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1. Introduction

The purpose of this course is to develop the theory of radiation
transfer in the earth's atmosphere, keeping in mind the particular
application of parameterizing radiation processes in numerical
forecasting rmodels. Many of the physical processes that must be
treated in numerical models are poorly understood, so that
parameterizations must necessarily be based on empirical
relationships. However, in the case of radiation the basic
theory is reasonably well understood, but the direct application
to the atmosphere is so complex that gross approximations are
essential. To develop these approximations we will go through
the following stages: :

Basic radiation transfer theory,
Solutions to simplified problems,
Approximations and numerical methods,
Parameterization methods.

But first we must be sure that radiation is an important
physical process that must be properly treated, so we will begin
with a qualitative description of its effects on the atmosphere.

Solar radiation is of course the primary source of energy for all
atmospheric processes, and the emission of long wave terrestrial
radiation is the final sink of this energy. The atmosphere may
be regarded as a heat engine which transfers energy by means of its
circulation between the source and sink regions resulting from
local imbalances between solar and terrestrial radiation. Thus
radiation is fundamental to meteorological processes. A long
term climatology will provide an adequate driving term for
numerical models, but we must also consider the significance of
variations on the short term, and the detailed interactions
between such things as the distributions of temperature, humidity,
cloud, snow and ice, etc.

The flow of energy per unit area at the mean sun-earth distance 5
is termed the 'solar constant! and has a value of about 1375 Wm~
( Forgan, 1977) . Most modern measurements lie within 20 Wm-2
of this value. There are variations of about 6 % due to the
ellipticity of the earth's orbit, with a maximum in January.
Variations of about 1% through the 11 year solar cycle have been
reported, but this is far from certain, although the ultraviolet
part of the spectrum certainly varies with this period. Due to
the geometric factors, the time and space average of incident
solar radiation is one quarter of the solar constant, whilst a
further 30% is reflected back to space by snow, ice, clouds and
the surface. The total mean energy available is about 250 Wm~

A simple global model will give an effective temperature of the
earth's atmospheric system. We may equate the solar input to
the emission by a constant temperature black body of the same
radius as the earth
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where AR is the cross sectional area of the earth, and ‘4ﬂg
is its surface area, § 1s the solar constant, cx is the
albedo (reflection) and @ Tc? is the emission from a black
body at a temperature T . Thus the effective temperature
of the earth-atmosphericé system is
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If we substitute&£=0.3,% =1375 Wm~ 2 and & =5.67 x 10 “Wm"

we obtain T, =~ 255 K, a temperature which is fairly typical of
the tropospﬁere The climatological mean of the surface
temperature is about 288 K, somewhat larger than the effective
radiating temperature. The difference is a consequence of the
so called 'greenhouse effect', which will be discussed later.

We can obtain a general indication of the radiative source

and sink regions which drive the atmospheric circulation from
satellite measurements of absorbed solar energy and emitted infra-
red radiation, such as are shown in Fig.1l.

There is a surplus of energy of about 60 Wm‘2 in tropical

regions, and a similar deficit in polar regions. The atmosphere
and the ocean between them must transport this energy poleward

to establish an overall long term balance. We can construct

a simple one-dimensional model of this process by assuming that
the transport processes can be represented as a diffusion:

T - £Sf1- AW = DV T(Y)

where temperature T (M) , solar input $(A) and albedo s ()

may depend on latitude. D is a diffusion coefficient which must
be chosen to fit. This simple model can give a remarkably
realistic fit to the actual temperature distribution, considering
its simplicity ( North , 1975 ).

In order to discover whether we need any more complicated treat-
ment of radiation in forecasting models than just climatology,

it is necessary to carry out numerical experiments, because there
are many complex interrelations with other processes. It seens
to be possible to ignore radiation entirely for short range
forecasting for perhaps 24 hours, because time scales for radiation
are relatively long, and the atmosphere will 'freewheel' under
its own inertia.- A climatological radiation forcing term will
stop it from running down on a longer time scale, but the missing
interactions may cause the detailed development to be modelled
incorrectly. The most important interactions are probably the
direct variations of infrared cooling which are associated with
variations in temperature, water vapour and cloud. To a first
approximation, temperature perturbations will be eroded by
radiative cooling, whilst radiative cooling is much reduced below
cloud layers. Turther .complications are provided by the many
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feedback mechanisms such as the water vapour amplification

of the greenhouse effect. The greenhouse effect is an increase
in the surface temperature over the radiative equilibrium
temperature which would be established in the absence of an
atmosphere, because of the increase in downward radiation

at the surface due to the atmospheric emission. Water vapour
can amplify temperature perturbations on a long time scale,
because a higher temperature will increase evaporation, and the
extra water will add to the greenhouse effect, thus further
increasing the temperature. :

As a process for transporting energy vertically, radiation is
comparable in importance with the other mechanisms of

convection and dynamical transport, as may be seen from Fig.2.

It is therefore important for determining the vertical temperature
profile. Horizontal transport by radiation is of course
negligible, except in the neighbourhood of such inhomogeneities

as large cumulus clouds. Fig. 2 gives some indication as to

the distribution of radiative heating and cooling, but more
information can be obtained from calculations of climatological
cross sections such as those of Dopplick (@1972).

Fig. 3 gives his cross sections for the mean total radiative
heating for the northern hemisphere winter period of December

to February. We see an overall cooling in most of the troposphere,
particularly in low latitudes, with a little heating at low
altitudes in the summer hemisphere. The values in the lower
stratosphere are somewhat smaller in general, with a heating in
low latitudes and a cooling in high latitudes. This diagran is
the sum of several different transfer mechanisms, each of which
affects different parts of the atmosphere.

Solar radiation is absorbed in the ultraviolet by oxygen in the
thermosphere, causing the high temperatures in that region.
Ultraviolet and visible radiation are absorbed by ozone in

the region of the stratopause,thus causing the relatively high
temperatures at around 50 km. Visible and infrared solar
radiation is absorbed largely in the troposphere by water vapour
and carbon dioxide, and by aerosol, dust and cloud. However

the most importent absorber of solar radiation is the surface,
which then acts as a source of energy, transferring heat into the
atmosphere by infrared emission, convection and latent heat.
Solar radiation is also scattered by Rayleigh scattering, aerosol,
dust and cloud, and is reflected in part by the surface. These
mechanisms all combine to determine how much energy is absorbed by
the earth/atmosphere system, and where. To be able to calculate
the solar heating we need to know the physical mechanisms behind
each of the interactions, the geometry of the radiative transfer,
the solar spectrum, and the physical state of the atmosphere
(i.e. its composition and temperature distribution). Terrestrial
radiation is emitted and absorbed by the surface and clouds

(both of which may be regarded as nearly black in the infrared,
for many practical purposes), and by water vapour, carbon dioxide
and ozone. Scattering and reflection is not very important in
this part of the spectrum,.
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Fig. 4 gives an indication of whereabouts in the spectrum

the absorption and emission by various gases takes place,.

The top pair of curves are black body radiation at temperatures
typical of the sun and the atmosphere, showing that there is
very little overlap spectrally between the two mechanisms.

This is of no significance for calculating radiation transfer,
as the equations are linear and superposition applies, but is of
great help in making measurements. The lower curve is the
absorption of the atmosphere along a path from about the
tropopause to space, showing which parts of the spectrum and
which gases are important for heating and cooling of the
stratosphere and above. The middle curve is the absorption
along a path . from the surface to space. The difference between
the lower curves thus indicates regions in which there is
absorption or emission in the troposphere. Probably the most
obvious feature is the large amount of absorption by water
vapour, both in the terrestrial infrared and the solar infrared.
We will now return to Dopplick's calculations to show where

in the atmosphere transfer by each of the gases is significant.
We will only use his diagrams for the winter season, although

he also gives results for the other three seasons. ,

Fig. 5 shows solar heating due to ozone. The peak of heating

is actually well above the top of the diagram of about 50 km.
There is very little in the troposphere, and of course there 1is
none in the polar night. However, there is an indirect effect
on the troposphere because ozone will determine in part how

much solar radiation is left to be absorbed at the surface.

Fig. 6 gives solar heating by the infrared bands of H,0, CO

and Og. Here there is very little in the stratosphere, wit

a maximum in the summer troposphere which is due to a combination
of sun angle and day length in the summer, and larger amounts

of H,O0 in the troposphere. TFig. 7 shows infrared cooling

due %o H,0, which is maximum in the upper troposphere,
especial%y in equatorial regions, where temperatures are high.
There is less cooling in the lower troposphere even though

water vapour density is higher, because of the shielding effect
(greenhouse effect) of the strongly absorbing water vapour higher
up. The cooling due to CO5, as shown in Fig. 8 is completely
different. Here the greenhouse effect is even stronger, and
the maximum cooling is even higher, at about the stratopause
level where it partially balances the ozone solar heating.
Cooling is small in the troposphere because photons emitted by
CO, cannot travel far before they are reabsorbed. The region

of "heating around the equatorial tropopause is due to that region
absorbing radiation from the warmer regions immediately above
and below. Infrared transfer in the ozone band (Fig.9) shows

a similar effect, at a somewhat higher altitude, which is largely
due to radiation from the surface being absorbed by the lower
side of the ozone layer. At higher altitudes there is cooling,
as is the case for C02.
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2. Radiative Transfer Theory

In this section we will derive the equation of transfer in
semi-formal manner, and find some solutions of simplified
problems to illustrate how the equation may be used. We will
start with some basic definitions.

