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ABSTRACT

The investigation is concerned with the impact of
initial uncertainties on predictions. The problem can be
solved in an exact manner for sufficiently simple nonlinear
systems where an exact solution of the deterministic non-
linear problem is known. Examples of this kind are given in
Sections 2, 3, 4 and 5 in which comparisons are made between
exact and approximative solutions. The latter solutions- are
obtained either by simple closure schemes or by Monte Carlo

calculations.

It is found from the examples that the behaviour at
large times of a given system depends on the number of
asymptotic steady states of the deterministic system and on
the nature of the probability density function. Large devi-
ations exist beiween the deterministic and approximative
solutions if the initial uncertainties are non-negligible as

compared to the mean values.

A closure scheme, based on the neglect of third and
higher moments, may introduce steady states not present in
the exact stochastic-dynamic treatment. The exact and approxi-
mative solutions are very different if the initial state is

selected close to such a false steady state.

In some of the examples it is seen that the asymptotic
values of the uncertainty may be less than the initial un-
certainty. This behaviour may be due to the fact that the

sum of the certain and uncertain energies is conserved.



1. Infroduction

The problem of incorporating the initial un-
certainties in an atmbspheric prediction model has been
considered by Epstein (1969), Fleming (1971a, b) and
Pitcher (1974) who use a stochastic-dynamic approach.
The stafistical—dynamical methods in Weather forecasting
have been reviewed in detail by Leith (1975). The
investigations quoted above concentrate in general on
simple models of the atmosphere and apply furthermore to

short-range predictions.

The incorporation of uncertainties in the initial
state in predictions is not é problem unique to the
atmospheric sciences, but applies to any scientific field
in which predictions based on a quantitative model are
made. Errors or uncertainties in the initial state will
make the predictions uncertain. Even if the quantitative
model were a true description of a natural phenomenon,
we must expect that the predicted state is. inaccurate

because it is influenced by the uncertain initial state.

In a non-linear model we will often find that the
uncertainty increases markedly during the first period
of integration whereafter the uncertainty asymptotically
approaches a level determiﬁed by the properties of the
system. However, the behaviour of a given stochastic-
dynamic system at large times has not been investigated

in detail due to the extreme mathematical difficulties



in dealing with non linear systems. The present investi-
gation is naturally also incapable of giving general re-
sults but it has been possible to treat some simple cases
in detail. Tor these cases we can determine the asymp-
totic state either by analytical or numerical methods.

Some of the examples are taken from the simple models
which are used in determining the growth of populations

in theoretical ecology while others are of a meteoroloéical

nature.

The fact that exact solutions of the stochastic-
dynamic problems can be obtained in certain cases gives a
possibility to compare these solutions with stochastic-
dynamic solutions obtained from a certain closure assumption.
Although the closure scheme in this paper is limited to
the neglect of third and higher order moments, it is
naturally possible to investiage other closure schemes by

similar methods.

The behaviour of a stochastic-dynamic system at
large times depehds on whether or not asymptotic, steady
states exist. In addition, it turns out that the proper-
ties of the probability density function are important for
the asymptotic state of the dynamic system when it is
considered from a stochastic point of view. If only one
asymptotic steady state for the deterministic system
exists within the region covered by the probability
density function, it appears that the stochastic-dynamic
prediction will also approach an asymptotic state which

may or may not coincide with the deterministic steady



state. However, if the initial uncertainty is small,
there is little difference in our examples between the
deterministic and the stochastic-dynamic steady states.
On the other hand, if two deterministic steady stafes
exist within the region covered by the probability
density function, iﬁ is found in ouf examples that the
asymptotic steady state for the stochastic~dynamic
system is between the deterministic steady states.
Even more complicatedsituations are likely to appear

if several deterministic steady states are present.

