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1. Observationai Studies H

This and the two lectures following are concerned with the
turbulent dissipation of kinetic energy in the atmosphere

away from the boundary layer and with the representatlon of

this process in numerical models for forecasting.

In this lecture we concentrate mainly on the observed d1ss1pat10n
in the atmosphere. Y

To begin the discussion and to provide a framework for the
observational studies we consider the kinetic energy budget for
the GFDL model as discussed by Smagorinsky et al (1965)
(hereafter denoted by S.) The physical parameterizations included
in the model included a detailed radiation calculation, surface
energy and momentum exchanges, a boundary layer and internal
dissipation. Moisture was not treated explicitly but: the
stabilising effect of moist convection was included 1mp1101t1y

by requiring an adjustment of the lapse rate whenever'it

exceeded the moist adiabatic layer. :

The equations of motion and continuity in pressure coordinates
are

2 U 24 = -V ‘
__E+g,vu+6):-;‘; {Bxy_ é+£

VU+ =0 2

With K = lU we have, using the continuity equation

‘Eﬂﬁ *.V[s£|( + 12.(gb( = -Lé.\74>*‘!!.fr 3
ot op zﬂk
pve = (V. 4U+Rwd) - ¢(RU+33)- @ 5
V.+l_4+§§w¢ o, = "I’p""zﬁ
Hence

=-[ UK - %w‘( V. ¢4 - -wé-wot-t-ﬂ.f ¢

If we take an area mean and assume no flow across the horlzontal
boundaries we get

i .

and we ha“e the identity "
RIIRRIN Ry RIS,
Uve = BOF + OR
We shall speak of H-V*’ as the squrce term for kinetic energy
and F.U as the sink. The terms V. pU i we shall speak of
as pressure work terms. The d1vergen of the correlations
between velocity and the '"pressure" in this system are a means

of transmitting kinetic energy that is quite dlfferent from the
advection terms,
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w““&% will be called the energy conversion term as it represents

the conversion of potential plus internal energy intb kinetic
energy. It is positive if in the area mean, warm air is rising
and cold air sinking ( &@<€6 when &4 is low, WPbwhen €4 is high).

Fig., 1 (from S) shows a time and hemispherically averaged

picture of the terms in Equation S, in the model after it had
achieved a quasi steady state.

The energy conversion is large in mid levels and falls to zero
near the surface and to small values near the tropopause.

The dissipation is largest where the energy conversion is smallest
i.e. near the boundary layer and near the tropopause. The
overall balance between these processes is maintained not by the
advection of kinetic energy away from the region of large conversion,
but rather by the pressure work term. ___p |

Fig. 2 (from S) shows the source temn-%ﬁ »° , the conversion

term and the terman§§§, The source and sink terms almost balance
exactly in the boundary layer and at the jet stream level just
below the tropopause.

On the other hand, the pressure work term and the conversion term
are of nearly equal magnitude and opposite sign in mid troposphere.
Thus although the mid troposphere is the main area of conversion
of poteptial to kinetic energy, the source term for kinetic

energy ¥° is almost zero there. In this experiment the ratio
of the dissipation above 811 mb to that below was 1.6 to 1.

Before leaving the model results we look brieflyvat the eddy

and zonal kinetic energy budgets in the model. Let )
denote a zonal average and ( Y' a departure from it.
Define ‘

K= &L (W +(vF]
Ky = %{éé&?ﬁ%@?ﬂ

then “ !
Sk [ % mﬁ w U 4 (), + (e Ke)y b
-

et
W%é gﬁ?h méﬁge%’)s ={Ka-Yg), 1

& %W :
(Kz»&{g}.& ey

Fig. 3 (also from S) shows the distribution in the vertical

of these terms in the model. The termaﬁgﬁs much theilarger

of the two conversion terms. The eddy kinetic energy is exported
to the boundary layer and to the jet stream level, in 'both of
which areas it is dissipated. In addition there is the important
conversion of eddy to zonal kinetic energy at the jet stream
level, which drives the zonal flow. The zonal kinetic energy

is exported to the lower troposphere where it too is subject to
dissipation. ‘

i
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Fig, 4 sgows the Vert%gal profiles of the source terms

- 8T & and W, 9& which are of course the sums of

the respective conversion and pressure work terms. A
surprising feature perhaps is that the source term for K

is negative through much of mid troposphere. However
Smagorinsky points out that this was calculated as a small
residual of two larger quantities and so the accurary of the
computation is low.

We turn now to the problem of actually computing the atmospheric
dissipation. The earliest such estimate was due to Brunt
(1920) . Using typical cross-isobar flow in the friction
layer and climatological wind maps he estimated the boundary
layer dissipation to be 3Wm—2, He then estimated the

dissipation in the free atmosphere as roughly the same and
finally gave an estimate of 5Wm™¢ . Oort (1964) collated the
then available data, most of wgich had calculated the dissipation
as a residual and gave 2.3 Wm™“ as the most reasonable value.