The wavelength of radiation is given the symbol A, and is

usually measured in nanometres or micrometres. The frequency

may be measured in Her%z, or may be by angular frequency, &,
measured in radians s”°, but a much more commonly used quantity
is the wave number ¥ , (the spatial frequency) which is generally
measured in cm™1

The specific intensity I is the rate of flow of radiant energy per
unit solid angle per unit frequency, wave number, or wave length
interval. TFor example, referred to wave number, the quantity

$

-~

T (% §,v,¢£)drdddvde an
U

is the energy crossing an area AT located at position 2¢

into a solid angle d4! about the direction $§ in wave number
interval d¥ in time dt. Radiation is said to be isotropic if

I is independent of direction $ , and homogeneous if it independent
of position ¥ . We will normally not consider variations of
radiation with time t.

The flux density F is an integral of specific intensity over angle.
It is the rate of flow of energy per unit area per unit wave

number (frequency or wave length) regardless of direction. If Fy

is the flux across an area normal to direction d, then p

Rwvie) = (T(x.5,v¢) 43 A4 é;f

It can be shown (Goody 1964) that we can define a vector flux F
with three components at right angles for example

F:=(F, F, F)

The energy density U (¥, ) of a radiation field is simply
the radiant energy per unit volume per unit wave number. It
may be derived from the specific intensity as follows

The total energy within a volume dlfdg in a solid angle d41
dyzed€ d

e e
P
is the energy crossing dF in time df = dy /e :
E =T (%,s8,v)dr dy
(-
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The density of radiation flowing in the direction
in d4& 1is therefore E/dW dy, i.e. $T(% 85,v) .
Therefore the total energy density is

U(XsY) = jé‘I(Zf, 5,0 da

W@a
=z %I’(Z‘py}
where we define the average intensity I as flfd#t/C{dﬁl'

The heating function %!%wvﬁ is the rate at which a unit volume
gains energy. It may be regarded as the time derivation of energy
density

hd Zf %éj = S D A
%Q‘é;?’} * 5E };V,é? = %I(zi;vrf’}

but is more usefully found from the spatial derivative of the
vector flux:

hix,v) = =V.F (%, v)

It is left to the reader to prove that these two definitions
are in fact equivalent.

The specific intensity, flux density, energy density and heating
function have all been defined spectrally. There are corresponding
definitions for spectrally integrated quantities, and the two
definitions should normally be distinguished by means of the

suffix ¥ and the word 'spectral’, e.g. spectral flux density, %,

but as we will usually be dealing with spectral quantities or
properties that apply to both spectral quantities and integrated
guantities, the prefix will be omitted for conciseness.

The Equation of Transfer

All of the above quantities are purely geometric properties
of the radiation field alomne. We will now consider interactions
between radiation and matter.

Radiation may be absorbed, scattered, or emitted by matter.

The amount of radiation removed from an incident beam by
absorption and scattering is proportional to the intensity and
also to the amount of matter, according to Beer's Law. The
constant of proportionality is called the extinction coefficient,

A
.3;“

The extinction coefficient may be defined in terms of distance,
as here , or absorber mass, or number of molecules, according to
the requirements of the problem in hand. The product e.dx
dimensionless and is independent of the coordinate system.
Its integral is known as the optical depth o€ , defined by

ATz ed
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so that dT, = — L AT

The amount of radiation added to the beam by emission and
scattering may be written in the same form by defining the
source function J

AT, = TdT

The source function will be described in more detail later;
in the particular case of no scattering and thermodynamic
equilibrium, it becomes the Plank or black body function.
Combining the two terms,we obtain the equation of transfer
in its most basic form

AT = dT, +dl, = -TdAT + TAT

dl . y-1
AT

The equation may be integrated explicitly by means of an
integrating factor g%

i}?ﬁef +T0et = Jie) et

Integration between the ends of a part from O to €1 gives:

[T, - { “T(o) Tur

v i o~
T(T)e"'-T(o - | TE) e Ut
(-4
rearranged to give an expression for I (T,)
-T T AT =T)
Tt): Te "+ [Tmy e AT

Each term in this equation has a simple physical interpretation.
The first term is the intensity I (¢) incident at T = 0 multi-
plied by the transmission of the path e

The element J (T) dT of the integral is the emission of the
element of path AT , and e€Xp(-(T,~T)) is the transmission of

the path from T to T, . Thus we may define transmission T (T) as

1-(Tj = €

T
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The Source Function

The source function is defined as the emission per unit
optical depth, and comprises two mechanisms - thermal
emission and scattering. We will only consider here the
situation known as 'local thermodynamic equilibrium' (LTE)
which is applicable throughout the troposphere and lower
stratosphere for all significant atmospheric absorption bands.

LTE holds when the excited states of absorbing molecules are
populated predominantly by collisinal processes rather than

by radiation. The emission component of the source function
is then given by B AT, ,where B is the Planck function, and Tg
is the optical denth for absorption (or emission).

The scattering component is more complicated, as it involves
scattering of intensity I (d) from every incoming direction

(d) into the outgoing direction s under consideration; according
to the "Phase function' P (d,s) which describes the efficiency

0f the scattering from d to s. The total emission of an element
d%€ way be written - -

T(s)dAT= BT + ge,@gffég,e’m{zwwmﬂg
V7

where d‘€s is the optical depth for scattering, dT = dl« + daTs
and P(d,s) is normalised so that its integral over all angles is
unity. The integral over solid angledf2y4 refers to all directions
d . If we denote the absorption coefficient by a, and the
Scattering coefficient by s, we may define the "albedo of single
scattering & " as the fraction of incident radiation which is
scattered out of an element of optical path:

ATy ATy . s

i

W e = = =
aT AT, +aTs §abe

and the expression for the source function becomes

T(s) = @wyé% + W gtcg??éé,;ﬁ;?dﬁd

We may use the two stream apnproximation i.e. one-dimensional
radiative transfer as a simple example of the use of the radiative
transfer in order to obtain an idea as to how solutions are likely
to behave. In the full 3-dimensional case, it is rare to

obtain explicit algebraic solutions, and normally numerical
techniques must be used.

Let us consider first a one-dimensional absorbing and scattering
medium, with radiation I(c¢) incident at one end and no significant
thermal emission. This could, for examnle, be a model for transfer
of sunlight vertically through a plane parallel cloud
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To) T*00u

We will use distance as the coordinate, rather than optical

depth, so that we can use the absorption and scattering
coefficients a and s explicitly. Let the path be of length L,

and have radiation It (¢) incident at x = 0. The intensities

in the two streams will be denoted by I*(x) and I-(x) respectively
and will be regarded as positive quantities. The equation of
transfer for each stream is '

ar’
A¥
%;I = or(s#0T - $(T'.T)

The first term on the right-hand side is due to extinction, and
the second term is the source term due to scattering. The

phase function chosen is one half ¢ach way. This is a pair of
linear simultaneous differential equations that can easily be
solved explicitly. The complete solution is left as an

exercise for the reader; only two particular cases are considered
here, namely no scattering, $ = 0, and no absorption,a4 = 0.

= ~(s+T" + S(T7T)

In the no scattering case, the solution is trivial, and as expected:

I""(x)=1‘f(o)c'wc s I (=0

- ~T
giving an exponential transmission e“ or € multiplied by
the incident intensity IT (o)
I~ (0) is zero because there is no incident radiation at x=L
in the case chosen for this illustration. In the case of no
absorption, a = 0, the equations are still coupled:

dI*. s(r’-1*)

ax
- +
e = (1r-1)

if we take the difference between the equations we find
A x )
therefore

THnl- T°00 = Constant = T(L)

substitute back in the first equation

+
4 $T7L
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On integrating between 0 and L
Y0y T F _ . sk
THI-TH) - =T

so that

THe): E”’ZG)/( 1+ sb/2)

Thus the transmission of a purely scattering path is 2/(2*'SL)
which contrasts sharply with €™ for absorption. Integrating
between 0 and x shows that IT (x) is linear in x, as the
difference I*t-I" is constant, so must I7(x) also be linear:

T
Tl
{1t = T
+T/e

& % ‘-

A similar problem that we can apply two stream theory to is
that of a radiative equilibrium atmosphere. Here we will deal
with spectrally integrated qualities, so we assume that the
absorption coefficient is a constant,independent of position
and wavelength.

TH ‘ o

? Consider a black surface maintained at a
=T temperature @@ , So that its emission is

.4

B, =660
9 4
Eﬁﬁﬁ @ i E;i@? and an atmosphere of total optical depth T.

Ignore other processes such as molecular

conduction and convection.

The equations of transfer for the upward and
downward streams are

T=0 4+ e 3

4 TTT7I7 77777 % = B(TY - j,,i{t?
T =

A e - + T (D)

Aav

where the source function has been renlaced by B= @’969

These equations appear to be uncoupled, but in fact they are
linked through the condition for equilibrium, that the
heating should be zero

he A@0=-T) _,

at -
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In two stream theory, there is no distinction between intensity
and flux. Integrate this equation, and we find that

I 121:) - I-(’C) = Consbantz T7( T)

so that the difference between the two streams is constant.