In some examples we find that the initial un-
certainty gradually decreases and approaches zero at
large time. In other examples it is found that the un-
certainty, after an increase to a maximum approaches a
limiting value which in the cases consideréd here is
smaller than the initial uncertainty. While it is
impossible to make general conclusions from a few ex-
amples of an extremely simple nature, it is at least con-
ceivable that such a behaviour may be characteristic

for more realistic systems.
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2. A simple model for single populations

As our first example we shall select an equation
much used in theoretical ecology (May, 1976) to illustrate
a wide class of population equations with regulatory
mechanisms of a nonlinear nature. For our purpose it is
irrelevant that the equatidn cannot be taken seriously:
as a model of population growth because we shall use it
to illustrate some aspects of a stochastic-dynamic treat-
ment. In theoretical ecology the equation will usually

have the form:

d N

dT=rN(1——§—) (2.1)

in which N is the number of elements in the population,
r is the time, r is the "intrinsic" growth rate, and K
is an equilibrium value of N. We note from (2.1) that
if K is infinitely large, we have exponential growth
determined by r. It is also seen that as long as N< K,
N will be increasing, while N = K represents a stationary

point. For N>K, we find d N / d T<0.

To get-(2.1) in a more convenient form it is an

advantage to nondimensionalise the variables. Defining

x=N/K, t=r1rrt (2.2)

we find that (2.1) takes the form



é_g =x (1-x) . (2.3)

The solution of (2.3) is

x = X — (2.4)
Xpn - (¢ -~ 1) e ’

for the initial condition X = X0, t = 0. x>0 in a
study of population growth. In this case we find from

(2.4) if Xo>0, we will have x>0 for all t.

We shall now turn our attention to a stochastic-
dynamic treatment of (2.3). The idea is that the initial
state is not known with absolute certainty. It will be
assumed that the initial state is given by a probability
density function ¢ (x,to). As shown by Pitcher (1974)
and others ¢(x,t) satisfies a continuity equation expressing
the conservation law for probability. However, even more
important for this example Pitcher (loc. cit.) shows that
the expected value of x can be calculated from the formula

-+

x =E (x) = ( X (X, t) do (%c,to) dxo . (2.5)

i
L _o

The significance of (2.5) is that the integration
is carried out over xo using the values of ¢ (x,t) for
X = Xo and t = 0, i.e. (2.5) may be calculated without
even computing ¢ for t>0. However, x = X (t) may be
calculated for t >0 because of the time dependence in
X (Xo7t). We shall make use of (2.5) to calculate X =

x (t) in our example. To do this, we must assume some



form of ¢. (Xo,te).

In our specific case we are considering a problem
in which x> 0. It is thus natural to select a probability
density function which is positive for x> 0 but by de-
finition equal to zero for x< 0. One probability density
function satisfying these criteria is the Pearson type I1I

function defined by

b (’X) = (2.6)

’ X< 0

in which B and p are constants. It is easy to calculate
the mean and variance from the definition (2.6). The mean
is ¥ = B p while the variance is o2 = p g2. It is thus
seen from these expressions that given the mean value X

2

and the variance ¢ we may calculate the parameters

p=~—, B= . (2.7)

Using (2.6) and (2.4) in (2.5) we find that

(2.8)
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where
a=1-ce . ' - (2.9)

(2.8)umay be‘evaluated by introducing the new

variables

(2.10)

bl
i

B @ P - az '
. e dz . (2.11)
al(p) 1 + =z

[¢]

According to Gradshteyn and Ryzhik (1965), we have

p - az : a ‘
e dz = e p(p + 1) r{-p, 2),(2.12)

1 + =z

where T (-p, a) is the: incomplete Gamma function. However,

from Abramowitz and Stegun (1965), we have
E (a) = aP r(-p, a) (2.13)
. Tp*l o '

where Ep+1 (a) is the exponential integral (for details see

Appendix 4). |
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It follows therefore that

; P _ a
! 2 6T gy = & T p (e (2.14)
wy 1 4+ m ap p
and, finally, that
_ 2 '
X (t) = ';— P Ep+1 (a) . (2.15)
We note from (2.10) that
-1
o =1 + Ba (2.16)
and
£ = 1n. (1 + -2 o
. Bga ~ ° (2.17)

The formulas (2.15) - (2.17) are sufficient to cal-
culate x = X (t) noting that En (a) are tabulated functions
for the wvalues n;: 1, 2, 3, 4, 10 and 20. Values for

other parameters may be obtained by the recurrence relation

(2.18)

E (a) = % [ ™% - a B (a)j

n+1

The second moment may be calculated if we know the

integral
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[>,24 .
m,(t) = X5 e dx, - (2.19)
2 . o’(ocx,j,+1-oc)2 Bp I'(p)
Using the transformation (2.10) we get
a0
aP zp+1 -az

mz(t) = e dz . - (2.20)

a2 T(p) [ (1+z)?

