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1. Introduction

The idea of performing initialization by combining normal mode
analysis with the nonlinear aspects of a numerical model of

the atmosphere is due to MACHENHAUER (1977) who has shown that
it is possible to determine the gravitational wave part of
fields in such a way that the total tendencies of this part of
the fields are reduced to a desired epsilon level in a few
iterations. The state of zero gravitational wave tendencies
cannot in general be fulfilled during an integration, but this
imbalance grows only slowly. It was aparently not present in

a 24 hour integration with the spectral model at the Institute
of Theoretical Meteorclogy, University of Copenhagen. This
model is hemispheric with rhomboidal truncation : M = J = 17,
and has 5 vertical levels. The method has the same effect as
an ideal dynamic initializstion, but operates at a single time
level, so the distinction betwen static and dynamic initializa-
tion is no longer clear cut. The aim of this report is to give
a documentation of the initialization routine,implemented by the
author to the global spectral model at ECMWF developed by
A.W.HANSEN and A.BAEDE (1977). |

2. The model

The formulation of the model is similar to those of BOURKE
(197%), HOSKINS and SIMMONS (1975)3 the choice of vertical
levels is optional. The governing prognostic equations of
the model are

The vorticity equation :
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The divergence eguation :
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The thermodynamic egquation :
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The continuity eguation :

The hydrostatic eguation :
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From the continuity equation (2.%) with the boundary condition

§ =0 for ¢ = 0 and o = 1 ,we get
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The meaning of the symbols are
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20sin(¢) , the coriolis parameter
angular velocity of earth

T(s) + T’ , the temperature
initial horizontal mean temperature

R
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pressure

: pressure at the surface




dJ

the gas constant

c_: specific heat for constant pressure

¢ : the gecpotential

PN

o : surface geopctentiszl {(topograph

The F-terms contain contrivutions from the included physical
processes. All fields are ncn-dimensionalized with radius of
earth : a , as unit of length and the reciprocal angular ve-
locity 1/9 as unit of time. The unit of temperature is a2q2/R,
the geopotential is related to the normalized temperature
through the hydrostatic equation (2.5).

2, Linearigastion

ate at rest and the tempera-
. The definition of gravity wave
fields is determined by the basic state, but for low Rossby
numbers, the basic state of zonal mean flow gives almost the
same decomposition into gravitational modes, while the frequen-
v. MACHENFAUER(1977) found no deterio-

ration by chosing the basic state-at rest. The question can be

n
cies are shifted siight

raised where to put the point of separation between linear and
non-linear terms, but if this point is chosen in a less complete
way, the non-linear correctiocn will compensate the error. This
comes also in consideration when physical processes are added

to the model.

In order to get a limited eigenvalue-problem, a separation

of the numerical equations into vertical and horizontal operatione
is sought. The variables are considered as column vectors of
points on the global sphere containing values of the physical
variables in the discrete vertical levels. The notation of
HOSKINS and SIMMONS for the vertical operation is adopted in

the following. For the purpose we rewrite the model equations.
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The vertical operators used in these equations
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The Q-terms contain the non-linear contributions to the

tendencies. From the equations (3.3)-(3.5) we get

§¥(¢l+filn(ps)) = - ng + an (3.6)

where B = Gz + T and Q= GQq + TQ

E]




The separation c¢f the linear parts of the tendencies is per-
formed by computing the eigenvectors of the matrix B . The
eigenvalues will play the role of dimensionless equivalent
depths in a series of shallow water models. HOSKINS and
SIMMONS have demonstrated that the sguare roots of the
eigenvalues are velocities of horizontal propagation for pure
gravity waves with the wvertical structure of the eigenvector.
In order to be consistent with the work of MACHENHAUER (1977),
ELIASEN and MACHENHAUER (1969) we use the fcollowing definition
for the gecpotential

As the vertical eigenwvectcrs form a complete set, we can expand
the fields on the eigenvectors, these being ordered as column-

vectors in the mstrix W .
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The non-linear terms are slso expanded, so we get for the
vertical mode 2 :
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Here H2 is the non-dimensional equivalent depth.
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The non-linear terms destroy the separation, but in this analysis
they are considered as constants. At this step the horizontal
dependencies- are introduced by a truncated spectral expansion in
spherical harmonics. A field; A,is represented by a component

vector Am n OF A so that A is written as
b
I M ima
A=7 Lo A, P p(wden
m=-M n=im] ’ 3

