wave part of the spectrum the problem is more
complicated. There is not a single external source but
every absorption is accompanied by an equivalent emission
depending on temperature through the Planck function.

Hence to evaluate the amounts of absorbers we have to
compare runs with and without gases in an isothermal case
(only the optical thickness matters, not the Planck function
which is B* throughout the atmosphere). We get the fluxes
(sec¢ part 4 again) Foﬁ and Fi* (either upward or downward
diffuse Fluxes)

1 FO*—Fi*
i Fy*-nB*

2. U F_*x—mB*
(From F,*_qB* = (F *_qB*).e i%i . 29 —
] i o 1+kjuj

u*; is given by Uty =

(6)

and we get ¢* (u*, ,1 = 1, 8)

The ratio F*O/FB* is the emissivity e* in the isothermal
cage without aktscrber.

We need then to compute the flux FO in the case without

absorber but with the actual temperature state of the
atmosphere. There Br is the Planck function in the
reference level.

Finally we compute the real flux F by making an analogy to
the short waves. We had there T as the result of the
transmission without scattering of FO through a layer of
transmissivity t. Here F is the result of the transmission
through a layer of transmissivity t = 1% with, at the origin,
a flux ¥, provided by an emission with emissivity & = g%,

For the computation we suppose, as we shall do in each case,
that the Planck function varies linearly with the optical
thickness taken as vertical coordinate: t - -2nT*. VWe obtain

F = WBr+(FOnFO/g*).T*+(FO/€*~HBT).(T*wl)/ﬁnT* (7)

when we integrate the simplified version of (1.

H

G = F-7B = F-m(By+B't) (8)

in which the scattering effects have been suppressed and



the intensities replaced by the fiuxes (explana
Appendix A).

a

4, The vertical integration problem

Following the principle expressed at the beginning we ac
not try to extract more information from the input
parameters than they can give us. Therefore, we suppose
that each layer is a vertically homogenecus absorbing and
scattering medium and as an interpolation assumption that
in each spectral interval of the long wave domain the
Planck functions vary linearly with the optical thicknesses
through every layer.

We make now the so-called Two-stream BEddington approximation.
At each level both upward and downward diffuse radiation
fields are hemispherically isotropic (I depends only on the
sign of u).

We can now compute a matrix solution of the radiative
transfer equation for each laver: the outgoing fluxes depend
linearly on the incoming ones and (in the long wave domain)
on the black body fluxes at the boundaries.

’Sb ¥ Nai o o | 'St 71 t for top b for bottom (23
Flt = |ag a4 agi - Fib S solar parallel flux
F a , : B lar upward diffuse fluws

9h 3 2, a7 | EZt q Ssolax upward diffuse flux
ST - ) - FZ " downward " "

and

F T » 1 [#B.F, thermal upward flux

14 b1 b8 1b b5 b7 ﬂBb 1 thermal upward flux

= ° -+ . (j\))

i T b b 7B, | T " nws "
FZbé b, by, ot t_G 8 £|Fq downward

See appendix A for the computation of the a and b coefficients:

The b coefficients are functions of - the optical thickness of
: : the layer At

~ the ratio absorption/
extinction k

- an integral factor of the
phase function:

P(u, 0,1, ¢ Ydudedu ' dé!
82

[\
=3
——
o
oo,
N
=3
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The a coefficients are functions of
the same parameters and of ~ the cosine of the solar
zenith angle Uy

- a second integral factor
of the phase function
depending on Uyt

2m (1

41
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To compute the mean encountered amounts of gaseous absorbers
we should recompute 6 times the a and b coefficients. Since
the changes in optical thicknesses ki.ui are arbitrarily small
we can avoid this amount of new computations if we take
analytically the derivative a' and b' of the coefficients

a and b with respect to the absorption optical thickness (kAt)
under the condition (1-k)At econstant. :

The new a and b are given by a + a'k; uj and b + b' k.

i Ui

See appendix B for the computations of the a' and b'!
coafficients.

Fach layer 1s thus characterised in each spectral interval
by 30 coefficients.

A little supplementary treatment is needed when we have a

cloudy layer with partial coverage. We corpute the a and b
coefficients for both cloudy and clear parts. Then we
distinguish two cases. If the layer is alone between two
clear sky layers, we simply do a linear combination of the
coefficients with the amount of cloudiness and its
complement to 1 as weights.