If we substitute from the equations of transfer into the
equilibrium condition we obtain

B {I'm) + T0)}/2

so that the B (€) is the average of the two streams. At the
surface, It (9) = By, so that in general B(#) # By, and there

is a difference between the atmosphere temperature at the surface
and the surface temperature. In terms of the black body

emission this difference is

B, ~B(o)= £ I7(T)

as may easily be verified by eliminating I~ between the
previous two equations evaluated at £ =0. In a real atmosphere
this discontinuity would be rapidly eroded by conduction and
convection. At the top of the atmosphere I-(T)=0, so that

g(m = £ TH(M

The size of this discontinuity may be derived in terms of B9
and T by adding the equations of transfer

d(I%0) +T@)) o T7x) - T )
therefore o
@(T) = IJLT)
, dT
so that, an integrating between O and T
(1Y~ B(6) = $THT) - T
substitute for B(T) and B(0), and we obtain

T e 28

2+T

which is identical to the expression for transfer through a pure
scatterign layer. The context is different, but the mechanism
has the same effect - the energy leaving an element of optical
depth must the same as the energy entering in both cases. This
equation may also be regarded as a description of the greenhouse
effect. If the surface temperature is maintained by the down-
ward thermal emission IT(0) and solar radiation S which passes
unattenuated through the atmosphere in the visible region,

then equilibrium requires that

5= IT%T)
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and the surface temperature is given by 5@ where

éi@ P

so0 that an atmosphere of total optical depth T raises

the surface temperature by a factor ( 1 + T/2)% above the

value in the absence of an atmosphere. In the case of the

earth, an optical depth of 1.25 would be required to raise

the temperature from 255 K to the observed climate average of

288 K. Of course this is only an order of magnitude calculation,
because the earth's atmosphere does not have a constant absorption
coefficient, and it does have convection.

The profile of B(€) is easily shown to be

B(T)= B(o) - LT ¢
p .

which is linear in optical depth. IT and I~ must therefore also
be linear in optical depth.

gy T(T)
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For practical purposes we are particularly interested in the
overall vertical transport of energy in a plane parallel
atmosphere, i.e. the wave length or wave number integrated flux
density. To evaluate this quantity we need to integrate intensity
over both angle and wave number. In the case of symmetry about
the vertical, we may note that the vector flux is directed
vertically, so that horizontal components are not needed. We will
treat the upward and downward parts of the flux density

separately for conveniencgé T 7y

&
F'(z) :jf;'fév. 2)dy = g { {I,,(v, 2,0 ) (058 siub AP d§
0 v b

The symmetry implies that Iy is independent oif&, so that

jd¢==lﬂ,and the averag%Pg operator becomes
o i

Zﬁ'[d“/ ( s b snf dg

g o
This average can be applied to the whole equation of transfer,
because it is linear in I. Because the absorption coefficient
is likely to vary with wave length, we must use distance, z,
rather than optical depth © , as a coordinate, and it is also
convenient to use a mass absorption coefficient,so that absorber
density/a(i) is also regquired:

2
AT = lz(h/ﬁ(zm! - (%)= /{ lz,gz’)/o(a‘)a!z’
s
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The integral form of the equation of transfer is now

Tez) = Tlo) ew(mf&zgz")lmw A9
+ gﬂm exg‘»f § R(z")f piesd | Mé’ﬁpgz ydz’

where we have assumed that there is no,ﬁscatterlng, and local
thermodynamic equilibrium, so that the source function J = B,
the Planck functlon The 1ntegra1 can be simplified to read:

§mg 2 exp{- j oz kiz az"] 43

Or, in term% of transmlttance T (#,8)
T(zi= TioT(0. 2 @»5 Buz’) ATIE27 Az’

o KB

We may apply the angle averaging operator to this equation
to glve the transfer equation for flux density

'F (V,2) = w} Ewwgﬁpgj beziowz’ secdde ] sind cos8 oA

9/& -2

“‘"g‘?‘)g 8¢z } p/é g;?é ,g’gzgg”i pi2” si¢ ﬂ«{%}ﬂ%ﬁ £osd 48 Az’
g @

where the sed appears in the optical depth integral because
the transmittance is along a slant path at angle @ to the
vertical. We B‘swmay deflne a FLUX TRANSMITTANCE 7}

g

T a2 zjwpg g k(208" secd dz”§ $in B cos U D

and assume that I (a;) is independent of ./, as it will be if
the surface is a black body, then

Y . 7 = # ( ﬁﬁ[?}?' 4
Flives: EltverT, (0,2 + :i[;rm?i & T

which is of the same form as the equation for intensity.

The equation for the downward flux is almost identical, except
for the limits of the integration and the boundary term,

which may be zero or the emission from clouds.

A1l that remains is the wavenumber integration, which is straight-
forward in principle, if lengthy in practise.
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3. Transmission of Radiation by Atmospheric Gases

Before we can discuss approximations for calculating the
transmittance of atmospheric gases, we must discuss briefly

the physical mechanisms involved in the absorption and emission
of photons by molecules.

3.1 Molecular Spectra

A spectral line corresponds to a change of the internal energy
of a molecule. This energy is made up of four components,
electronic Ee’ vibrational E, , rotational E, and translational
E

t -

E=Ee+]§]V +Er+Et

Of these, the first three are quantised, which means that they
can only take one of several discrete values. A consequence
is that any change AF in internal energy can only take discrete
values, so that only one particular wavelength of radiation
can be absorbed:

hy = AE

Because of this simple relationship between energy and wave-
number, it is often convenient to speak of energies in terms

of the corresponding wavenumber. Thus typical changes of
rotational energy correspond to AE~ 0-500 cm‘l, giving spectral
lines in the far infrared and microwave, changes in vibrational
energy typically are Afy ~ 500-2000 cm‘i, giving lines in the
infrared, ?nd typical changes of electronic energy are Q& %
10,000 ecm™ ", giving lines in the visible and ultraviolet. All
three components may change simultaneously, so that a vibrational
transition will have rotational structure, giving rise to a
vibrational-rotation band of lines, and an electronic transition
may have both vibrational and rotational structure. It is
vibration-rotation bands which are the main feature of the infra-
red spectrum, and they are dominant in transferring terrestrial
radiation.

Let us consider as an example the rotation of a simple linear
molecule such as carbon dioxide. As it is linear, it only has
one rotation, about an axis at right angles to the molecule.
Its angular momentum Iw can only take one of a set of discrete
values according to its rotational quantum number J

Iw = h /o7
z:r/‘f‘”"
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The energy of rotation is

E;f %fﬁLz Eggzig

sw+L

Only changes of I 1 or zero in rotational quantum number J

are allowed, so that for AJ=1, AE=2BJ, where B = h*/§r*T

Thus lines are spaced at intervals of 2B in this simple case.
There are some complications which cause the spacing to be
slightly variable, such as centrifugal stretching of the mole-
cule, which causes the moment of inertia I to depend on rotation,
and this adds a term -DJ% (J+1 )* to the energy. Also, B may
depend on the vibrational state, so that a typical change of
energy is

AE: (848774 (8°-877 - 2035’

giving a line spacing of
7 %
Ay : p+8" 4+ 2B-879T = €8T

Fig. 10 shows a spectrum of the CO0gy bands near ZmZAé s
illustrating the nearly constant line spacing.

The vibration of carbon dioxide can take place at one of
three fundamental frequencies, together with harmonics, and at
we? combinations of these frequencies.

— % '

g ———p Y, 357

T i :

& @"Mg 7% . . .

! ¢+7 The modes are illustrated in the diagram.

& & e 4

oY,

S o 's%y ZTJ";‘

BB : .
) >%1 The molecule can have a total energy which is

made up of an integral number of quanta in

each mode

E, 2 (V,#)hy, # (Vprladhvy + (v #4) by,

where ¥; are the vibrational quantum numbers, ¥¢ are the vibrational
frequencies, and the % is the ''zero point energy' which is a
consequence of the uncertainty principle.

The 154 band corresponds to a change of one 1in ¢, , and the 1
4.3 gpband is a change of one in ¥ . There is no band at 1337 cm™ ~,
corresponding to v, , as the symmetric stretching vibration has

no dipole moment and cannot interact with radiation.The water
molecule is non linear, so that it has three possible rotation
axes. The result is that the spectrum is much more complicated,
and in the example of Fig. 11 the spectral lines appear to be
placed almost at random. This apparent randomness is an important
feature when developing models for the transmittance of water
vapour as we will see later.



-28

02%-00%

3560 cw 3580 3600 3620 3640
10°-00°%
!
IARRARRARTOIT]
3680 cu™! 3680 3700 3720

3140

Rapid scans of the 02°1-00°0 and 10°1-00"0 bands and their associated Il hot-bands. The respective
path lengths were 10-5 and 5-5 cm and the pressure was 14 torr.

Fig. 10 CO

2

CM*

LBSORPTION

N




-0~

The shape of spectral lines

A spectral line is not infinitely narrow, a single frequency

at which absorption takes place, because there are several
broadening mechanisms which make it into a finite region with

an absorption coefficient which depends on wavenumber. The three
most important mechanisms are natural broadening, which is a conse-
quence of the uncertainty principle; Doppler broadening, which is
due to the motion of molecules; and collision broadening, which

is due to the disturbance of the internal energy levels of

a molecule during a collision. Of these, only the last two are
significant for atmospheric processes. ‘

The Doppler shift of a spectral line nominally at wavenumber g}
due to a line of sight velocity of u is

V-V, = %%

where ¢ is the velocity of light. The distribution of velocities
is Maxwellian

P(u) = exp (- mu*/2kT)

where m is the mass of the molecule. The spectral line shape
is the distribution of Doppler shifts, and is proportional to

exp( = Wit (v-Y,) /2kT )

If this is normalised, we can write it as a Doppler line
shape factox'§;év}

f,00 = ﬂM/if %P{”LV”%’)/%@E

Yrg
where the Doppler width parameter‘%@— é'L& ) . Typical
value of &p for infrared bands of atmospherlc molecules are
around 10~ 3em~1

Collision broadening is a very complex subject if treated
properly according to quantum mechanics, but fortunately a

very simple classical approach will yleld a fairly accurate
approximation to the line shape. Assume that the molecule is

a classical oscillator, emitting a continuous wave form at
frequency ¥s of constant amplitude, which changes randomly in

phase at every collision,.
i

w v émmmwgu»uma
We may compute the spectrum of this wave form by averaging
the spectrum of a single segment over random distribution of
segment lengths. The spectrum of a segment of length t 1is
the real part of