{ .
{ =1mA
. ;’1 A Pm’n(u)e dudx

Pm,n(”> are normalized asscociated Legendre functions.
By truncating the expansion of the fields, the linear part of
the equation system with spherical harmonic components

as variables becomes a finite system. The linear equations
separate into zonal wavenumbers m due to the zonal symmetry

of the coriolis force. For each zonal wavenumber, the equa-
tions are solved by the eigenvalue separation technique. The
relation to Hough functions of the solutions is discussed by
LONGUET~-HIGGINS (1968). With a triangular truncation, the or-
der of the matrix for the gcystem decreases with increasing
zonal wavenumber, ending with the order of 2 for the symmetric
flow system,which gives only gravitational mode solutions, and
a matrix of order 1 for the antisymmetric flow system which
gives a Rossby mode sclution. Clearly the eigenfunctions of
the numerical model at the boundary of the spectral domain

are distorted Hough functions, while the eigenvalues have some
agreement. For convenience, we drop the reference to the
vertical mode & in the following, except for the equivalent

depth HQ. Furthermore we put £ = 2
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Some useful spectral relations are
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From the shifts in n, it is seen that the system (3.10)-(3.12)
seperates into two groups: the symmetric flow system with

even n-m in (n,8) and odd n-m in &, and the antisymmetric

- system with reversed parity. The next step is dropping the
reference to zonal wavenumber m where not explicitly expressed.
A state vector for a given parity can be arranged as follows:

/R
n
Xy = Xf = < Xn
wn+1
ne2
\ J
I
- ! H
2 - n
Xy = \/ £ n(a+1) (D)

With the transformation we obtain a simple symmetric form
of the matrix A suitable for the numerical eigenvalue-problem.




Band structure

of ths A matrixz

-y

n-1

R SO

ﬁn
Bn
ﬁ‘n B Cn Arsfi»l
An%l Cn+1
B == - +
“p = |/ (n-1) (n+1)
¥,
B, =~ ni{n+l)
= m
n o ninti;
Dy = Dmgn



L, Triangular truncation and matrix order

The maximum meridional number for a field is M-|m|,where M
is the triangular truncation limit. This determines the or-
der of the matrix A , and the number of gravity waves: NGW
equivalent to the number of divergence and geopotential
components in the state vector x,. A group consist of 3 com-

i
4+ ) -, A & $
ponents: (nn, Xy ¢n+1},symmeurlc case and ($n3 LI Xn+1)’
antisymmetric case. By loading the vector xiwith these

roups (see Fig. 1), N, is counted up to
3 &

GW

2{{M="m| + 2)//2) |m{>0  Sym.

aw |
2((M-im}{ + 1)//2) allm Antisym.
// means integer division

3

As the streamfunction components are dominating in the
Rossby Waves, we get

((M - imi +1)Y//2 allm Sym.
New = %

i(M - iml +2}//2  |m|>0 Antisym.

So the order of the maitrix adds up to

2((M - im] +2)//2) + (M - |m| + 1)//2 Sym.

OR
2((M - Im} + 1)//2) + (M - |m|] + 2)//2 Antisym.

In Fig.l. an example is demonstrated how N depends on

OR
meridional limit M-|m| and flow parity.
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For the zonal fields {m=0) there arises a formal problem
of defining LTS ;O?O and @0’0. Instead of reducing the
matrix, we put O in the corresponding matrix elements. The
rest of the meaningful components are mapped invariant by
the matrix, so the solutions are not changed. We therefore
keep the formulae for NOR s but note that NGW is reduced
by 2 in the symmetric case, and NRW is reduced by 1 for

the antisymmetric case.

NGW(O) = 2((M+23//72) - 2 Svym.
NRW(G) = {M+2)Y//2 -1 Antisym.

A1l the Rossby wave sclutions for m=0 become stationary
and degenerate, so the vectors are only conditioned by
their spanning of the subspace of zero eigenvalue.

5. An iteration step

3

The vector x, 1s transformed by the orthonormal eigen-
vectors T ofié into "Hough-~space"

Yy = ltxt

by which the inhomogeneous system (3.7)-(3.9) becomes

.}_
atl= 2iay) + 7, (5.1)

t

where Ao = T"AT is the diagonal matrix of the eigenvalues

For a mode k:

Wy .
T = elayy fory

The essence of MACHENEAUER's meg§od is to balance out the
gravity waves by a search for EEé = 0 , rather than ykzo.
This leads to an iteration scheme for the gravity wave

amplitude Vi ¢




(n)
(n+1) _ _ Tk Crim s
Vi = - Ziqk (the non-linear correction)
or
(n+1)  _{n) 1 3}’1({11)
— st () _
MY = Ve T Yk T T Fag, av (5.2)

After the correction of y,, the inverse horizontal and
vertical transformations are employed, while the variances
of the gravitational and Fossby parts of the fields and

tendencies are monitored for each vertical mode.