If there are several adjacent cloudy layers, building a
so-called "cloud" we compuie the coefficients which, if

the layers were homogeneous would give the same results

as those obtained ian the following way: we suppose that

the overlapping of the adjacent cloudy parts is maximal,
and so we have n + 1 vertical distributions of cloudy and
non~cloudy parts (n number of layer in the cloud); we
compute the results inside the "cloud' for each combination
for arbitrary incoming fluxes and finally combine linearly
the results with the weights given by the geometry of the
"cloud" and eliminate the arbitrary incoming fluxes from the
equations. (See Appendix C)

When in each spectral interval, for each case (with and

without gaseous absorption, isotherm or not) we have the

a and b coefficients of each laver, we can compute all the
fluxes through the atmosphere as resulting from a linear system.
(An example can be seen in Appendix C).
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For this we only need the boundary conditions which are
for short wave fluxes:

Se given by astronomical considerations
FZOO = {
. F = AL T + A% (uo)S
1z=0 22=0 (uo) Z=0

Al and A'% ground albedos for
diffuse and parallel radiation

and for long wave fluxes:

. EZm = 0

"Fizzo = emBy o * (1-e)Fy, &
e emissivity of the ground.

(We suppose for simplicity that AL, A'%2 and & are the
same in the different spectral intervals). ‘

5. The angle integration problem

As seen before, we make the hypothesis of hemispheric
isotropy. Therefore we need a magnification factor for
diffuse fluxes which multiplies the quantities of
absorbing and scattering media computed for a vertical

beam. TFor all effects except gaseous absorption we tske this
factor equal to 2. This value is the one for small effects
as seen in Appendix A. We choose it because the involved
effects are either small (outside of clouds) or strong

(in the clouds) and then the fluxes do not depend on the
guantities of acting media any longer. .For gaseous
absorption we have two different factors: 2 for the unreduced
amount of gases and 25/16 for the reduced amounts. This
later value is the one we obtain as a limit for transmission
zero in the form T = 1/(1+a/ﬁ?73) (see part 3).

Thus our magnification factor diminishes with increasing
absorption as it is the case in nature. The usually accepted
value of 5/3 falls between ocur two values. :

As all our computation of a and b coefficients are done with
the magnification factor 2 we need to correct the quantities
ki.u; for reduced amounts of absorbers. We multiply them by
a factor 25/32 for the linear computation of the coefficients
a4, .7 and by g. TFor the coefficient a4 we have no

modification to do since it concerns a parallel beam. For ag




and as we assume (only for this purpose) that there is
only a single scattering taking place in the middle of
the layer. On the way in we have a path length
proporticnal to 1/up and a multiplying factor 1. On

the way out the path length is proportional to 2 and the
factor is 25/32. So our final factor is

1 25 1
G- (D vz E/G+ )

6. FFirst results of the model

.t should first be noticed that the empirical transmission
functions for gases used here are not vet definitive (there
is no division in sub-intervals and we have still to
introduce the self broadening effects)but they already give
a good idea of the possibilities of the scheme. For the
basic data which help us to determine these functions we
use McCLATCHEY et al (1973) and VIGROUX (1953).

There are two determinant assumptions in the model - the
direct use of a multiple scattering method instead of an
emissivity type (with mathematical separation of scattering
and absorption as, for example, in the GFDL radiation
scheme). '

- the simplification in the

long waves ¢ = ¢* 7 = 1% which is in a certain sense
the equivalent in our formalism of the so-called "cooling
to boundaries" approximation. (In the latter approximation,

for the computation of the fluxes at a given reference level
one assumes that the atmosphere is isothermal with the
temperature of the reference level).

We will try here to justify these two choices by showing the
influence they have on the results of the model for a great
amount of possible atmospheric configurations. We apply

our model to a set of 142 atmospheres (with 15 layers) whose
characteristics of temperature, humidity and cloud coverage
are randomly distributed around reasonable profiles (see
Appendix D) with the help of the random number generator of
the computer. The distribution of the solar =zenith angle

is also random between -1 and +1. The values for ozone and
carbon dioxide do not vary and are taken from observations
(McCLATCHEY et al (1972)). The number of 142 is the one for
which the averaged results have the best flux balance at the
top of the atmosphere (net flux as small as possible) for a
computing time less than 1 minute.

It is interesting to note that this is accompanied by a
‘good cooling-heating balance at p = o too. This can be seen



on Fig. 1. In this figure we have computed the results of
cooling-heating rates of the model (full lines) and of a
modified version in which there is no more scattering of
the diffuse radiantion (A1l = 1 in Appendix A), for long
wave and short wave separately and for their sum. At the
top and the bottom the net fluxes (in W/mz) are indicated.