§@’/é;£ } € € A€
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The distribution of segment lengths is Poisson, the probability
density function being

Pey= Lt e
L d
where € is the mean length, or mean time between collisions.
The line shape is therefore the real part of

&
, «6 T eifv- ’
[ae e / e e{v-v,3€

¢

“’'C

“’ Y

. » [ g
L= 53"(&))&,&4;— c w !m—
& ) »

The evaluation of the real part of this integral is Straight—
forward, and is left as an exercise to the reader. The resulting
collision broadened line shape factor is the Lorentz profile

_ n T
} “}) - N z , N
L (V-Y%) + (VT

» ¥

The half Width»¥‘=0@ in terms of frequency or‘/ﬂV in terms
of wave number. If molecules are regarded as billiard balls,
classical kinetic theory gives

1
e L
A We s, £(T)

where % is the mean molecule velocity, n is the number

density, and & is the collision cross section. The right hand
part of the equation gives the pressure and temperature dependence
on the billiard ball approximation. Typical half widths at

one atm?sphere for atmospheric gases are in the range 0.05 to

0.2 cm™ In general both Doppler and collision broadening are
present, and the line shape is in this simple approximation

the Voigt profile, which is a convolution of the Doppler and
Lorentz profiles. However for the purposes of radiative transfer
in the troposphere and lower stratosphere the Lorentz profile

is adequate, because <%‘5§c<” at these pressures.

A band of spectral lines is due to one or more vibrational
transitions occurring in a particular spectral region, together
with rotational structure. The result is ¥sually thousands of
spectral lines in a region perhaps 200 cm™ " wide. The transmission
of such a band can be written down explicitly, but as there

are so many lines, it is very time consuming to evaluate. The
situation may be further complicated by the possibility of bands

of different gases overlapping in the same spectral region.

In general the transmission of a spectral interval A8V is

) . th ‘
T': ALV}MV e,xfi‘ Z f 5;3 (37&@“??“7}
dv t g
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where the sum is over all the spectral lines which have
significant absorption in the interval 4AY . S;+ (2z) is
the strength of the i'th line of the j'th absorb{ng gas
evaluated for the physical conditions at position z, £,(%’
is the line shape factor for that line, and /%&?? is t%e
density of the J'th absorber. il

The explicit numerical evaluation of this expression is time
consuming not only because there may be thousands of lines

involved in the summation, but because lines may be very narrow
compared with A¥ |, and several quadrature points may be

required for each line. Approximate methods must be developed

for the evaluation of transmission of spectral bands,

resulting in various kinds of ‘'band model'. We will first consider
independent spectral lines before going on to the more general

case of overlapping lines,

The basic concept in this connexion is the frequency inte-
grated absorption or equivalent width,% , of a spectral line

- &
We (aprave ( 1-T00dv
=00 =8
where A (¢¥) 1is the absorbtance. The term 'equivalent width'
comes from the astrophysical literature, it is the width of
a square sided line with the same area, and zero transmission,
The equivalent width of a Lorentz line of strength S and half-
width & can be written as
Lo ¢

wo s | avfi- ep(F 5550 ]
= ad

where m is the absorber amount in a homogeneous path. This can
be integrated in terms of Bessel functions:

Wy 2 lora i @wmngﬁ%Ewﬂ where u = S ne f21Tek
2o L ()

LU

Thus defining the Ladenberg-Reiche function I. (¢) . The
equivalent width of a Doppler line is

o ot Sy
b- o Ao/ T

which cannot be integrated in terms of standard functions.
However we can define a "Doppler function" D (w)

s
- g
i - ; 7 oj@ ;
Diw) = 5 [ {-expi-we ) s
& off
which can be approximated numerically fairly easily, as it is a
function of one variable. Then the Dovpler equivalent width is

w@ ol Dw) W= Sm /Ay /T
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We can define the 'strong' and 'weak' limits of absorption
according to whether the optical depth at the line centre
is ®» lor &« 1., In these limits there are useful simple
approximations.

The weak limit is independent of line shape, because 'C(V)“l
for all TG)&| and we can write

~TTV)
Wweak o ,{"’

= j&w}ﬂddv

J vy Av

therefore

W = Sm

wealt

as a consequence of the line shape factor being normalised.

The strong limit depends on line shape and in the case of a
Lorentz line we can ignore the term «* in the denominator

of the line shape, because near the line centre, transmission
is zero in any case, and omitting it will not change that and
far enough away from the line centre we can put a‘écv

Thus the strong limit is

Ws('mf, o fl‘ exp(- %%3: Av

()1

the integral can be easily evaluated to yield 2/ , so that
the equivalent width is

If spectral lines are independent, then the equivalent width
is all that is needed to calculate frequency integrated trans-
mission, because the transmission in a finite interval Av is

Tz 1= 5 IW

where the sum is- over all the spectral lines in the interval.
Further approximations can be used to evaluate this sum, as
we will see later. However, if lines overlap, then we must
consider more general band models.



-33-

Random Band Models

The concept of a random band model was developed by Goody
(1954), who was attempting to model water vapour absorption.
The water vapour spectrum, as we have seen, appears to be
random both in terms of line positions and line intensities,
and we can use this feature to define the general random model,
which is the transmission of a spectral interval averaged over
all possible rearrangements of line positions.

A very simple derivation of the random model can be carried out
with the assumption that the equivalent width of any spectral
line is much smaller than AY , the width of the interval under
consideration. In this case we can derive the multiplication
property for finite spectral intervals, normally we can only
multiply transmissions monochromatically, because they are
exponential functions. Consider a spectral interval Av
having transmission T, (¢). If we add an extra line at position
v/, having transm1581on T2(v4/) then the average over the
whole interval is

+ g TN T (v-y'y AV

A
If we average this over all possible values of y within 4¢
the effect of addlng one line at random is

. o £
T-= ﬁvﬁ g T;w?aﬁ:(%y}ah@?dﬂ
if we perform the V’ 1ntegral first, we obtain
T-TR

which is the required multiplication property. The mean
transmission of a single line of equivalent width Wy can be
written

Tesl= Wefay x mg(f%/g/@w if Wy << Ay

lherefore the transmission of N lines placed at random in

=W T ,or
T, = exp(- Zw;/av)

which is the general random model.
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The same formula can be derived for lines which are not
narrow compared with 4v , provided that surrounding spectral
intervals are statistically similar. This may easily be seen
by considering a small sub-interval within Av.

We can simplify the random model still further, and avoid having
to evaluate a sum over line strengths, by considering strength

to be a random quantity as well. If we assume that line strengths
are distributed according to a distribution function N (§)

then we can write

&
Tw z | Ns)w(sIds

¢ ¢ .
The various random models available differ only in the form
used for N (§) . There are two conflicting requirements in

choosing a distribution function, namely that it should represent
reality, and that the integral should be performed algebraically.

The original random model is the Goody Model, which was

-$
Nz Ne ok

This distribution has N, lines with a mean strength of k, and
if we substitute for N (8) and W (8) we obtain

‘ ~sffz _S5(Im ,
Zw = M f1-¢ AvdS
[}

which can easily be integrated with respect to $ to yield

] v
zw‘r: N, M“V.—Np“—fq’:‘.“l—'d‘}
s i+ Rmgiv) 19T
where T(v) is the optical depth of a line of mean strength.
This can clearly be used for a line of arbitrary shape, but is
only integrable for some line shapes. For a Lorentz line we
obtain :
& 5 T Z
? (14 rm/ma) "
so that the Goody random model transmission function is
No hm/’dv )

T = -
exp ( ( " !Zm/ﬂ"»{"l"

The Godson modei uses the distribution

N(s) = Ng/5 s~k

= 0 s>k

which has Ny lines between & =7 and $ =7 /e for ok
which means an infinite number altogether. The result for a
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Lorentz line shape can be written in terms of Bessel functions,
so is not so simple as the Goody model, but the line

distribution is much more realistic. However the Godson model
has been somewhat superseded by the Malkmus model, which retains
the advantage of a realistic line distribution, whilst

producing an algebraically simple transmission function. The
line strength distribution is

-8/
NCS) = g‘m’“

which is actually equivalent to Goody Models combined
according to the Godson distribution. The integrals can be
performed to give

Tw = No [ log (1rTm) dv

L% AT
Ry § === 0 Yv
"D artiw Iy “

bR

in the .case of a general line shape, or in the case of a Lorentz
line

9/‘g
Tw, = Lt Nﬁz{, 1+ Roe/Fth meg

The strong and weak limits of the Goody and Malkmus models
are as follows

Weak Strong

km /74 << km/fra. > ¢
Goody VI T Ay o 2o %‘g
Malkmus &, fews 2., ViR TR
single line S 2 v

Fig., 12 shows an actual distribution of line strengths for the
COg 154 band, illustrating the degree to which the models fit
real distributions. The distribution models have not been
fitted to the actual distribution other than by eye.

This is the original band model, and attempts to model the
carbon dioxide bands, which have regularly spaced lines,
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 Fig.12 Comparison of an actual distribution of line strengths with
the three model distributions. The model distributions have
not been fitted to the actual distribution.
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An individual element of this array consists of a sum of
parts of all lines, and its shape can be shown to be

senb (20450

f(v) =

Loesh (2T f ) - cos (v &)

Transmission of the band is exp(«m§ﬁ%@®5%} , which cannot

be integrated in wave length in terms of elementary functions
but has been tabulated as a function E (#«) of y = &/&

and u = §m /a4 1n several places, including Goody (1964).