The most convenient way to obtain the integral (2.20)

is to note that by setting az =y in (2.14), we may obtain:

a

D : '
/ Y 7Y gy = & T (p+1) Eq (8). (2.21)

yta

LR

The same substitution in (2.20) leads to

&0

1 yp+1
m,(t) = ——— — e Yay, (2.22)
a?1(p) / (y+a)?

which may be written in the form

(3.4

1 d yPrt
m,(t) = - —— — eV ay |. (2.23)
Q

a2T(p) da (y+a)

Upon evaluation, we get

1
a,
my(£) = — p(p+1) e [ Epiq(a) = B () (2.24)



and we may now obtain:

o(£)?2 = my(t) - ()2

As we shall see later, it is normally not

(2.25)

possible to obtain the exact integrals (2.15) and (2.24)

in applications because they cannot be expressed in

known tabulated functions. In these cases, it is there-

fore necessary to solve the problems by a closure

approximation. A simple, but frequently used closure

assumptioﬁ is the neglect of third and higher moments.

In our own simple case it is possible to test such a

closure assumption because we can evaluate the third.

Vmoment‘exactly. We begin by calculating

3

20 ‘
Xn 1 p—1
mS(t) = X

o (axn+1-a)> P T(p)

-The same transformations as béfofe yield

(<=}

my(t) = — /Y eV ay,
o adn(p) ) (yta)?

which may be treated as follows

1 1 d y
mB(ﬁ) = - 5 —_—

e B oax,.  (2.26)

(2.27)

(2.28)
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We find therefore upon evaluation

1 p(p+1)(p+2)

2 a3

m3(t) = e® Ep+1(a) - 2Ep+2(a) + Ep+3(a)

(2.29)

(2.29) may be used to calculate mS(t), and the third moment

may then be calculated from the formula

ug(t) = mg(t) - 3x(t)my(t) + 0%° .

(2.30)
We note first of all that the initial value of

Mo is different from zero in our example due to the fact that

we are using a Pearson type distribution. This may be

verified in our case by evaluating (2.29) for t+0, i.e.

a->w, Using the asymptotic expansion of Ep(a) for all three

terms in (2.29) we find that

lim mg(t) = B3p(p+1)(p+2) -
t->0

Using (2.30) we find then that

chL+

(2.31)

Ha(0) = 2pg3 = 2

X0

.

u3(0) is thus small whenever o, <<(Xg)
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On the other hand, for large values of t we find

‘that

limmg(t) = 1, (2.32)

t+oo
and according to (2.30)

1imy (t) = 0 - (2.33)

T
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3. Solufion by a closure assumption

It is normally not possible to provide an analytical
treatment as given in the previous section because the
integrals cannot be expressed in known tabulated functions
or because the deterministic equation cannot be solved in
a closed form. The common procedure in these cases is to
replace the deterministic equation by an infinite set of
equations which express the rate of change of the various
moments of the probability distribution. The set becomes
infinite because the equation for a given moment requires
information of a higher moment. In practical applications
it is thus necessary to introduce a closure assumption
which results in a finite set. Most common among the
closurevassumptions is the neglect of the third and higher
moments. We shall use this closure approximation to pro-
vide a second solution to the equation considered in
"Section 2. It -will thus be pdssible to compare the exact

-solutibns provided earlier to the new,approximate solution.