One can see that neglecting the multiple scattering leads

to errors of the order of 25% for the divergences and of

50% for the fluxes (relative to the values of long wave or
short wave fluxes before they cancel by summation). Although
the errors are larger for short waves than for long waves,
these latter are still important, particularly in the middle of
the atmosphere where both differences are additive, whereas
in the boundary layer (with more long wave cooling of the
last layers without reflection of "warm" radiation from the
upper levels) and in the stratosphere (with the short wave
absorption by ozone of multiple-scattered radiation on its
way back to space) they tend to cancel each other.

Considering only the results of the model for the net radiation
we can sce an important cooling in the boundary layer, an
almost constant cooling rate throughout the tropospherca,
another increase of cooling (it will create the tropopause
which does not exist in our data) at the bottom of the
stratosphere, and finally, as already pointed out, an
equilibrium at the top.

However, at p = 0 both long wave and short wave fluxes are too
low (right value = 237). This is probably due to the absence
of a positive lapse rate of temperature in the stratosphere
and to a too high liquid water content of the clouds.

For the second noint mentioned above, there is no possibilit
in the frameworl. of the code to see what would be the result
with temperature dependent emissivity and transmissivity.
However, it is possible to compute the changes in the fluxes
for small k, coefficients in the real temperature state of the
atmosphere as we have done for the isothermal case (with the
use of a' and b' coefficients). Therefore, we can conpare
these tendenciles with the one predicted by the model when

E = imqfiéwfam in equation (7).
: i i

v
S

For the same set of 142 random atmospheres the correlation
coefficient between the two sets of results is 0.838. This
result might be improved by using real data where the temperature
profiles are probably more regular than the one we get from the
random generation. However, it seems already worth doing this
hypothesis considering the amount of integral computation which
is saved (instead of varying with the square of the number of
levels, the amount of computation for long wave fluxes varies
with this number itself).
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7. Comparison with the Manabe M8ller experiment

In order to compare our scheme with that used in the GFDL
model, we recalculated the MANABE-MOLLER (1961) experiment
on radiative equilibrium. The results are shown on figures
2, 3 and 4, corresponding to figures 12, 14 and 15 of the
original paper. There are two input elements in our scheme
to which the results are quite sensitive and which are
unknown to the M.M. model: the emissivity of the soil and
the saturation humidity (for the aerosols). We took
arbitrarily the second from the standard atmospheric

temperatures and the first equal to 0.89.

The scheme used here is not exactly the one described in the
paper, since we had to suppress the dependence of the
coefficients on temperature: for very low temperatures,

some of them become negative and even if we set them to
zero, this creates a computational instability.:

On Figure 2 we can see that both schemes sgree well in the
troposphere, but that the stratospheric results are

totally different. Furthermore, our scheme shows a very
strong boundary effect (which in some extreme cases can

lead to an inversion). However, this is a consequence of
the strong boundary cooling already noticed in Figure 1

and which is an observable feature (sce for example GAMP and

Figure , Z
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HEINRICH (1976). Thus we can already say that, if our
scheme is to be used in a dynamical-physical model,

this latter must have a treatment of the boundary layer,
including the effect of stability in order to avoid the
creation of too strongly unstable temperature gradients.

In TFigures 3 and 4 we investigate the effect of a change

~only in the absorber quantities (3: ozone -~ 4: water

vapour without change of the relative humidity) on the
equilibrium conditions. The same remarks as for

- Figure 1 apply, but our scheme is more sensitive to water

vapour and less sensitive to ozone than the M.M. one. The
most important thing to notice is that the elfect of the
changes is more local in the M.M. case and spread throughout
the atmosphere in our case. This will lead to a stronger
computational stability in our scheme which is already
proven by the fact that our critical time step.for the
computation of radiative equilibrium is about 8 to 16

times larger than the 12 hour time step given by M.M.

This difference of behaviour of the two schemes probably
lies in their basic conceptions: - M.M.'s computes exactly
what happens for a unique and a priori idealised photon
path

- our scheme takes into account all photon paths but only

Figure 3
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makes computation on averaged properties. Therefore
every input parameter has an influence on every flux
but strong local effects are somewhat smoothed by the
averaging process.