The Elsasser function reduces to the Ladenburg-Reiche function
in the case of independent lines, and in the 1limit of strong
overlapping lines, i.e. u >> 1, we obtain a version of the
square root law:

gfﬁﬁahtgmﬁr%{ﬁ§§ZQ§_§§mif§§ %j&mﬁ% }

where erf is the error function.

We may notice that the strong and weak limit of both the regular
and random models can be expressed as functions of the total
equivalent width of the lines independently. Yamamoto and
Sasamori (1957) have conjectured that in general a good
approximation for the transmission of overlapping lines may

be
Ts Flg ow)

where the functional form of F depends on the distribution of
line positions. 1In the completely random case it will be
exponential, and in the completely regular case it will be a
complementary error function. Further credence is given to
this conjecture by Goody and Belton (1967) who found that

{ = ¢ Lo + L .}
Wb&é,w - &'wﬁég - zwﬁ}
&
is a good approximation for the total equivalent width of a
complete vibration rotation band.

We may find the parameters for band models by two procedures -
fitting empirically to laboratory measurements, or fitting to
tabulations of line positions and intensities. For example,
we may fit the Goody model to laboratory measurements by
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manipulating the equation to give

Le oo o NEL g
TAy, P~ AY loyT

if we plot measurements of(m/longagainst (m/p) we can obtain
k/ms, and NpR/AY from the slope and intercept. As an

example of using line intensity data we could fit the Malkmus

model by ensuring that Zw¢ is correct in both the strong and

weak limits. This gives

Weak: No ke = Z‘ S ™

Strong: LN, /kmrz = 2 L/Siaim

’

[3

so that Nok and Ngku can be derived immediately.

In section 2 we defined the flux transmission, and showed that
the equation of transfer is the same in the plane parallel case
for flux and for intensity. In terms of a band model of some
kind, we can write T

1} (mp)=s 2 5 T(msecd,p) sinb cosd dd
[+

a0
22 j‘l‘(msecé’,p) dsecd
4 sel’d

We can evaluate this integral in certain cases, and use the
results to develop an approximation for simplifying the angle
integration.

In the case of an exponential (monochromatic) transmission
function, T 2 &% , the flux transmission is

- =Ta
1; = ZI, € d/“//“, where = secg
s 2&4(T)

i.e. the exponential integral of third order.
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In the case of thepstrong limit of a random model we can put
TCmp) = exp(=( <mpy*y so that
.“Q

y by, by
£ = Lmph Tas

T oimpy = L1 ¢ o
5 i ‘% ;&J
caP a lrp
; @ e oy .
= Agg & f J fj
[} jg

4 ES( Clnp) )

by

i.e. the exponential integral of the fifth order.

A stronger hint is given by the strong limit of a single line,
where we will use the equivalent width rather than transmission:

Wilkplsdgmyp -

W, (mp) - zi;}%

The measured equivalent widths of many vibration-rotation bands
have been fitted empirically by a function of the form

a3

i I R —— .
e “S 2 Fitwp T W( Fmp)

If we use this to find an equivalent width for flux we obtain

Wilm) = 2 j A 7B s Ak

A+ Jimm 2 LB femea A
- ;o et

i

= 44 Sinm + Bi

. . . .
A G derie Tm

§

]

@

3]

o
~

™
i

These results hint that a good approximation for diffuse
transmission might be

T,

% {mj = Tkﬁm?
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This was first found empirically by Elsasser, who suggested |
that the diffusion factor 8 = 1.66. We see from the empirical
band result that B = e? might be marginally better, as we will
integrate over complete bands eventually. Numerical experiment
shows that the approximation is good to 1 or 2% for most
purposes. For example see Figure 13 for an application to
infrared cooling rate.

The Use of Band Models

The aim of the band model is to reduce the work involved in
carrying out the frequency integration. The explicit integration
of the flux equation:

. od
Flo- Jdu F;,'(v,o) T(v.02)

? o 2
+ Jdv fdz’ B v,z AT (V,22)
A dz’

is replaced by

LS
Fltzr = Z0v F(7; (0,2)

s

7
+ 7Oy, fdz' wB (v, 27y ATe (£2)
) AT’

where E?e finite spectral intervals Avi may be up to 100 or

200 cm wide, so that there need only be 10 or 20 of them
rather than the thousands of quadrature points needed for Jdv.
The use of band models makes the calculation of radiative
transfer feasible, whereas explicit integration is prohibitively
expensive.

The discussion so far has considered only homogeneous paths, in
which the absorber is at a constant temperature, pressure and
mixing ratio along the path. This is almost never the case in

the atmosphere, so we must learn how to calculate or approximate
transmission along inhomogeneous paths. This is largely a matter of
evaluating the integral for optical depth:

T(V) = JS(-Z) f( V,z)/J(Z) dz
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Fig. 13 Accuracy of the diffusivity factor (1.66 ). A: “exact’’; angular integration of
transmission functions using the Curtis-Godson approximation. B: “exact” minus
“approximate” (‘“‘approximate’ refers to use of diffusivity factor). (After Rodgers and
Walshaw, 1966.)
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Fig. 14 Percent error in CG approximation for a single line and
a constant mixing ratio between p = 0 and p = 1 atmos.
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where the line strength S(2z) depends on the temperature at
position Z, and the line shape factor f(v,z) depends on both
temperature and pressure.

There is one inhomogeneous case where the integral can be
carried out explicitly, and this is for a constant temperature,
constant mixing ratio in the vertical (or along a slant path)
for the lLorentz line shape. In this case the integral is

Cv) = J% 7] o /),rdt |

vord, Pt
where p is pressure so that z = —Hlogep. Change the variable
to p~, and we obtain {
cly) = 3p¢ H j ,_._—-ﬂ——f“’ -
1Tde 7p, Vi +d, p
1, .1 |
S ) _ S H
VEed, Py 27 R

The single line transmission function e_T is therefore very
simple, and the expression can be used in the general line
shape version of both the Goody and Malkmus random models,

but the conditions are fairly restrictive so that it is of
very little use except as a vehicle for testing approximations.

The Curtis-Godson Approximation

The most important approximation for this purpose is the
Curtis-Godson approximation, which aims to find a homogeneous
path whose transmission approximates the inhomogeneous path
under consideration. A homogeneous path may be defined by an
absorber mass m and a pressure p. We try to find expressions
for these in terms of the distribution of absorber in the
inhomogeneous path, ignoring temperature effects for the moment.
We do this by ensuring that the approximation is exact for the
equivalent width in both the weak and strong limits of a single

line.

The weak limit in the inhomogeneous case is

w Js-—e’rdu z fTdy

w

n

ﬂ SEfvydmdy ., = pdz

[szyam
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The strong limit is a little more complicated, but it can
easily be shown to be

Yy
W, = 2( jﬁézwwz-;mm}

The equivalence of the inhomogeneous and homogeneous paths in
these 1limits requires
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If S and o are not temperature dependent, we obtain the simplest
form of the approximation:

ey e ¢ e
Wz [dm mp oz §pdn

so that we use the actual absorber mass and a density weighted
mean pressure.

A simple test for the accuracy of this approximation is to
compare it with the single line constant mixing ratio case
described above. Such a comparison is shown in Figure 14

which gives the percentage difference in the equivalent width
between the Curtis-Godson approximation and the exact line

shape for a path between p = 0 and p = 1 atm, as a function of

n, which happens to be the absorption coefficient at the centre
of the homogeneous line, and is the parameter which determines
whether a line is strong or weak. The error is small in the

weak and strong . as expected, and is larcest at n~0.5,

To determine whether this is significant for transfer in the
atmosphere we can estimate whether a significant amount of energy
is transported by intermediate strength lines. We will see later
that the biggest transfer of energy is exchanged With_%pace, and
this takes place in a region where transmission is ~e ~. Using
the Goody model, this means that &# (¢ %’? § s Combine this

with n = %ﬁ o (Rl , and we get =;r -~ 3 for the worst case.

(& is the mean line spacing, Av/N_). TFor water vapour and carbon
dioxide, T4/f <« 2 everywhere, But for ozone it is ~1 for a
path from the surface to space, although it is <<2 for a path
from the stratosphere to space. The Curtis-Godson approximation
appears to be adequate for transfer in the atmosphere, except

for exchange by ozone from the troposphere to space, and by
similar arguments from the stratosphere to the surface.

Temperature dependence of line strength and halfwidth is
significant, and should be taken into account. This can be done
by a relatively simple extension of the basic Curtis-Godson
approximation.
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For a single line, the equations give us

= [SCD/5CT) dm TR (152X 50 R
| SCTY 4(T.)

where T is temperature and TO is any standard temperature.