Fig. 5 shows his resultsseparately for the space domain and the
mixed space-time domain,

Holopainen (1963) and Kung (1966a,1966b,1967,1969) also provided
estimates of the dissipation based on the evaluation of cross-—
iscbar flow ( %«§?$>)u Holopainen used data from eight stations
in the U.K. for a few weeks in winter. Kung (1969) used data

from a 5 year period over the fairly dense North American network.

The kinetic energy equation may be written

LU =-0.96 +U.F g

U. T may be expected to be positive everywhere,when vertically
integrated. U.,¥4$ may vary widely and change sign. Thus an
average for a limited area would be unlikely to be representative
for the global region. Hence these workers also calculated the
area and time average of g%%%%& and calculated U.F as a residual.

The calculation of the termsoaﬁﬁﬁ% and %@yﬁh is quite
difficult, particularly the former. This is because the wind

is approximately geostrophic and so is nearly perpendicular to

Y& .The technique used by Kung was to take all pairs of stations
adjacent to a given station to get a set of estimates for ¥

These were then used to get a best estimate in a least sguare
sense. The main problem in evaluating_g%%gﬁ was to accurately
estimate the advection of kinetic energy across the continental
boundaries. Figure 6 shows the distribution of stations used

in Kung's studies.
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Figures 7 to 9, taken from Kung (1967) show vertical profiles

of the energy source and dissipation terms. Figure 7 shows

the Winter, Summer and Annual Averages of - ¥.¥& averaged over
the continental area for a five year period. Figure 8 shows the
vertical profile of kinetic energy dissipation for the same data.

We see that the source and sink terms are both large near the
boundary layer and also near the tropopause,just as was found

in the model results. An important feature of the results _
which does not directly concern us here, but has still to receive:
a satisfactory explanation, is shown in Fig. 9. This shows

a marked difference in the results for 00Z and 12Z, roughly

1800 and 0600 local time. The strong diurnal variation in the
boundary layer is in line with expectations but the variation near
the tropopause is quite unexpected and there is controversy about
the reality of the effect.

Taking the figures as they stand, the figures that result for the
five vear mean of the energy budget, using all the data is

R AR péxdodk BSR - TG N3
bbo =0 3.3 =17 7.3\ 4.0
2

where K 1is in 105 joules/m2 and the other quantities are in Wm™<.

The value of 4.12 Wm—2 might be tentatively taken as the hemisphere
value of dissipation. Of this dissipation, 50% took place in the
lowest 100 mb, and 50% above this level. Kung argued that his

values were likely to be underestimates of the dissipation.
Nevertheless the estimates were almost double the value of 2. 3Wm—2
given by Oort (1964) on the basis of results from a number of
different authors.

Support for Kung's results may be found in the work of Ellsaesser
(1969) and Trout and Panofsky (1969). Ellsaesser's estimates of
turbulent dissipation used results from the Kolmogorov (1941)
theory of turbulence to relate atmospheric wind variance
statistics to the dissipation rate. Maps of wind variance for the
Northern Hemisphere were prepared by Crutcher (1959-1962).

The expression used by Ellsaesser for the dissipation rate was .
B
e=[3" (-2 /3¢ )

where @ is the vector standard deviation of the wind, r is the
vector Eulerian time lag correlation, taken to be 0.793 for

t = 6 hours, and S is the scalar mean wind. Ellsaesser evaluated
this expression using Crutcher's maps at seven levels from

50 mb to 850 mb. Figure|[® shows the vertical integral of these
results in units of Wm—2. We notice that over the bulk of mid
latitudes there is a typical value of 2 Watts M™“ with a

maximum over the Atlantic of 3 Watts M™%, Ellsaesser argues that
because of his method of computation these values are underestimates
by as much as a factor of 2 perhaps.
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"FIGURE 10

~—Contour analysis of I, (total dissipation in the free
atmosphere) computed as a 0- to 900-mb pressure integral of
Bgures 1-7. Units are watts/m®.
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Trout and Panofsky (1969) used yet another data source to
estimate the dissipation rate near the jet stream level. They
use collections of atmospheric spectra made in different
intensities (light, moderate, severe) of clear air

turbulence to estimate the dissipation rate in these turbulence
conditions from the Kolmagorov law

They further used statistics of the frequency of occurrence and
intensity of clear air turbulence to construct estimates of the
dissipation rate. Table 2 compares their results with Kung's.

TABLE 2

Layer Flight Kung
feet x 10® Data

25-30 0.59 0.59

30-34 0.36 0.37
34-40 0.37 0.32
TOTAL : 1.32 1.28

Dissipation Rates (Wm‘z) calculated
by Trout and Panofsky (1969) and
Kung (1967)

The agreement is remarkably close. Trout and Panofsky point
out that the agreement is likely to be fortuitous as there is
a substantial degree of uncertainty in the calculations.
Nevertheless they lend support to Kung's finding.