The M.M. results have stratospheric values of temperature
closer to the observed ones (represented in Figure 2 by
the ICAO Standard Atmosphere), but our model has better
lapse rates. Which of the two solutions is the more
realistic is difficult to say, since the other physical
effects will change the conditions of the equilibrium.

We can explain the discrepancies in the stratosphere with
three reasons

- our model does not separate the effects of the
ultra. violet and visible absorption bands of
03 (it will later) and therefore our heating
rates are too low above 25km. and too strong
below. A test with a transmission function of
a different type but taking into account both
bands gives us an evaluation of the error
(Figure 2). . '

| Figure 4
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~ The GIDL scheme has an upper boundary condition
df/dp = 0, which we cannot introduce in our
computation since our temperatures are not at
the same levels as theirs. (This feature also
creates for us numerical problems for the
computation of a convective-radiative equilibrium
with a free soil temperature and this explains
why we have to limit our present comparison to
the first of the GFDL papers on equilibrium
temperatures). In any case, in MANABE and
STRICKLER (1964) with new transmission functions
the stratospheric temperature and lapse rate dre
reduced in a slightly different experiment (free
soil temperature as only change of conditions:
Figure 1 of the M.S. paper).

—~ As already seen, the temperature effects are less
local in our computations than in M.M.'s. This
can also be seen if we compute a convective-
radiative equilibrium with fixed soil temperature.
The effect will not be a convective lapse rate
extended until it reaches an unmodified radiative
equilibrium, but rather a displacement of the whole
stratospheric profile (See Tigure 5).

Figure S
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With these higher temperatures, however, we can return to
our original model by reintroducing the dependence of
coefficients on temperature. We then get a better strato-
spheric lapse rate and, for the first time, a well defined
tropopause (See Figure 5 again in which all three curves
are computed with the modified ozone transmission function).

8. Conclusion

The scheme described here produces reasonable results (not
only as shown for an average of different situations, but
also for each of them) and allows the treatment of all
-sorts of feed-back mechanism between radiation and other
meteorological processes without too high computational
cost (9 runs per second for 15 levels on a CDC 6600
compared to 25 runs per second for 9 levels for the GIDL
scheme; it is impossible to give too much comparative
signification to these figures since our scheme is less
sensitive to the number of levels than the other (See 6)).
The use of the multiple scattering method and the
suppression of vertical integrations seems to provide
good numerical stability. However, the great number of
degrees of freedom could perhaps lead to physical
instability if some feed-back between radiation and
dynamic are not completely included in the model as
mentioned for example in 7 for the boundary level.
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APPENDIX A

Calculation of the a and b coefficients introduced in 4

We consider one layer in which the optical thickness t varies from
0 at the top to T at the bottom, k and P (cos®) are constant and
B is linear in t.

We write the equation (1) in the form

AT (t,u,0) - 1 [I(t u,9) . 1- L{I P, 0, -Hy,0,)
u

Toat 4

2m{+1
+ P(u,¢,u',¢').I(t,u',¢').du‘.d@} - k.B(t)}
o |-1

’

We suppose the radiation field hemispherically isotropic

with Iy (upward) and 1, (downward) and we apply the
operator [2m{+1

u.du.do to our equation:

J O O

- an [ 1 A 21
dal - -
- 1(t)~[ p.dy.do¢ = Il(t).( [ du.dod - EZ-E-IO-
o o

dt il
[ o Jo
271 2r{i{27{1
PQu, 6,1, 00) du.dg - L2515 (1), P(u,¢,u",0").
o ‘o o ‘olo ‘o
1 - k 2r|1{2mo0
'.do'.du.d¢ - i ‘.Iz(t). P(u,o,u",0").du'.d¢'.du.do
o Joldo I-1
271
- k.B(t). dudd
o Jo
: 2n 1
But we have F1_= Ii-u-du-d¢ = 11y F, = I,
0o |0
Therefore .
2nfif2nrr1
ar - 1 - k
1(t) 1 -k Vo
_dt b 1(t). 2 - 4’”2 P(U:@:U ,(b )'
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onl{1{24 o0 1
P, ', ¢ ).du’ . dd' . du. dd|

du‘.d¢'.du.d¢} ~ Fo(t). -

47
o Jalo /-1 : ]
_ ] : 2n 1
—— - = K s
Io(t)- BT P(u,¢,~uo,¢o)du.déj - 2k.7B(t)
0 ja
(21 o
Similarly with the operator K. du.dé
Jo 4“1