The problem which is left, is the separation of the correc-
tion of n into corrections of geopotential and surface
pressure. The gravity waves are filtered out solely from

the summed correction. MACHENHAUER proposed the following
solution to the problem, by assuming that after the initiali-
zation,ln(ps) should be set to the equilibrum value obtained
by filtering out the original gravity oscillations.

From (3.4) and (3.6) we get

JSIEN A
g%n( s) - .5 {2%%¥_ Q)+ Qg (5.3)

assuming that the non-linear terms are constant, we inte-
grate (5.3)

-4 -
In(p) = 228 n, + (2B Q

— =1

In + st)t + const (5.4)
By the quasi-linear approximation, ln(ps) is composed of

the n-field and a slowly varying non-linear part. The equi-
librum state for n is obtained by removing the gravity waves
by the initial correction an ,thus at t=0 we have

In(p)+aln(p ) = 2£§f(n! +Anl)+ const

hence:  aln{p) = 218 4n, (5.5)

> !
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As G represents a vertical integration of the hydrostatic
equation, the inverse discrete operator g"l responds with
a 2-grid wave in the temperature. However, by the linear
approach, the temperature correction is consistent with the
temperature equation. Let ¢ = £§°1 , from (5.5) and from

b3, = 280, - ?=ﬁln(ps) we arrive to

|

2{E - T,clian

A@i | (5.6)

1
|

Here E 1s the unit matrix. Correspondingly, the temperature
correction is obtained

{E - ”ff;om% | (5.7)
Using the definition of the B matrix (3.6), we formally

Gt = {E - T.¢c!B , hence

G = BTIE - _T-'g} (5.8)
and inserting in (5.7), we get

aT| = 218 Tan, (5.9)

i

So we may think of the correction as a tendency due to the
"divergence' —ZQ-IAH;, As the contribution is vertically

integrated by = , a 2-grid wave in the temperature correction
is unlikely. Fquation (5.9)is numerically advantageous over
(5.7), as it only includes one matrix inversion.
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We may formally express the matrix inversion:
= - T 1 &
{E - Tygy " = F + (5.10)
i

In the actual computaticns, it was observed that the
product; 9§| was very clcse to one,e.g. .0.999995 . Thus
the denominator is a source of singularity in the fac-
torization of G in (5.8). Multiplying (5.6) by ¢, and
uging (5.5}, we get

ersy = (1 -¢T. )aln{p ) = (small) (5.11)

The plot of ¢ (Fig.2) indicates that the geopotential cor-
rection is confined to the upper levels, by the conditlon
of a small producty ca¢, . This is consistent with the

continuous picture,wheré the ground level is fixed by the

topography.
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6. Variance.

The need for control of large computations calls for an
implementation of a variance, which can be checked in se-
veral stages of the transformation proces. A total field

=

variance for a vertical mode & is defined by

A - . i
M M H & 8 £
— " "% 2, mng mnyg mne mni
VAR, = ] Z Omng"mnet TR n(nery o T n{n+1) ) (6.1)
m=-M n=|m| )
m,n ¥ 0,0

By the requirement of a realist vertical variance spec-

Pl
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¢
trum,the vertical modes are integral-normalized. However
one must have in mind the lack of oreh wgonality of the
modes.
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k Sl

The summed variance over the vertical modes doesnot compare
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to the energy of the linearized model. is mainly due to

=3
O
3
ct
e
o®
=
fode
o3
M
du
o
&)

the equivalent depth facto term, which makes

transformation of (6.1} %to single level contributions impos-
sible even in case of Grthcgonality ¢f the vertical modes.
When the summed variance is from levels in a check-
ing loop, it turns out that for the kinetic term, as much
variance comes irom coupled
2

orthogonality of the horiz

2

0
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some balance of the atmos-

b4y

tained. These are measures o
pheric state:

yr ) (6.4)

As the contributions in (6.2} and (6.4) are divided for
flow parit we arrive to a multiple of 8 parameters for
3

each vertical mode. These parameters are printed out for

a
monitoring of the iteration step.

symmetric | antisym.
SCGVAR AGVAR
gravity »
SGRAL AGBAL
SRVAR ARVAR
Rossby
SRBAL ARBAL