Wiin-Nielsen (1968) has discussed the limitations of Kung's
method of calculation. He makes the important point that the
method leads to a value for?é} which is appropriate for large
-scales while the winds used in the calculation do not have this
feature. Newell et al (1971) and Newell et al (1974) discuss the
energy budget in detail. Their method is quite different from
Kung's and covers the gemisphere. Their calculations lead to

an estimate of 2.2 Wm™“ for the dissipation rate.

Holopainen (personal communication) indicates that the extrapolation
of Kung's results from North America to the hemisphere is
probably not valid, based on calculations for other geographical areas.
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The calculations by Newell and his collaborators are
probably the most reliable available. It is an indication
of the difficulty of these calculations that the work of
Kung and others give a value for the space and time averaged
atmospheric dissipation which is larger by a factor of two.
Elsaesser's results for the free atmosphere give results
which are as large as those of Newell and his collaborators
for the whole atmosphere including the boundary layer.

Nevertheless, there is a consensus that dissipation away from
the boundary layer and the tropopause region is relatively
small. The bulk of the dissipation takes place near the
surface in the boundary layer. Finally there is a body of
evidence to indicate that dissipation near the tropopause

may be as much as 25% of the total.
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2. The differences between two and three dimensional turbulence

Much of the work done on the analysis and description of
turbulence rests on the principles of dimensional analysis
(Bridgman, 1931). Suppose we have a functional relation-
ship between certain measured quantities and certain
dimensional constants. Such an equation is called complete
if it remains true formally without any change in the form
of the function when the size of the fundamental units (of
mass, length, time) is changed in any arbitrary fashion.

It can be shown that if ¢(a,a2,u3...an) = (0 is a complete
equation with n arguments and involves m fundamental units,
then the equation can be written in the form

F(W,,T&) tea Tr‘\..:) =0

where the 1's are the n-m independent products of the
arguments which are dimensionless in the fundamental units.
This implicit relation may then be solved for say a;, to
give

K
oA, = n “} d:" %('“'m"":, v oo Taem) 2

where the X; are such that ul(uzfz(%)X3... is dimensionless.
This theorem has wide applicability in many areas of science.

In this talk we are going to consider some of the differences
between 3-dimensional and 2-dimensional turbulence. In the
next talk we discuss the relevance of 2-dimensional turbulence
theory to atmospheric flow.

If we use upper case letters U, S etc. to denote mean flow
quantities and lower case letters u, s, for fluctuating
quantltles then the equations of motlon for steady mean
flow in an 1ncompre381b1e fluid are (Tennekes and Lumley,
1972)

. 3
U ‘beuv 'w e )
" 4 (1)
’oxJuJ =0 |
where the stress tensor T.. is

1]
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where P is the pressure, P is the density, U the dynamic
viscosity and ( ) is a horizontal average.

The mean rate of strain Sij is defined by

- ,@(2 SRR b
ng =a *azgjiéu "ax,;ud
In studying turbulent flows the energy and vorticity

budgets are of central importance.

If we multiply (1) by Ui we have

u; = 3Ty - T S 1

2 1L
@ ~§‘
g“@xd

o

since
ﬁj %{}éé = 'T;j 5@
as T and S are symmetric.

The first term on the right is a transport term which serves
only to redistribute the kinetic energy of the mean flow.
The second term is called the deformation work term and
represents a loss or gain of mean flow kinetic energy to

the turbulence. When we expend Tij this term becomes

Tey 8 = -Péy g;j%ﬁﬁxggg - e Uil Sy s

= gu Sij 8 - € 5% Sy

The viscous term)2usijsij)in the deformation work is positive
definite and always represents a loss of mean flow kinetic
egergy. Note that it is related to the symmetric part of

FEa U the strain rate, rather than to the skew-symmetric

part, the vorticity.

i H

The Reynolds stress term @ W% S&j tends to be dissipative in

most flows. The loss of mean flow kinetic energy will show
up as a gain of turbulent energy and so this term is known
as the turbulent energy production.

In most typical circumstances the viscous terms in the mean
flow kinetic energy equation are smaller by O(Re) = ul/v

than the turbulence terms. Here u is a typical velocity
scale, v is the kinematic viscosity and & an integral length
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scale. The turbulent energy budget can be derived in a
straight forward way and reads

uj%-‘ﬁm\:: '%("Emi ++ WUy -2y U Sy) 9
d]

- ugu"_j Si._j - avy 3\5 Sy

| _ L el W
where s;; = %(’W‘J "'%&t)

In a steady homogeneous pure shear flow where all averaged
quantities except Ui are independent of position the above
reduces to

— 10
- U Sij = ¥ 55y

Using the scaling

we have

G, '!!-f Sij Scj = 8¢Sy ‘ | 1
where C, = 0(1)
W

Since > - Re >> 1 we have

575 > Sy Sy

Thus the fluctuating rate of strain is very much larger
than the mean rate of strain at large Reynolds number.
Moreover since S has the dimensions of (time) - this
implies that the bulk of the energy dissipation takes place
on very short time and space scales. This suggests that
there should be very little direct interaction between the
strain rate fluctuations which are mostly involved in the
dissipation, and the mean flow.