: f f fon [
ar.(t) 2o (2wl :
2 = Fy(t). 1 -k P(u,o,u',¢').du'.dé' . du.ds

jo j-1jo jo ; -
B _ 2n{o (27 (o N
»Fz(t). g - 1 *75 . P(u,¢,u',¢').du‘-d¢‘.du.dé‘
- 4m” o‘-1jo j-1 J
27 lo :
RN CIRE= ,1P<u,¢,—uo,¢o).du.d¢ + 2B(t)

But since PGu¢,u's¢") = PQuu'+/(1-u?)(t-p' ?).cos($-¢"))

= P(-u,¢,-u',0") we have

27 i 21 o ‘ 2n o 21 (o
P(U’¢’U')¢')du"déy'dU’dé = P(u,¢,ﬂ',¢’).
0 04{0 0 6] -1 e} -1 :

dp'.dé'.du.dé

On the other hand
20111210 ’ o 2nlo {2n(1 .
P(u,éo,u",¢') du*.do'.du.d¢ = P(u,o,u',0")
0o jojo -1 o |-1{o Jo :

du'.d¢'.dp.d¢

So we can write
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dF{(t) ‘
dFo(t)
—gF = azFi(t) - ale(t) + u4Io(t) + 2knB(t)
om [1{2r (1 2n (1(27 (o
Since P(u,¢,u',¢"').du'.dé".du.dé =+
0 jofo {0 o jojo -1
2r{1{2m|+1
P(u,o,u',¢").du'.do'.du.do = Pu,o,u",6").
o jojo -1
2r {1
du'.dd'.du.do = 4mdude = SWZ
o Jo
and
fon (1 2m{o
P(u,¢,-Hg,00).du.dg + P(U,,-Ug,05).du.do =
Jo Jo o J-1
[2m (1
P(u,¢,-1gy,00).du.do = 4m
jo j-1

We get for the equations and the definition of their
coefficients



~23-

+ A2

Ag(ug)+ A, ()=t

GSIO(t)

a4Io(t)

1

Gy = 21 - (1 - K)Ap) oy = 2(1 - K)Ay with Ay
o3 = (1 - K)Ag(n) %4 = (1 - K)Ag(ug) with
dry (t) |

—ar T 21 (Fy{t) -TB(t) - ag(Fy - TB(t)) -
§§%131 = ag(Fy(t) - 7B(t)) - ag(Fy - 7B(t)) +
I (t) = IO(O)e-t/uo

A. 'Long wave case
I, =0 B(t) = B, + Bt
let us take Fl* = Fl - B Fz* = F2 - B

AP * ()
dt

we hav

dFo™*(t)
Tdat

let us now take
dFl**(t)

we get
& dt

dFg**(t)
4t

General case

a)

F

il

1l

1

alFl*(t) - ang*(t) - B!

agF*¥(t) - aqF;*(t) - 7B’

Fp* = wB'/(ag40y); Fo**= Fo*4nB' /(aq+og)

a1F1**(t) - agFo*¥(t)
agF1**(t) - agFo**(t)

o1 # ag

We combine both equations in

d

Fl**(dl - Bog) - Fz**(az - Bdi)

qt (Fyxx - BFo**) =
The homogeneous solutions are obtained for o 2 5

ag - Bag 9 1* 7% " %

TSI e —————— —2 = =
R o, = Bay B Gy Bay + Qg 0 B o
o, ~ € Gy + €
= /o 2 - . 2 = _1 =
let us take ¢ al oy 81 = T, By = - 1/51
2
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We‘obtain-%{ (Fi** = ByFgxx) = E(Fl** ~ BqTy**) =>

et
Fl** - BlFZ** = @1e

%t (Fl** - B2F2**) = - ¢ (Fi** - BgFg**) =>
sk 2 kk o oo oTET

. et -et
Fo*¥* = Bge = CoBie ) / (B, -~ By
F b (Cleet

) - Cze*et) / (Bg = B1)

With the boundary conditions

018268T - 02816~8T

i

(Bg = B1) F{™¥(T)

C1 - C

Il

) (Bg - 81) Fo**(0)

Hence our equations are

-7

)