If there are many lines in an interval, the weak limit involves
a sum over these lines

Zngt)m = Z‘_‘jS;CT)dm

so that

e (D am b F)7 ESAD[L5CT)

The effective miss m is no longer the actual mass. If it is

used for individual lines, they will be in error, but the

errors compensate when summed over all the lines. In the strong
limit the sum over lines gives

T (5T ATy FR ) 2 D( f5er) i (7) pdm ¥
i i

which cannot be simplified without making some assumptions,
because the square root is outside the integral on the right
hand side. If there is an approximation of the form

mp = jfcr) pom

then it must be true for homogeneous paths, which implies that

» g(m = {ZS.’"CT) AL ]"
T ST A (T)

We can also derive this form for inhomogeneous paths by assuming
that all the lines have the same temperature dependence. In
practise we find by numerical experiment that this temperature
dependence is quite satisfactory.
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4. Evaluation of Fluxes and Cooling Rates

There are many forms that the transfer equation can be
put into, and the proper choice of a suitable form for
evaluation depends on the details of the application.
There are two basic forms for the flux equation which
we will illustrate with the upward component. The
equation that we have derived above is the deT

form:

Z
?%/ ? “T7 . fw’ ";i. s
F'(2)= F o) (0% ﬁ%ﬁ@’;%ﬁﬁ 2P
o
This may be integrated by parts to yield
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On reordering the terms we obtain the[TdB form:
J

Flp - VFuwy-whe) 1{cz) + T’
E

43129 ‘g, ’
- % T e;,fi;;,,-»? T2, 2} uz
T

Of the three terms here, the first one is small because the
emission of the surface F (o) is likely to be similar to
the Planck function at the temperature of the air at =z = 0.
The second one, 7B(z), is likely to be the dominant term
if the atmosphere is at all optically thick.+ The equations
for downward flux are similar, except that 7 () 1s zero,
unless we have an upper boundary such as a cloud which is
being treated as a black body.

Any numerical method for the evaluation of flux will reduce
to one of the following forms

£ = Z gg /3?@ + boundary terms
&
= E:. Te miiﬁé o5
[
X - AT A2
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over some set of levels Z. which may be preassigned or
chosen dynamically by the integration method. It is
important to carry out a proper error analysis of a chosen
scheme, to ensure that errors are neither too large, so
that the wrong answer is reached, or too small, so that
computer t}me is wasted. Care will be needed especially
near Z = Z~, because both T(Z) and dT/dZ vary very rapidly,
especially if absorption is strong.

A simple practical approach to test any numerical integration
scheme is to use a transmission function and a Planck function
profile for which the integration can be carried out algebraic-
ally. For example we could use

T(z,2) = epl(-alz-z1) , B@)-a'z

"so that the numerical method should give

for any value of a, which is a scaling parameter on-Z.
It can be varied to simulate various strengths of absorption.

A useful trick in the case of an absorber distribution which
does not change, such as that of carbon dioxide, is the so
called 'Curtis Matrix', which is simply a discretization of
the equation of transfer. The concept can be applied to the
equation for any radiation quantity, whether intensity, flux
or heating rate. If we choose to specify the Planck function
at a set of preassigned levels Z., and use some interpolation
rule, then the profile is given Dy

B(z)= 7 B(RIW,(2)
4

where W.(z) is an interpolation function, dependent on the
interpoiationzx‘ule chosen.

*

17 4
L +

C-

'uq
For example, linear interpolation makes use of the triangular

form indicated in the sketch. The flux equation can then
be written in the _form (omitting boundary terms):

— Z ’ ’ 4 . ’
F(zZ;) = IJB(Z')dT(lJ‘,z ydz' = Zslz.-;fjgtﬂ?.ﬂ%(z)dz
J > a"‘z'/ { A azt

z ZA.‘('lj) B(%;)
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The matrix A.(2z.) may be precomputed, and used for a
range of differdnt temperature profiles.

A general circulation model or forecasting model normally
requires heating rates due to radiation in some appropriate
form. There are two basic approaches which may be used,
namely flux differences across model layers, or flux gradients
at given levels. The choice must depend on the details of the
application.

In the case of flux differences, we calculate the change in

Net Flux, Ff - ¥ , across a model layer. This will introduce
cancellation problems, both in the calculation of net flux, and
in differencing it across a layer, especially in regions of
strong absorption, where both F¥ and F are nearly mB(z), and
in regions of weak absorption, where they both change slowly.
In the JBdT form, the integrals from above and below the level

have opposite signs, giving a cancellation problem, but in the

TdB form, a lot of the cancellation is mathematically explicit,
because the mB(2z) term drops out, ;whilst the integrals have

the same sign unless the sign of iz changes. In both cases,
cancellation in differencing net flux will be a problem,
especially if layers are narrow. If this is the case, it may

be that a flux gradient method is more suitable.

In terms of energy units the heating rate is simply

h(zy = “V.F = - AF ez
ST A2

in the case of a plane parallel atmosphere. There are several

different formulations, which can be obtained from the two flux
equations and by integrating by parts, and by rearrangement of terms.

The most straightforward formulation is obtained by
differentiating the deT form

,,,,,

Wizy = €70 dTicer . rmiices 42, 2]
4z 42’ 72

s - . & - 4y )
- Rz AT 42
@F._; é#«gaf‘

here, the first term is absorption of emission from the surface,
the second term is loss due to emission from level 2z, and the
integral is absorption of radiation emitted from all other

levels. A little rearrangement gives the "exchange formulation"

— o 3 gy AT 0B e AP T .
/By e iy £ Lo 4 : 7 by 2 - g F Y e
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Here, the first term is emission from level Z to space,

the second term is exchange of radiation with the surface,
and the integral is the internal exchange of radiation with
all other layers in the atmosphere. Numerical experiment
shows that for many situations in the real atmosphere,
cooling to space is the dominant form. The internal exchange
gives a contribution in the neighbourhood of changes of the
lapse rate of temperature, and exchange with the surface
only appears to be significant for ozone in the lower
stratosphere. :

An equivalent to+the exchange formulation can be obtained for
flux, e.g. for F (2):

’

A o
Flz) = 8@ #{ Eo)-mB@ 10,2 + f [7BE)-T B3] %1:(3,2_') Az
| )

A third formulation can be obtained for heating by differen-
tiating the deB version of the flux equation:

dT
hizy = -7 B L+ (Bl - F’(o')ng;ts,o)
oo
+ [ ATz 2') AB (27 42’
od% az

The terms of this equation cannot be interpreted simply, as

can the terms of the other formulations. It has one minor
advantage, in_that dT/d2 is a simpler function to evaluate

than 4 T/dZdZ;, both algebraically and numerically. A fourth
formulation can be.obtaﬁned bg integrating by parts to give

an integral involving d“B/dz'“, thus relating radiation transfer
approximately to diffusion, but the result is of little
practical value.: '

The exchange formulation is probably the most practical, as the
dominant term (cooling to space) is a simple one, easily
evaluated accurately, and the more complex internal exchange
term is relatively small. The integral involves few cancell-
ation problems, as d°T/dzdz' is negative everywhere.

The use of band models is still too expensive and time consuming
for many circulation model applications. There is one more
approximation that we can make which will reduce the time needed
by an order of magnitude. We can completely eliminate the
frequency or wavenumber integration, with the following
assumptions

only one absorber is involved - i.e. water vapour

transmission is a function of one parameter only, for
example a pressure scaled water vapour amount, u.



~49-

We can then write downward flux for example as

e Uiy
F Av | du aA(lA v) g B(e(w), V)
du
4 wiz)

where we have used water amount u as the vertical
coordinate, rather than height 2, and absorption A=1-T
in place of transmission T. 6@ ) is the temperature at
position u. We can define water vapour emissivity
g'(u,8) as

55‘{%9? :‘éd@/ }%éé/@, ) aB(8, v)
9%

i.e. a mean absorption weighted by the Planck function.
In terms of emissivity, F' can be written

jdw dECH, 00T =59 0

This approximation is really only valid for homogeneous
paths; for an atmospheric path it should read:

é P 2
£ éz@’ﬁzﬁds@(@‘z” gﬁf%%,z ) B(v, 27

but the homogeneous approximation is found by numerical
experiment to work remarkably well.

Upward flux must be treated differently, because of the
boundary term. If we use the ITdB formulation, and assume

that 7B(0) = F+(O) so that one boundary term drops out,
then the remaining mB(v,z) term integrates explicitly over
wavenumber, and we are left with the requirement

vdz = (¢ 4920 £ (3 z,2)dz’

o =g
Vi e, /e = il S

a& j dz'

?\3

With a homogeneous approximation, as above, this leads to

gwwf/{m A(u,v) T dB(v,e)
& Ag?

The accuracy of this kind of approximation is typically 5 Wm

for flux. Rodgers (1967) has discussed ways in which it

might be improved, and finds that the basic technique,

using leas§ squares fitting, can give accuracies of more

like 1 Wm
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Some Simple Approximations

We have commented above that the term in the heating
equation which represents cooling to space appears to

be dominant. This is illustrated in Fig. 15, taken from

- Rodgers and Walshaw (1967) for a variety of atmospheric
profiles. The main regions where the total cooling differs
from cooling to space coincide with changes of the lapse
rate of temperature and, in the case of ozone where exchange
is taking place between the lower side of the ozone layer
and the surface.

The cooling to space expression is
hez)= - v wgo/,z)%ﬂ”:z.ao)

which does not require a height integral. This may be
simplified in terms at band models as

hiz): =AY, 7B, 2 )_,7_(2_7?(3,&)‘
‘ a

or in terms of emissivity as
h(z) - o o%(2) A E(Uu(B,)
az

which is a very simple approximation, yet of remarkable
accuracy. An even simpler approximation is the concept of
Newtonian cooling, which is useful in analytic studies of

the atmosphere where extreme algebraic simplicity is required.
In this case, heating is assumed to be a linear function of the
local temperature. We can derive Newtonian cooling coefficients,
simply by linearising the cooling to space expression with
respect to temperature above some standard temperature, which
might be the radiative equilibrium temperature for example:

- 4
h(z) = o6, %g + 406, 2519 -4,)

h(2) + “«ht® _(p-0)
o
We can therefore define a radiative time constant =0 /4h =),

which is the time scale with which a radiative equili rium

would be app{oached In the troposphere typically
ho ~ —-2Kday =, so T~ 260/8 . 35 days, and the stratosphere,

h ~ -8 Kday ~, so T ~ 7 days.
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(a) CO, 15 p band with ARDC temperature profile (Minzner et al. 1959). (b) O;96p band cooling in
dry stratospheres, ARDC tempera-
-1, falling to 0-002 g kg™* at 150 mb,
to 01 g kg™! at 10 mb, constant
7 January 1960); {(e) cooling due

a tropical atmosphere (same atmosphere as in Figure 14); (c) wet and

ture profile (Minzner et al. 1959); * dry ' : mixing ratio at ground 3 g kg
constant above 150 mb; ‘ wet': the same up to 90 mb, then increasing
above 10 mb; (d) cooling due to H,O in a tropical atmosphere (Nairobi,

to H,O in an arctic atmosphere (Eureka, 11 January 1958, Appendix B).
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For infrared radiative transfer it is usual to treat
cloud as black for two reasons, firstly, it is very
nearly black, except in very restrictive circumstances,
but more importantly, it is very easy to treat it as
black, and very difficult to treat it as a scattering
medium. Partially transmitting cloud, e.g. thin cirrus,
may be treated in the same way as a partial cloud cover.