The energy exchange between the mean flow and the turbulence
is governed by the dynamics of the large eddies; the turbulent
production is proportional to eddy size. The energy extracted
by the turbulence from the mean flow enters the turbulence
mainly at scales comparable to the integral scale

€ = futn)ulo) dxa)/ W . n

Viscous dissipation takes lacev%t scales comparable to the
Kolmogorov microscale 12: v‘/g) where € is the dissipation



-248-

rate. The internal dynamics of the turbulence must then
transfer energy from large scales to small scales.

If &. represents the total vorticity vector then the vorticity
equation may be written in the form (Tennekes and Lumley [572 )

13

g = B (I e
£ + Uy Wi =
‘%t" J "ok

The term »; S,. represents a rotation and an ampllflcatlon
of the vor%lcl%y It can be interpreted as an expression
of the conservation of angular momentum. Suppose a fluid
element hag vorticity @& , and is being stretched along the

X4 axis, éll > 0, so that its x4 moment of inertia is

decreasing. Then the rotation rate about the X4 axis Wl

must increase to conserve angular momentum. This term
involves changes of scale of the flow and is responsible

for the transfer of energy from large scales to small scales
in three dimensional flow. This term is identically zero in
two-dimensional flow and this fact is the reason for the
crucial differences between two dimensional and three
dimensional turbulence.

With mi = ., + W '&i = 0, the squared vorticity hudgets for steady
flow are:

@mé} %»W@ %ﬁi #8055y

%ﬁ"" ﬁs QQ
& €3, €5, B
Wy ey +v @%ﬁw g%ﬁ%ﬁ&}w %"T‘% "5?5

In two dimensions the turbulent energy and enstrophy budgets
are

DT = p— BE T A=Y “ﬁé)? ik
2 4T = = 2 (T4 - B (T +v 2 e ().

ot

2
%QWQ =V '@}eﬁ

% ﬂ!ﬂa&:@vv o - wa »m
T mgz.» w@w& = s gk&g

TNE
Sts g@% @52}

Letting E = JE(k)dk we define (Lilly, 1973)
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(kx- = -g%z - SK‘E(th
| (bt = ‘——--—-“" Ak

It may be shown that
a_t '&\E ’yh‘b i 8
d tns = - v Ko/ '

. Now k4 >> kz if E(k) is reasonably broad (e.g. a power-law

spectrum); hence dissipation of enstrophy is much greater
than dissipation of energy in two dimensional turbulence.

The diffusion approximation for turbulence (Leith 1968, 1969)
provides a heuristic derivation of the k spectrum of two-
simensional turbulence,

We define the mean kinetic energy and the mean enstrophy
per unit mass as

Iw = [ E(Ndk
Tor = [CoMmdk

where G = k°E

The spectral form for the energy and enstrophy budgets may
be written :

»t
26 _ - avkRE 2
e T - avk

where I,J are inertial transfer terms with the property that

‘r%dh‘ozuui Infdh 2 0. Thus we may postulate that I,J may be
written as I" '--!-F yJ= ‘:%{ where F,H are the fluxes of

E,G through wave number space.

)
We require l'ﬁol"%g#%ﬁ to preserve the relation G= h"E
This implies the following restriction on F which will prove
useful

0 =" Wan = [l Bk = RAT- A krdk = ~aLkFdk

' L kFdk = o \ | 21

so that I now has the form of a

Q] @
=P

Suppose we write F =D
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diffusion. Then since E has the dimensions (1e=:ngth)3(time‘)“2

the combination DQ has the dimensions (1ength)(time)~3

Suppose we seek a similarity relationship DQ=@¥mEn then we
find mzE7fe  and w=32 and finally Fz g g@h‘é%ﬁaéew

where éﬁ is still to be determined.

® k
The parameter éﬂ is determined by requiring! k?é =0
(-}

i.e.
& B WEg¥? -
SRR ZRE =0
- % 2%
Theerefore &= 9/ ana F= agﬁ%%%ﬁ E AN

It may be verified that this form for F implies, through

that H is of the form

3

U= 4%

F and H are the energy and enstrophy cascade rates.

. e n 1o 50
If E has the Kolmogorov distribution E = b k then H=0
and T is constant. If E has the distribution E= QK3

then F=0, and H is constant and has opposite sign to the sign

of F in a kvg spectrum. Thus two equilibrium ranges can exist
in two-dimensional turbulence. The k ° spectrum will extend

to the highest wave numbers. It will cascade enstrophy to
higherdéave numbers but the energy cascade will be negligible.
The k range, if it exists, will occur at the low wave
number end of the spectrum and will transfer energy to the
longest waves.

The reasons for these phenomena are best seen by considering
the results of Fjdrtoft (1953). TFjortoft showed first that
an energy exchange between just two modes is impossible.