. B e o
Fl**(o) = ((82 . Bl)Fl**(T) + (eET - e €T)ﬁ2$$(0>)/(8288
- = T -eT ey K eT ~eT
Fz**(T) = ((e7" = e "IF *H(T) + (By - 6)Fp**(0))/(Bge”" - By )
’Therefore
2

b -6

1= b4"T1-1 STy )2

171 5 5
1 - le

b = b :B a

2 3 1 5 _ _

1 - (By7q) By = (a1 - €)/ag
1 - by + b, lee-eT

b, = b8 = - bI

v (oy + ag)T

1 - Dby + Db
1 2

b = b = — b -

6 7 1 2 (al 4 (XZ)T‘




b) Case without absorption

al = 0y = 0 <=> k = ¢
*%
qr dF o *x
di = a(Fl** - F2**) = dz => P ¥k o po** 4 C

With the boundary condition C = Fy¥*(T) = Fo**(0) - CaT

T *%(0) (T *¥*(T) + aT.Fy**(0))/(1+ aT)

FoX*(T) (aT.Fl**(T) + Fo**(0))/(1 + aT)

therefore. b1 = b4 = 1/(1 +aT)

(o2
]
o
It

aT/(1 + aT)

B. Short wave case

‘B(t) =0

The parallel Solaf flux S is given by S(t) = LI ()
. Ho**o

From the equation for parallel radiation ay = e

and a4, as, ag, a7 have the same expressions as bl; bg, bg, by
since a diffuse radiation cannot become parallel again.

If S = 0 we have the same equation for Fy and Foy as in the
longwave case for Fy** and FoX*

Let us try to deriwve the same‘expression valid for any S

(G
R B £ E




S PO = 0oF.® 4 T (Yq + CGqYql o

To = @qfy — ool oY1 + G1Yqlg = dgYgug - ag)
dFg® o6 o
T T el 7T Lo (vg agyqug - agvou, +oay)

We seek vy, and Yo SO that v4(1 + ajquy) - Yol = Og
Yi0gHo * Yo (1l = aquy) = -0y

The discriminant

2
of the system is 1 - a12u02 + u22u02 = 1—€“u02

a) General case Elg # 1

- - -+
v o 28 T Voleaog *opng) oy T (0% T ety)
1 1 -~ €2U02 ’ 2 1 _ 82“02
and a = -3 - a a - }
2 572 4¥1%1 7 V1
3 = <B4y < A5Yidg * YpRy |
b) Resonance case Ely = 1
We no longer nave a solution with Yl and Y2 constants.
We seek now solutions with Yy = Y10 + y’l(t/uo)
and  yo = Yo© + y'o(t/uy)
The equations are now
(v, + vty 14 (v O 4+t _
1 1_110) ( 061110) (Yz YZUO) OLZUO = Og + \{71
o . t t
(Y1 + Y'lﬂb)'QZUO + (Yzo +<Y§_io) (1 - uluo) = -0y *tY'g

<

]
1.‘@2”0 _ I"OLIUO ..OL4.+'Y{2

Pl -
Y'o 1+aqug ~tolg ag * Ytl
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—tg * ug(0qag + agay)
5

We obtain yﬁl =

o4 * uo(a1a4 + dz@g)
2

The choice of one of the two y  is then arbitrary. Among
the infinity of solutions the most symmetrical one is

oy 1% T %% o %104 * Gglg
Yy o 2 Yo = 90 2

We get the results

. o _ o .
"2 7 7 As¥a T % (gt YT D2y v vy°

a3 = 7 agY,0 - ag (v # Yﬁ,g )aq +(Y2°-+Y'27§ )ay
: o 0
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APPENDIX B

Calculation of the a' and b' coefficients introduced in 4

A. Long wave, general case

Our three input parameters are T optical thickness

w = 1-k sihgle scattering
albedo

and Al integral factor of the
scattering phase function

Let us symbolise by D the differential operator d( )/ d(kT) with
(1-k)T constant. (kT is the absorption optical thickness which
will be increased and (1-k)T the scattering optical thickness
which will not be affected in the process). ‘

We have DT = 1 DW = -W/T and DA1 = 0

The expressions for the computation of b1 and b2 are:

ag = 2.(1 - W.Al) ag = 2.w.(1 - A e = Yo 2 -
81= (o(_l- e)/ag lee

2 2 2

by = T, (1 - 812)/(1 = 817711%) by = B1.(1 - 11 /(1 = Brovy )

A differentiation step by step leads us to

- - b |
bly = Dby = (4Bymy 22 - a1+ 8,71 Byarby /et - g%, )

2 = Dby = (453730001 - 201 + 8570y %) D2yeca - g Py ?y)