7. Results

The initialization experiment was performed with the 9-level
ECMWF spectral model at a triangular truncation 21 (hereinafter
referred to as T21). The reader is referred to an internal
report of A.W.HANSFEN and A.BAEDE for further details of T21.
Initial data refers to ituationonl st of march 1965.In Fig.3
the rate of convergence is displayed from an initialization
with correction of 5 vertical modes, the curves are numbered
according to the iteration step. After only one iteration,
the GBAL is below the initial balance of the Rossby waves,and
in the final step, the overall GBAL is reduced by a factor of
about hxlons. Tt was a main cobjective of this work to clarify
whether the non-linear initialization was convergent when ap-

plied to a model with physical processes included. In Fig. .t

d)
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the results are shown from the non-adiabatic T21 model, which
includes the GFDL physical parameterization package. ‘Again

the convergence is fair, but for the higher modes: H6—H8,

the initial GBAL increases compared to the adiabatic version,
the curve is slightly pulled down in the iteration step due

to lack of complete orthogonality. These modes, having their
larger amplitude at low level, are affected by boundary layer
processes. The mode: H7 where a kink on the curve appears,

has a great amplitude at the first level. An attempt to ac~
tivate the modes HO-HG in the iteration procedure, led to an
explosive growth of GBAL for the higher modes H5—H8. This
indicates that the convergence is mainly established from the
adiabatic part of the tendencies. The effect of initialization
to the 500 mb and 850 mb height fields are shown in fig.(5-11).
The maps look very much unaffected; however, the Atlantic
depression 450W, 50°N are deepened by about 70m for the 500 mb
map. Near the Pacific low 170°W, 45°N the gradients are
amplified, increasing the geostrophic winds. The initialization

is by no means a space smoothing operation.

The divergence fields (see fig. 12-20) are substantially
reduced by the initialization so that very little connection
with the original fields is left. By this, the strange
elongated patterns across the maps disappear.

Differences between adiabatic and non-adiabatic computations
are expected near the surface. By the vertical resolution used,
this is reflected in the 850 mb maps. An increased convergence
in the Atlantic low is seen, this apparently is connected with
the included friction terms. ‘

A 10 day integration from the nonlinear-nonadiabatic initialized
dataset was performed by A. BAEDE. The pressure oscillations
clearly disappear (see fig. 21), however, by the inclusion of

a weak time filter, the model is able to dampen the oscillations
in about 4 days, but in general the integrations do not converge.
From the global RMS difference of the height fields it ié
interestingly seen that a slight minimum appears on about day 3,

and from hereon it increases regularly.
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Regarding the pattern of precipitation, accumulated over
12 and 24 hours, no substantial differences due to initialization
have been found.

8. Conclusions

A full multi-level initialization program has been put together,
in order to take advantage of the non-linear initialization
method. However, the program is not in an optimal state for

the CDC 6600 computer. Efforts are made to reduce the storage
of fields in core, so that the initialization can be performed
from one program only. As a by-product, normal mode statistics
can be found from data series, e.g. KASAHARA (1976). The multi-
level program has in general the same efficiency in removing

the noise, as was demonstrated by MACHENHAUER (1977) in a baro-

tropic spectral model.
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APPENDIX. Storage of eigenvectors and eigenvalues

For each vertical mode, a binary record is built by storing
the eigenvectors column-wise, the record length will be
M

)N
m=0

2 ¢

oR ‘M)

where Nog is the matrix order {p.1l). Likewise,the eigenvalue
record length is

%

Nnap (m)

m=0 OF

For convenience, the same storage picture is used for both
symmetric and antisymmetric case, i.e. NOQ is symmetrical
determined. The total reguirements of words on

the disk is therefore the sum of these lengths multiplied by
2 , and by the number of vertical modes; NL. By use of some
algebra, this amounts to

<

%{M+1}(M+2)(M+3)NL M odd
< 3
words = 2M(M+1) (M+2)NL +
M even
20 RM+2)2 + meo)wr
4 5 >
NL=9
M o1 40 60 80
words 163944 1000188 3217428 7443468

If only the modes active for the iteration step are considered,
storage requirements can be cut down to about one third of
these estimates.
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850 mb height field, analysed 1-3-1965 (10m.)
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850 mb height field after 5 modes adiabatic initialization
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850 mb height field after 5 modes non-adiabatic initialization
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10 mb divergence field, analysed. 1-3-1965 (IO—SSec_l)
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10 mb divergence field after 5 modes non-adiabatic initialization
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200 mb divergence field after 5 modes

adiabatic initialization
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500 mb divergence field after 5 modes non-adiabatic initialization
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850 mb divergence field after 5 modes adiabatic initialization
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