Let AEr’ AES be the energy changes in these modqurfs

Then the conservation laws for energy and enstrophy give

AE  + AE = 0
T ]
2B+ s2AE_ = 0
T S
The only solution is AEr = AES = 0

Suppose then that we have three modes s > v > p

Then AEp + AE_ + AE = 0
T s



P2 AEp + 12 AE. + s° AE = 0
s2-p? 25
AEp = - S7p” AEr
JE = - DmB7 g A6
S S°=-p° r

Thus a loss of energy in the intermediate wave number is -
balanced by a gain at the shorter and longer wave numbers.
The question as to whether the longest wave or the shortest
wave receives most energy has been studied by Wiin-Nielsen
(1974) and Merrilees and Warn (1975). The latter authors
showed that in ~70% of possible triad interactions more
energy went to the largest wavelength while in ~60% of
possible triad interactions, more enstrophy goes to the
shortest wavelength.

These ideas have been tested in numerical integrations by
Lilly (1971). Figs. 1-4 are taken from Lilly (1971) showing
an experiment with forcing at wave number 8. Fig. 1 shows
the stream function, Fig. 2 the vorticity and Fig. 3 the
forcing function at a time when the turbulence is fully
developed. Fig. 4 shows the energy spectrum at the same
time. We see that most of the energy is in the longest
waves with an approximately k ® tail to the spectrum.
Although the forcing is at wave number 8, the bulk of the
energy has accumulated in the longest waves.
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3. Geostrophic turbulence; Practical Closure FPormulations

In this lecture we shall consider the relevance of the

theory of quasi-geostrophic turbulance to two-dimensional
turbulence; we shall consider the effects of various finite
difference schemes on the representations of turbulences.
I'inally, we shall consider some of the parameterisations

that have been proposed to represent the effects of unresolved
scales of turbulence on resolved scales.

Many authors (e.g. Horn and Bryson, 1963; Wiin-Nielsen, 1967;
Julian et al., 1970; Julian and Cline, 1974) have calculated
atmospheric energy spectra from observations. Fig. 1, taken
from Julian et al. (1970) is representative of the results.

It shows clearly the fact that the atmospheric spectrum falls
off between wave ng@bers 10-20 with a power law dependence

that is close to k ~. At about the time that these calculations
were being made, Kraichnan (1967) showed ;hat two dimensional
turbulence has,two inertial ranges, a k energy/cascading
range and a k ~ enstrophy cascading range. 'The enstrophy range
does not cascade energy and vice versa. Moreover, the directions
of the transfers are opposite in the two ranges so that if the
enstrophy cascade is to short wave-lengths, the energy
(de)-cascades to long wave-lengths, and vice versa.

These properties of the two-dimensional turbulence were deduced

from the two conservations laws of energy and squared vorticity

(enstrophy). Charney (1971) pointed out that three dimensional

quasi-geostrophic flow is governed similarly by the conservation
of energy and of guasi-geostrophic potential vorticity.

A concise derivation of this latter conservation law is given
by Charney and Stern (1961).

The quasi-geostrophic equations are

;gé %‘Ei?eg?}gi?z%i4%§§k§§ %iﬁﬂj§}§§§@$§§ 20 j
f%ﬁfﬁ%@% +» Wy =0 X

&

where Y is the stream function, yw is the lowest order term

in the non-divergent wind, N is tﬂe buoyancy frequency and s
the Coriolis parameter. Using the non-dimensional continuity

eguation

PR 7 g
é? g{é{@wa% %%;ik? @§,§:§§

3

where p is the horizontal mean density and V_ is the lowest
2a

order term in the divergent wind.



-257-

20 T NN B B S e mu R A n 2 LR TS T
500mb - WiNTER, 50°4
¥y o
1o~ 2 on -
sl- J
.c.': ]
o ,
i
b -
[l
X liz
Wyt
Ve —
N LEGEND R
. G O Cbjective analysis, -1
08— 360° long h
[ | X X Objective analysis, -
05~ 120%4 W €0 N
04 .
o
o2l . [ A o R TRy I 1l
. 2 4 € 810 IS 20 30 40
HEMISPHERIC WAVE NUMBER, K
fic. 1. Kinetic energy specira, 500 mb, 30N, for the winter
season (dafa sets Liv and ITw, Tuble 1) plotted on a full Togarithmie
seale. Shown are the spectral estimates using data from all
longitudes aad fora 1807 segment from 1200 1o GUL. For purposes
of compurizon all estimales have been standurdized by division
by the estimate for wavenumber 6. Julian et al.
(1970)
(S —
108 TT T 107 T
E = - .
- ] O 7
10% 10°

T T T

> 9

[

% w 107F
= = “
&) © L

- \ -

103k \ 0%} =

C WINTER 1964 3 - SUMMER 1964 \]

- oTT ] - g T-T

- N T - - T NTT 2

L e—— U - e e (] -
....... v . Y

|02 S W WG IOZ W S W B R T

10° 10! 100 10
K WAVENUMBER K WAVENUMEIR

Fig. 2 Theolserved power spectra of #, v, and (e/NWT /T
at 40N and 300 mb {for winter and summoer 1964 25 a function of
the hemispheric wavenumber A= ;.