It

o'
Il

For the computation of b5 and b6 we have

A= 1/((aq + ag).T)

b5 = (1 - b1 + b2).k - b1 b6 =1 - b2 - (1 - bl + bZ)X
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The result of the differentiation islhere

; |
b's = Dbg = (b'g = b'1).A = 2.17.(1 ~ by + b3) - Db'y

b'g = Dbg = (b'y - b'g). A + 2.02.(1 - by + bg) - b,

B. Long wave, case without absorption

Although we know the formal expressions of bjand by we can
no longer take their derivative as in the previous case,
since the introduction of a KT is in contradiction with the
condition k = o. We must therefore compute a limited
expansion of by and bg in the neighbourhood of the values
obtained for k = o,

We have, for the input parameters, with kT = x

T = To + x w =1 - x/To + XZ/TOz... Al constant
We get with u = gT
1 8 + 8u + (8/3)u’.
LI ¢ u /3)u
Py = 1 ¢ * 4+ 4u )
_ u 8 + (16/3)u
b2 =7 '+ u (1 - X 4 + 4u )
Thus: _
i 2 2 2 2

The results for b's and b'g are the same as in part A.
with XA = 1/(2u)

Thus:

1 — ' —
b'o = b, + 2b,/3 b'y = b, + 4b,/3

C. Short wave, general case

We have two supplementary input parameters. uyo cosine of
the solar zenith angle and its dependent integral factor of
the phase function A3(upo)..




Both of them are unchanged in the differentiation
process : Duo = 0 DA3 = 0

The results for a'4 and a'g are the same as those for
b'l and b'g

As g = e7T/Mo a'y = -ay/uo

The expressions for the computation of ag and ag are

a3z = wAg Gy = w(l - Ag)
¥ (0105 * agagdu, ~ ag (ajoy *+ agagluy + oy
1 T2 e - 'Y2 - ]
1 - 24,2 1 - e2 2
2 T tRgYp T A4¥qa; - vy 83 T TB4¥p -~ 25Y133 - Ygay

Thus to compute a‘2 and a'S we only need to know DYl and
Dy,.

The differentiation step by step leads to

Dy

il

L= 1o (Bag-e%)/(1-e2002) = 2)/T - ag(Zug-1)/(T(1-eZu,2))

DY2

2 2 2 , 2 2
vy(2u (20, -e”) /(1-e ) - 2yr - @, (2u_+1)/(T(1-c"u_%))

and finally

a'yg = -a'gYy = agDyy - a'yyqay - ayg(Dyqaq + yqa'y) + Dyy

"a4Y¥g T 24Dy - a'gyqay - ag(Dyjay + yga'y) + Dygag + yga'y

D. Short wave, resonance case

The results obtained in C. for a'l a'4 and a'5 remains valid.

But for a'2 and a'3, as in B., we can no longer derive the
final expressions of aq and ag. But in this case the

calculation of the derivative is simplified since we can
compute a limited expansion by varying an independent
parameter, namely yg,.



We take uo==(1 + y)/e and the results for a'z and a’3 are of
the type (0 + myz)/(O + nyz) = m/n

The result is gquite complicated

With the yloy2oy’1y'2 from Appendix A

and
810 = = 7. ((4v3y° + 2y Do 2 - ag (6u - 1)/4)
85° = = 2.((av,° + 2Y' ) .aqug? - ay. (Buy + 1)/4)
6'1 = - %.((2710 + 4Y'1).a1u02 - vio - ag.(2u_-1)/2)
61y = - %.((2Y20 saviy.an ? o v,® s an+1)/2)
6"y = = 2.¥'1-(Bagu? - 1)
8y = ~'%.?'2 (201102 - 1)

we have

a'y = ~agdy ~a'5(Y'p+2Y5°) - a4[a1(510+(5'1‘5"1)§0 * §%E’EE§)

o]

T . : . O, gyr T e
+ a'1(2y10—y'1+2y’1ﬁ0)] - a'4a1(Y 1+2Y1 +2Y Lﬂo) + 51

v o t 1 (o] o 1 T 6”1 T2
a'g = —a,09%-2"4(y ' 5+2Y5%) - agiaq(8y +(6‘1—3'1)ﬁo o ;—é
o
T o T
o ) - T
+atg(2Y U=y o+ 2y uo)] a'saq(y'{+2Y +2Y "y Uo)
+ O4(815mpm,)2 + 22 12 +al 27y -y P
21085 270"200,7 To [ o) T Al (2 Y igr2via g )
o _




APPENDIX C

Combination of partially covered cloud layers

We are treating here the simplest case of two adjacent cloudy
layers A(above) and B(below) with partial cloud coverages CA

and CB (here CA<CB) and we are looking for the a and b

coefficients of the layer A knowing the ones for cloudy (1)
and clear (0) conditions in both layers. All of the following
can easily be extended to any layer in any cloud configuration.