The property that allows us to use this approximation is

that a black body of temperature 6 looks exactly the same
radiatively as an infinitely deep region at that temperature.
Thus we can treat cloud by modifying the temperature profile.
This is illustrated by the diagram. We calculate the

clear sky flux at level z

by using the temperature

profile and surface temperature
given by A-B-C-F, whereas if

there is complete cloud cover

at the level indicated, we

use the profile A-B-D-E,

because the cloud looks radiatively
like an infinitely deep layer at
its surface temperature.
Alternatively, we regard the cloud
level as the surface.

In the case of partial cloud
cover, we take the appropriate
linear combination of clear and
cloudy cases.
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5. Solar Radiation and Scattering

In the absence of scattering, the calculation of solar radiation
would be a straightforward matter of calculating transmission by
the various absorbers in the ultraviolet, visible and near infra-
red. Diffuse reflection from the ground and from clouds may be
treated using a diffuse transmission function or diffusion factor.
However, scattering by dust and haze and Rayleigh scattering in
the clear air are significant, as they determine how much solar
radiation is reflected back, and hence how much is available for
absorption by the atmosphere and surface. The correct treatment
of reflection and transmission of sclar radiation by clouds is
also a matter of scattering.

There are two basic mechanisms, by molecules and by droplets.
Scattering by molecules is Rayleigh scattering, and can be regarded
as emission by a dipole induced by the incident radiation field.
The phase function is that for dipole emission and there is there-
fore complete polarisation of the scattered radiation at 90° to
the incident beam. The frequency dependence of the scattering
efficiency is proportional to the fourth power of wave number,
and, as is well known, this accounts for the blue colour of the
sky. Scattering by droplets is 'Mie Scattering'. and is somewhat
more complicated. To treat this, it is necessary to solve Maxwell
equations with the appropriate boundary conditions. This has been
done for a sphere by Mie, and for a few other simple geometric
shapes, but no general solution is available for an arbitrarily
shaped scatterer,

We may define an 'efficiency factor'(Q for scattering by a

particle as the ratio of the cross section & for scattering to
the geometric cross section W ar . A sketch of a typical
efficiency factor is given in Fig. 16, as a function of the ratio
of drop radius to wavelength & /A . At small values of a/Ah

the drop behaves as a Rayleigh scatterer, with an efficiency

factor proportional to ﬁ”@ , whilst at large sizes, the geometric
limit, the @€ tends to 2 , rather than unity as might be expected.
One of the two is due to the geometric cross section, the other
one is due to diffraction. The oscillations mean that there are
values of &/» for which & is considerably larger than two.
However, in real cases there will be a distribution of drop sizes,
and these oscillations will be largely smoothed out. The phase
function for spherical drops is similarly oscillating, as may be
seen from the typical case shown in Fig. 17, but on averaging over
a distribution of sizes, this too is smoothed out, as may be seen
from the examples in Fig. 18, which also show some simple analytic
functions which have been used as approximate phase functions.
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Fig. 16 Extinction curves computed from Mic's formulae for m = 1.5,
1.33, 0.93, and 0.8. The scales of = have been chosen in such & manner
that the scale of p = 2z|m — ll is common to these four curves and
to the extinction curve form = 1 + e.
‘I'he scale of p at the bottom holds for all five graphs. The corresponding
scales of 2 depend on m.  For m =1.05 or 0.95 the range shown in the
figure corresponds to the range of = from 0 to 200.

(van der Hulst "Light Scattering by
Small Particles")
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Methods for calculating Scattering

The equation of transfer is Ee//jngﬂaé
dlcz) =T(s) + J¢s) oL e
- ” ¥4
MAT

where the source function is made up of an emission component
and a scattering component

T G- + [ LesIPls5) da
&

where ?(§;5C¢ is the phase function for scattering from -
direction § into direction §7 , and d#2 is an element of solid angle
containing ¢ . The albedo of single scattering is denoted by &

In the case of isotropic scattering, such as by spherical
droplets,P(ss’) will only depend on the angle between § and s’

The simplest approximation for the solution of scattering problems
is the two stream approximation, which we have already considered
as a simple illustration in section 2. One particular version

of the two stream method is the 'Eddington Approximation', in
which it is assumed that the upward intensity I*(#) and the
downward intensity I~ (@) are both independent of &, so that

the angular distribution of I (&) is as shown in the sketch.

5¥f}ah}¢ \ 33%@@@

The resulting phase function will then have four scalar components,
p+* P*-PF  andP 77, rather than being a function of two
variables, The problem reduces to the two simultaneocus linear
equations that we developed in section 2, which can be solved
algebraically. The solar beam is usually treated separately,
because its angular dependence is not well modelled by this
approximation. A further improvement can be obtained by

treating the first scattering as a separate term as well, because
its angular dependence is 1likely to be known from the phase function
and will be different from the Eddington assumptions. Higher
orders of scattering will fit this assumption better. Thus
complicated phase functions ( e.g. strong forward peaks, rainbows)
can be dealt with without too much complication.

Beyond the two stream methods we find ourselves dealing with the
more general and complex problem which requires some description
of the angular dependence, either in the form of discrete angles
or a representation such as Legendre polynomials. Both forms
are mathematically identical, it is simply the representation
which is different. For purposes of flux calculations, we are not
interested in the azimuth dependence of intensity, so we can
average the transfer equation azimuthally, thus reducing the
dimensionality of the problem. Let us model the radiation field
in terms of the azimuth average of intensity in a finite set of
directions Qé , i =1,.. N, ( or, equivalently in terms of a

T finite number of Legendre polynomial coefficients ). Then the
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phase function becomes a matrix Rﬁ =P (9@@3), and the
intensity is a vector I with components Ij.  The source

function is
. = §~ .’ .
J':, (1-w) B "-'“ZJ- ﬂJI:’
and the equation of transfer becomes

] .
,‘“i.].':‘ =T +(-0)b + = ZPng
/ao adtT ‘ J
which is a set of N first order linear differential equations,
which can in principle be solved explicitly by well known
methods. There are some technical problems in connexion with
discretising the phase function, especially if it has a large
forward peak, as many do, but we will not treat that guestion
here. A recent paper by Wiscombe (1977) is worth consulting
in this respect.

In many contexts the concept of transmission and reflection
operators is a very useful one, being a generalisation of the
scalar transmission and reflection functions to a set of N
angles or polynomial coefficients. For this purpose we will
ignore thermal emission.

Consider a field of radiation represented

1/L Tjﬁz by the intensity vector I incident on a
plane parallel scattering layer. Let the
reflected intensity be IR and the trans-
// mitted intensity be Ip. Then, because
— the equation of transfer is linear, we can
I’j:r define a reflection matrix or operator
R and a transmission matrix T, such that

Rij is the reflection coefficient from angle j to angle i:

Ir - T.I I, - kI
The matrices T and R can be easily computed for very thin layers,
where we can make the assumption of single scattering. For
thick layers, we can make use of the rules of combination to
build up from thin layers. For example, consider the two
arbitrary (thick or thin) layers in the sketch, with transmission

é 1 and reflection matrices Tq, B4 and TZ’ Ro
11 | II} respectively. A little aigebra shows how
; we can define transmission and reflection

L‘lﬂei‘l R' T; operators for the combined layer.
s ’ ' .

4
L I; The intensity Ig v
%@S to transmission of I1 and reflection of

'

2 T. :
L"r‘f)e’" Rz,‘z T_:: T;I' + Q'Iz
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The intensity Ig is due to reflection of Io

If s Re Z&
11&3:133:@4' gengZ%

& -
T =(1-¢,6.) 7, T

where the inverse is a matrix inverse.

Therefore

On rearrangement

Then the intensity transmitted by the combined layer is

b *
ivg = @;E‘;g @ég”gage‘l}ﬂ fff

And the combined transmission matrix is therefore

=4
ai& 3?;5&”5%3 g&} ‘Er;

Similarly we may derive the combined reflection matrix

5293. < ﬁ@ + ngkég‘ gﬁ 52?,}?@?;

In the case of no absorption, T + R = 1, and the equations
can be simplified a little. These rules of combination and
the basis of the 'doubling method', where an elementary layer
is built up to a finite thickness very efficiently by
successively doubling its thickness.

Scattering and Line Absorption

One of the major problems of applying scattering calculations to
the real atmosphere is the problem of line absorption. All the
scattering methods have been developed for absorbers with a
constant absorption coefficient, i.e. grey absorbers. We could
in principle carry out an explicit integration over frequency,
but this would be several orders of magnitude more expensive
even than explicit integration in the case of no scattering.