- Now eliminate W and V.XO to give

{%%@*ga?ag}@gé@ +BY% =0, 4
wore fw=vry s B (GH)

If we multiply this equation fCSD@CthLlV by DW and EL(w)
and integrate over space we get an energy equation and an
equation for quasi-geostrophic potential enstrophy

d([a(reay s & y)edcdydy =0 5o

Yt |

é? | féﬁ?ﬁﬁ%@ dxdyds = gﬁggﬁ{% %gg%}gg@@%g% (56

Let us suppose that %%@ O ok % 3¢
o & ™
is an isothermal surface, Then

dg °°
Suppose the flow is periodic in the x-direction and is
3 Iy 8 =3 A y
bounded by walls at sﬁ = %;g 3 ﬁ@%

Jls

.e. that the ground

Then L is a self- dd]Olnt elliptic operator with a complete
orthonomal set of eigenfunctions wm with eigenvalues Km

satisfying the homogenous boundarv conditions (w )y = 0
at z = 0 and either @ é?%ﬁmg = O orgé%@f’m%%ég%@ as g 0o

Now we can order the ). so that & § 3%, £ An ¢ oo
and so that 3%@% P P8 T AS pa e an

Moreover, the modal surfaces of these eiger
the fluid into m subdomains of volume e.

From ﬁompl ateness of Lho w we have

%ﬁ ﬁﬁ\%ﬁ%@ﬂ

and we can show that

o -
=N ' s Conwe Y
QE - %m "}m @“m e %2 Byn @@»sw%@@
o T s 4= conalink £
g 5o o & Fen, T = AFPTH
g9k = & Awm G g

§
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. Since the series for F majorises the series for T by
the factor Am which tends to infinity like ¥\
an energy cascade is impossible.

This is not true if the ground is not isentropic or
isothermal. In such a situation, we can have the formation
of frontal near-discontinuity and therefore an energy cascade.

Assuming that the flow in the interior is not substantially
influenced by the presence of the boundaries and assuming
that ‘

H
1. the horizontal scale is small compared to &)" fo )
the Rossby radius, and the vertical scale in the
stretched coordinate = is similarly small,
de N,%o a3 y

2. the excitation energies are so large that the B-term
is small compared to the advection terms,

3. N varies more slowly in the vertical than does the
turbulence intensity,

4. away from boundaries the turbulence is locally
homogeneous and isotropic,

5. non-linear interactions are local in wave-number
space, o

6. the input energy is high enough to guarantee an
inertial sub-range so that there is no internal
viscous dissipation;

then the conservation law for quasi-geostrophic potential
vorticity becomes

Tx;e‘= :F(Vﬁﬁl)7t) : 9
where x = g‘g%) Y » a: = %d} and
VX = X+ Xyy * Xpp

Charney then presents arguments to support his contention
that ( KnyKys Xr) is homogenous and isotropic in X, ¥ ¥

Then, following Kraichnan the scalar energy spectrum E(k)
depends only on the quasi-geostrophic potential vorticity
dissipation function'q . Then, by dimensional arguments,

ER = Cp e K> whue k= ki + ki +ks 10

Because of isotropy, the energy spectrum for xx ,Xg,x3

~ has the same form. Thus, there is equi-partition of
energy among the X, y components of kinetic energy and the
available potential energy.
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Tig. 2 shows calculations of energy spectra from real-data

Kao (1970). We notice the approximate equi- partltlon when
the temperature departure T - T is scaled by geﬁ? , and
-3

the approximate k™~ behaviour beyond wave number 8.

We note as a consequence of the theory that kinetic energy
dissipation must take place mostly in the longest waves, in
the boundary layer at the surface and near tropopause.

It should be clear from these results that the maintenance
of conservation laws in numerical models is of crucial
importance for the long term behaviour of the flow.

The adiabatic eguations of motion have an exact conservation
law due to Ertel

f0220 “

where s is specific entropy. The quasi-geostrophic potential
vorticity is an approximate form of this conserved gquantit

In hydrostatic flow a similar law obtains except that &

is replaced by its vertical component and @yg} is computed

as if the vertical velocity were zero.

It iz possible to formulate a model which will conserve
this quantity although such a model would be expensive because
we would have to use iterative methods to extract either winds

or temperatures from the non-linear potential vorticity.

The finite difference formulation to be used in the Centre's
first forecast model will conserve energy and for horizontal
non-divergent flow will conserve §3§i where 7 is the
absolute vorticity about the local vertial and Pg is the
surface pressure,

Sadourny (1875) hag considered the effects of incorporating
the conservation laws in the finite difference scheme. He
took two almost identical models for the shallow water

+o - -
equations on a (non-rotating) plane with doubly periodic

boundary conditions. There were slight differences in the
rotational terms of the equations such that one conserved
energy and the other potential enstrophy.