The geometry of cur "cloud" is (with the coefficients in ‘the
corresponding spaces)

1 11 111 t (top)
Z / : ’
///// ; | |
ap ///// o .0
A P bi ’ a, E bA
/ - //’- : .
. - oee——— -1 m  (middle)
e 1 1 / / O
B /// a bB‘/ o N B
S/ Ve /// B
. " 7 b  (bottomnm)
"I 11 I1Y

A) Short wave fluxes With a* and b* representing a1 and bl

or a® and b® depending on case k = I, II or III (different
vertical repartitions of cloudy and non cloudy conditions)
we can write our linear equation system for the fluxes (see
-equation ©))

r - k o -1
1 I i
(:) For For
1 S¢ Sg
—a*6 __* —a¥a
n” a2 1 2 Pt 1 °
- * _ *3 1 _ *
aA7 aA aAS F2m 0
%
—: 1 =
aAl Sm 0
-a'e -a¥y 1 -a%, F 5 0
B B B im
* * *
-a 7 ~ -a
g a'B3 1 BS F2b 0
*
-a 1
[] a 1 S, 0
. 1 .
N - Fin Fip
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We can solve it in each case to get for the layer A
matrix equations of the type

. -k . - _ . k _ -
St St Sm | St
v k k
= c . : ' ; = : ‘
“tm [ ] F1p and Pt [d } | Fip
F F 5
2ty : 2t I’2m , F2t

for the incoming and outgoing fluxes.

Thus with linear combination and elimination of the fluxes
St Flb and FZt we obtain the matrix solution from equation (9)

[aA} - [CA[dJI + (Cp - CA)[d]II + (j - CB)[d]II;],
{C []" + (o5 - CA)HII + (1 _‘ CB)[c]IIIJ

o e

B) long wave fluxes The computation of coefficients b1 4 is the

same as the one described above for the a

For the other ones we change the formalism of eguation (10)

by by -WBb-
and replace the product b b by the resulting
6 Pg "By
; e
vector 1
€2

Then we first make a computation similar to the one already
done for the determination of the b1 4 coefficients,

without incoming fluxes but with local emission (see eguation

(10)).

N
1
. O For 0
-b¥3 1 bF1 F ert
A b, 1t A
“brg 1 * F ¥
a4 ~bp2 "om - e
* * *
—b33 ! ~bp1 Elm eB1
* * *
“bB4 1 "bB2 sz eB2
0 1 ‘. o




Then we again make a linear combination and eliminate
the unwanted fluxes from equation (10).

m I - 9 II ~ III]
epl it Fit Fie
= |Cy +(Cp=Cy) +(1-Cp)
eA2 F2m FZm FZm
- ~ 1 TT TII]
bAl bA3 Flm Flm Flm
- v |Cy +(C5-Cy) +(1-Cp)
o - [Fat Fot Fot




APPENDIX D

Generation of random atmospheres

There are 15 levels equally spaced between 0 and 1 in

~the coordinate system g with G = p/ps - Sinz(QW/Q)'

We start from the ground with Py = 1013.25 mb. and

T = 288.15°K and going upwards for each layer we
génerate randomly the temperature lapse rate dT/dz

and two relative humidities U1 and U2 under the following
conditions:

%g = % (fl - 1) fl having a log-normal distribution
' p with mean value 1-¢ and variance
G /o
Uy o = f2' f, having a log-normal distribution

with mean value ¢ and variance (1-0).a

U, and U, represent a maximum and a minimum relative
himidity and we have assumed a rectangular distribution
between these values for the relative humidities in the
layer.

This gives us the cloud cover and the mixing ratios of
water vapour and liquid water (with the temperature
linearly interpolated with respect to pressure in the
middle for the coordinate g, of the layer).

The arbitrary parameter o is adjusted so that the mean
cloud cover is equal to 0.5. For the computation of the
parameter we suppose that adjacent cloudy layers have a
maximum overlapping of their cloudy parts and that distinct
"clouds" are randomly distributed with respect to each other.
Thus we have to take o = 0.76.
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