Basically the problem is that scattering methods require that
scalar transmissions can be multiplied, i.e. they are exponential,
and this is not true for band models. Band models, on the other
hand, require that all photons travelling from A to B do so

along the same path. This is not true for scattering.

Two approximations have been developed to cope with this problem,
the so-called 'picket fence' model, and the ‘'photon path
distribution' method. In the picket fence model, the transmission
is approximated by a sum of exponential absorptions

I
T = S;Vﬁg @%?é?’ké%@}



60—

and the scattering calculation is carried out N times, once
for each term in the sum. This can only be used if the trans-
mission function can be expressed as a function of a single
scaled absorber amount, so that the sum of exponential forms
can be fitted.

In the photon path distribution method, scattering calculations
are used to determine the distribution N (£) of path lengths
traversed by photons, so that band models may be used for the
transmission of a layer: , / / /

Tiager * INWOT,, (b, p)ac

or in a discrete form:

There is a kind of duality between these two methods. If we
use the continuous form of the picket fence model

—km

7}“, (m) = f&t(b}e ak

and we see that the distribution of absorption coefficients
is an inverse Laplace transform of the transmission function.
If we substitute this into the photon path distribution we
find that the transmission of a layer is

T = fd{fdk alk) N(Y) &

which is symmetrical in absorption coefficient k and path

length £ . Thus to find the distribution of absorption coefficients
a (k) we do a numerical inverse Laplace transform of Taas( )

and to find the distribution of photon paths, we do a nlmerical
inverse Laplace transform of the transmission of a layer for an
exponential absorption.

In practise we find that we can do better with fewer terms, even:
with one term, with the photon path method, than we can do with
the picket fence model. This property is clearly related in
some way to the use of #=1.66 for diffuse radiation, which is

of course a particular case of a photon path distribution.

6. Parameterization

The whole purpose of this course is to discuss methods of
calculating radiative transfer in various kinds of numerical
forecasting models, and in this context there are a number of
restrictions and difficulties which must be taken into account.
The quantities that are normally required are the gains and

losses of energy by radiation in model boxes and for surface
areas. The time available for the computation is small, it should
be smaller than the time taken by the dynamical part of the
calculation, so that accurate approximation is paramount.
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The main problem in accurate computation is probably that

the atmosphere is not specified as well as we might wish.

The input data is typically the three velocities, temperature
and humidity at the surface and for a relatively small number
of levels, on a coarse horizontal grid. As a consequence of

the limitations of numerical models, we are left with several
problems:

1) All the quantities needed for radiative transfer calculations
are not specified, and in particular :cloud, aerosol, ozone,
and surface spectral properties.

2) The vertical resolution is too coarse. Profiles of
temperature and humidity are not well enough defined, so that
we must find some suitable interpolation.

3) The requirement of speed implies that a high level of
approximation must be used, and this determines the types
of interactions which will be ignored.

Cloud parameterization

This is probably the largest unsolved problem in the subject of
radiative transfer in numerical models. The problem is not so
much one of calculating radiation transfer in the presence of

a given cloud, but rather one of determining where clouds are,
given only fields of velocity, temperature and humidity. There
is even a certain amount of difficulty defining what a cloud
is, as you may imagine by looking at the sky when there are
broken clouds with ill-defined edges. Furthermore, clouds

are definitely a subgrid scale phenomenon, and the variation
over a model box can be enormous.

The simplest radiative model of a cloud is as a black body

if there is any absorption, for example in the infrared, and

as a diffuse reflector if there is none,for example in the
visible. 1In general, radiative calculations treating scattering
property are too slow for use in forecasting and general
circulation models. To define a cloud for radiative purposes

we need : cloud top height, cloud base height and spectral
properties in the case of stratus cloud, and for other types

we also need a three-dimensional distribution, in principle,
although it is difficult to use in practise. It is probably

best to regard a 3-D cloud distribution as a broken layered
cloud at the present state of development of the theory. However,
we are not given any of these quantities by the typical
forecasting model, so that it is necessary to parameterize

cloud as well as radiation. To do this correctly, we need a
physical understanding of the formation of cloud of all types.
The mechanisms are different for the different types of cloud,
e.g. cirrus, altostratus, frontal stratus, cumulus, cumulonimbus
all form in completely different contexts. Furthermore, a cloud
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can be radiatively active long after it has ceased to be
significant for rainfall or latent heat release, so that

we must treat not only the formation of cloud, but its
advection and dissipation. Very little work has been done

on this aspect of cloud modelling, and probably the only cloud
parameterization that has been at all widely used is an
empirical relationship due to Smagorinsky between mean cloud
amount in model boxes and relative humidity. Clearly cloud
should also depend on such things as vertical and horizontal
velocities, and on a radiation.

Aerosol

Not enough is known about aerosol for a successful parameterization,
and probably not enough is known even to establish a

climatology with any useful degree of accuracy. However,

aerosol is a minor effect, and can be allowed for to first order

(as can all unknown effects) by '"tuning" the radiation para-
meterization to fit such global criteria as overall radiation
balance, and agreement with satellite measurements.

The mechanisms of production, transport and destruction are
moderately well understood, and can be modelled. However, it
is too complex a calculation for forecasting models, and only
affects the stratosphere significantly. A climatological ozone
distribution is quite adequate for forecasting purposes.

Surface

Surface albedo is required to calculate reflected solar

radiation, and surface emissivity is needed to calculate emission
of thermal radiation. These quantities depend to a certain

extent on geography, and can be pretabulated, but there are

also variations which depend on the weather. The most important
is probably snow and ice cover, which dramatically affects

albedo, but in a way which depends on vegetation. Minor changes
are also due to rainfall, the annual cycle of growth of vegetation,
and agriculture. They could all be parameterized, but probably
only the snow/ice change is significant.

Resolution

As we have already said, the question of poor model resolution
gives us the interpolation problem of determining which continuous
temperature profile should be used to calculate radiation.

There is also the related question of subgrid scale processes
which will be lost. For example radiation will tend to erode
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discontinuities of temperature gradient such as the tropo-
pause, surface inversions, and fronts. There are cases in
which the converse is true, depending on the humidity profile.
For example Staley (1965) has studied radiative cooling in

' dry inversions' , and found that they are likely to be
maintained by radiation ( See Fig. 19 ). This kind of inter-
action will be lost if low vertical resolution is used.
Conversely, if the wrong kind of interpolation is used, e.g.
linear interpolation, then calculated flux divergence will give
very misleading cooling rates at the given levels, because
there will be lapse rate discontinuities. In this case, flux
differences rather than divergences are more appropriate..

A question that is worth studying with regard to resolution
problems is as follows: Given the model's values of T; at

a small number of levels Z5, what real atmospheric profile T(z)
does this represent ? A good answer to this question would
increase accuracy of calculated radiative transfer at very
little cost.

Computational Speed

It is this requirement which finally decides which kind of

parameterization will be used. The more time available, the
better the calculation can be, so that there is a trade off
between speed and accuracy. '

Any method should be capable of getting the climatology right,
getting the interactions right, and being tuned if necessary.

Getting the climatology right means that there will not be
overall systematic errors, so that the model atmosphere will

be driven by the right energy input in the right places. It
should be possible to compute the known radiation climatology
given the known temperature, humidity and cloud climatology,
particularly with regard to global radiative balance and the
equator to pole gradient of radiation. It should also be possible
to reproduce the radiation climatology from a "climate run"

at the general circulation model, but this is much more difficult,
and involves a test of the whole model.

Getting the interactions right means essentially that the change
in radiation due to a change in an input parameter should be
correct, and that all the relevant inputs should be interactive.
The interactions are, for example, the dependence of cooling
temperature and humidity, the greenhouse effect, the water vapour
greenhouse amplification, snow/ice line feedback, etc.

Capability of being tuned if necessary is simply a matter of
adjusting parameters within reasonable bounds so that the
climatology requirements and the interaction requirements are
satisfied,.
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It is possible to write down a rough hierachy of calculation
methods, in order of increasing complexity, both for solar

and terrestrial radiation:

SOLAR

TERRESTRTIAL

Surface temperature Constant cooling rate I o

specified L g

g P

» 85%
Climatology Climatology .

Absorption function- Newtonian cooling

fixed function of %

absorber amount Eﬂa

Cooling to space g'g

HoM

2 Stream Scattering o'g

methods Emissivity g

EY

Band Models §‘g
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APPENDIX =~ Stages of Approximation

We list here in summary the stages of approximation we can
go through from the explicit formulation down to Newtonian
Cooling. This is illustrated in terms of downward flux for
all except the last two stages, but the same simplifications
also apply to other guantities:

EXPLICIT INTEGRATION

Fie)- l{dvg sz rBwed éf‘t’[/‘fﬁ (&5, 0,2 pzy 4%}

Z
CURTIS GODSON APPROXIMATION

Replace the 1nti§ral over %7 by a homogeneous path
M%%gmf %ﬁéw%év/%}d mcfgwwfmm }

BAND MODEL

Replace the integral over wave number of the exponential
by a band model and a sum over wave number

gwggg@vf gpﬁwm ) A T (5, pi%, B )
DIFFUSE APPROXIMATION

Replace the integral over angle g/wzﬁaﬁ) by a diffusion
factor g

FY o= Mvjdz MW}HQ‘?WMW}M
EMISSIVITY

Replace the sum over wave number and the transmission by an
emissivity

= ng@mz«’mé’é%émw o AES oo
dz’ U= ?M p perhaps
COOLING TO SPACE-

Ignore all terms in the heating equation, apart from the exchange
with space term

NEWTONIAN COOLING

Linearise cooling to space with respect to temperatures and take
#2/dZ as constant

h(z): a+bbécz)
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