The finite difference grid was the same. The timestep

algorithm was the leap frog scheme. Every n time steps the
fields were averaged according to

%%@WE@Q@@% 0.5 [ ¢{nat) + ¢ i (nei)at]]
%%gwa@&@} s 0.5 [ 4 {vet] %%ﬁﬁg@ée@mﬁg
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and the integration was restarted from the fields on the
left. Sadourny used ¥ =Bﬁv as a measure of the
dissipativity of the time differencing. On this measure
the posential enstrophy scheme was much more stable than
the energy scheme (Fig. 3).

Having found a critical Ve, for each model, he then integrated
each model for a long time. In the energy conserving model

Z, the potential enstrophy, grows very slowly for a long time
after which there is a catastrophic change in the behaviour
(Fig. 3). 7Z grows rapidly to a new equilibrium level and
there is a marked energy dissipation.

Sadourny's comment was '"the triad inter-actions in the

smaller scales are far from accurate, their structure being
essentially governed by the intrinsic conservation properties
of the finite difference scheme. They produce three-dimension
like energy exchanges in the absence of formal enstrophy
conservation. The effect of the smaller scales becomes pre-
dominant around the critical time, accounting for the enstrophy
increase'.

The behaviour of the enstrophy conserving scheme is quite
different (Fig. 4). Enstrophy dissipation is more marked than
energy dissipation and both energy and enstrophy are very well
conserved. At first sight this is a most surprising result.

However, the effect of the enstrophy conservation is to keep
the energy in the longer wave lengths. These are in turn
treated much more accurately so that the effects of non-
conservation of energy are thereby reduced.

Fig. 5 and 6 show the equilibrium energy spectra for the
rotational and divergent wind in the two models after a long
period of integration. The spectra are quite different for the
rotational wind and rather similar for the divergent wind. In
the energy preserving model there is equipartition of the
rotational energy. The rotational energy in the other model
has a k 2 spectrum corresponding to an equipartition of
enstrophy.

In both models the divergent energy is almost equi-partitioned.

There are reasons for believing that if a quantity is equi-
partitioned in a truncated simulation such as Sadourny's,
then in the real world the same quantity will be cascaded to
smaller and smaller scales.

Thus, there are reasons for believing that in truncated two
dimensional flow there may be a cascade of divergent energy
into the dissipation range.

By the same arguments, the energy conserving model has a
tendency to cascade energy to small scales while the enstrophy
conserving has a tendency to cascade enstrophy to small scales.
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This experiment indicates the profound importance of the
correct formulation of conservation laws for long term
integrations. It is still not clear if the conservation
is equally crucial for medium range forecasts.

Eddy viscosity

As we have seen, the enstrophy conserving two dimensional
adiabatic model will tend to cascade enstrophy into the
shortest scales. If we are to represent the effect of the
unresolved scales on the resolved scales, then we must
represent the important features of the cascade by removing
enstrophy at the shortest scales. Similarly, in three
dimensional flow the tendency will be for a cascade of energy
into the shortest scales, and this must be removed.

Kraichnan (1976) has studied the effects of a linear eddy
viscosity using a turbulence closure model for isotropic
turbulence known as the Test Field Model (TFM). With this
model he could calculate analytically the equilibrium energy
spectrum E(k) and T(k/km) the total rate of energy transfer

per unit-mass to all wave numbers above a given wave number
k where the triad interactions involved (k, p, ) were such
that one wave number, say, k < km and p and/or g > km‘

He defined an effective eddy viscosity acting on modes of
wave number k due to dynamical interaction with wave numbers
> k.

m

V(klkg) = = T(RIka)/[2RER] k< kn 2

If we are in the inertial range in 3 dimensions, then the eddy
vigcosity can depend only on the dissipation rate and the
cut-off wave number, so that

VRl = RS En heckn 3

Fig.7 shows the normalised eddy viscosity

v (klka) /v (0, k)

in the three dimensional inertial range. We see that the
value is close to 1 for all waves such that k < k

i.e. for all waves longer than @m&%, Kraichnan concludes
that if we are not concerned with accuracy in the wave-
length range 28X to 48Y then an eddy viscosity is
apparently quite satisfactory. This wave-length range
includes half of all possible wave-lengths.
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Fig. 8 shows the effective eddy viscosity in two dimensional
turbulence if k_ is in the energy inertial range. In this
range, we expec@ the energy cascade to be towards longer
waves and so it is no surprise to find that for almost all
wave-lengths, the eddy viscosity is negative.

Finally, Kraichnan considers the suitability of an eddy
viscosity formulation if the cut-cff wave number is in the
enstrophy cascading range of two dimensional turbulence.
He finds that the general features are similar to those in
Fig. 8 with some important differences.

i. 4if ko is the (low) wave number characteristic of

the wave lengths of excitation(ko < < k, )then the
enstrophy transfer is concentrated in a region of
width k_ at k_,
o m
2. the transfer is not proportional to the enstrophy
intensity f) (k) but to the derivative éﬁﬁkﬁék

The first feature means that the transfer curve
does not scale with km alone but also with ko, a
parameter outside the inertial range. The second
feature means that in x space the transfer cannot
be well approximated by an operator in the form
Veddy U° . Instead the enstrophy transfer is
better described as a diffusion process in wave
number space.

Having considered some of the problems involved in representing
the effect of unresolved scales in three dimensional, two
dimensional, and quasi-geostrophic turbulence, we now take a
look at what has actually been used in numerical forecasting
and general circulation studies.

In early studies with numerical models the use of a v eddy V?
dissipation was found to have practical problems. The range
of resolved scales was so short that a v large enough to
control the shortest wave-lengths had a severe damping effect
on the longest resolved waves. 1In other words, the V?
operator, which acts globally because of its linearity, is not
sufficiently scale selective.

Smagorinsky (cf. Miyakoda 1973) presented a rather novel
approach to the problem.

The Reynolds stress terms in the equations of motion may be
written in the form:

L USRI .- a
ok T DY) i Te- *
Ty = Wpn s
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Since A{ﬁj is symmetric we may postulaté

where S<ﬁ‘ is the deformation field, the symmetric part
of the strain tensor.

If the turbulence is two dimensionally isotropic so that
_ .p Ji#3
\(v‘.j = Ky ‘f’ 1j=3

K ".j - 3 otherwise

fem--fxumwmr«-fxz.t(%)‘ 2 Jan 1

where € is the kinetic energy dissipation rate and
:D‘l‘ - S“ = ‘Sn D¢ = §,, =Su;

so that

8” o Kh(’j; *19})

)

18
€& ~ K3 ( u-a“'v;)

Now if we are in the energy cascade range of three dimensional
turbulence then the only parameters that will determine the
coefficient KH are the energy dissipation rate and the cut-off

wave number kH , V*

Then, from dimensional considerations
h% -
Gy % 60 (Ry) Ky o E(ky)

We now use the estimates 08) for the dissipation to eliminate
the dissipation and find

KH&()S DT) khht
Ky d&(“%*”% km;

19
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>
Ky = 2{&@&52} @{?%@? | 20
L

Leith (1972) considered the equivalent problem in two
dimensional turbulence where the energy cascade is
asymptotically zero and the dynamically relevant quantity
is the enstrophy cascade rate ﬁ

Using a very similar argument to the above he found for two
dimensional turbulence

3
that Wy < f{%{@, &3}} gﬁfg

where g'«i‘: wam%,

Smagorinsky's formulation has been widely used but I have not
been able to find any published reports on the use of the
Leith formulation.

Corby, Gilchrist and Newson (1972) have used a formulation of
the form

% y

Q%%; . Y gﬁ?@@‘?
The major difference between these formulations and the
veddy V? formulation is the fact that the latter operators
are non-linear and so tend to be local in their effects rather
than global. In other words they reduce local extremes of
curvature of deformation or vorticity gradient but have little
effect where these guantities are small.

Y &« =W, VT 2

Williamson (1978) reports a series of experiments where he
used an even more scale selective diffusion of the form

V?KV? where K is the same as the K, of Smagorinsky's formulation.
He found that this had beneficial &ffects on long wave behaviour

) e 5 . . N ‘
by confining the dissipation to the shortest waves.

To summarise then:

- The constraint of quasi-geostrophy imposes a conservation
law on the three dimensional flow that is similar in form
to the enstrophy conservation law for two-dimensional
turbulence;

- provided that one can neglect the presence of boundaries,
and the heta efifect, that one can assume that non-
linear interactions are local in wave-number space and
that the turbulence is locally homogenous and isotropic,
then one can argue the existence of an inertial range
which cascades quasi-geostrophic potential enstrophy
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and such that the energy follows a k—3 power law;

for three dimensional turbulence, Kraichnan's
recent work indicates that a simple eddy viscosity
may be quite adequate provided one does not need
information in the 2Ax to 4Ax band of wave-lengths;

for two dimensional turbulence when the cut-off
wave length is in the enstrophy cascade range,
Kraichnan's results indicate that an eddy viscosity
formulation is likely to be quite unsatisfactory.
Moreover, for wave-lengths much shorter than the
cut-off wave-length, the eddy viscosity must be
negative;

the range of validity of the k™3 law for atmospheric
flow is not clear. It seems unlikely that it can
apply for scales less than 500km in mid latitudes.
Direct measurement of the spectrum down to scales

of 500 km may be possible during FGGE. For shorter
scales, the law could perhaps be tested using a
numerical model that conserved the Ertel potential
vorticity; : B

observations indicate that relatively little of the
atmosphere's energy is dissipated internally, the bulk
of the dissipation takes place at the surface boundary
layer and in an internal boundary layer near the
troposphere. The finite difference scheme presently
used in the Centre's models should inhibit a cascade
of energy into the smallest scales;

in the absence of clear information on the expected
structure of the atmospheric spectrum in the 100 km-500km
range one should, with a 100km resolution, use a very
scale-selective diffusion and one should make it as
weak as possible and have the bulk of the dissipation
done by the boundary layer and the region near the
tropopause.
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