,Oﬁr starting point is. equation (2.3).» We introduce the
notations:
X = E(x)
vy = B[ (x-5)2 ] = B(x2) - R = o2 |
r o ' (3.1)
=2l (x-%0¢] = B(x3) - 3xy, - X° '

H3

T~
£
i

Bl (X—i)”],= E(x4) - 4Xujz - 6Xti, - x*
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Applying the operator E to (2.3) we find

dx _ 9
oo x %2 (3.2)
dt

where we have written u = usy.

An equation for du / dt can be obtained from the-
second expression in (3.1) by differentiation with respect

to time, i.e.

dyu dx dx
—=E (2x — ) - 2X — . (3.3)
dt , dt dt

Evaluation of the expression in (3.3) leads to

du
— = 2u (1 - 2X), (3.4)
dt

where we have neglected the contribution from the third
moment. The remaining part of this section is devoted to
obtaining a solution in closed form of the system (3.2)
and (3.4). We note that in most applications it is
impossible to obtain such a solution and the equations
must then be solved by numerical methods, but in our
simple example we can reduce the system (3.2) and (3.4)
to a solvable nonlinear differential equation. We in-

troduce the new variable

y:ln.U,A u =ey (3-5)
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The system becomes

— =X - X - eY
dt
11 gy (3.6)
X == - — —
2 4 dt

Substituting from the second into the first

equation of (3.&) we get

dzy 1 ,dy 2
_ - -( ) =4eY - 1. ‘ (3.7)

at? 4 Vat

(3.7) can be reduced to a first order equation

by writing
dy 2
p = p(y) =<—— ' (3.8)
dt
and we find:
dp 1
— - —p=28¢ -2 (3.9)
dy 2 .
with the solution
1
p=(16 ¥ + 4) + C, e?¥ =16 u + 4 + C, V1

(3.10)

The integration constant C, i$8 determined by

the initial conditions, X = X5, U = Uy at t = 0
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We find that

16
C, = — | %a(Xo-1) -to | - (3.11)
/iy

Introducing finally o = Vu, we may write (3.10) in

the form

do\2 ’
(——> = g2 (402 + iC,o + 1) . (3.12)
dt

(3.12) can be solved in a straightforward way by
separation of variables. We .obtain first t as a function
of o and Co. However, this expression may after some

manipulation be written in the form

-t
. e
G = g, — , s
[ (Fom00)=(Fo-0s -1 ™[ (R0 )~ (Fotos-1)e 7]
(3.13)
while X = X(t) may be obtained using the second equation

in~(3.6)'giving

Wy
I
[\let—-l

e
'[1_i (1+%C00+402)zj (3.14)
‘with- -

(3.15)

]
Q
Q\

Il
(——
i

Q
~
el
JSL° S
!
| —
3
i
Q
Q
()
‘\__J
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The.double sign in (3.14) is to be understood in
such a way that we select the sign giving X = X, when
o = o.. (3.13) - (3.15) provide thus the detailed

solution in a closed form.

The solution obtained from the closure approxi-
mation has some properties which are different from the
exact solution given in Section 2. For example, if
%, = 0, = 0.5, we find from (3.13) that X = 0. = 0.5 at
all times. This behaviour is not found in the exact
solution. Furthermore, in the case of X, = 0o, it is

seen that o = o(t) is

On
o = - T (3.16)
20, - (20, - 1)e”

and it follows from this formula that 1lim o = 0.5 and

tro
therefore that 1im%x = 0.5. Apart from these special
tre :
cases, we find- that limo = 0 and limx = 1, in agreement
T+ tore
with the exact solution.
The case X, = 0e = 0.5 is illustrated in Figure 1la,

b, and c¢. Figures la and 1b éhow that the closure solution
(x = ¢ = 0.5) deviates radically from the exact Sdlution.
Figure 1lc shows that the third moment ug becomes small and
negative rather rapidly before it goes to zero.for large
‘times. The case illustrated in Figure 1 is very special
because it is a steady state in the equations after the
‘closure assumption has been introduced. A more typical

case is- shown in Figure 2a, b and c. The parameters are



corresponding to p = 3,

B =0.1. Figure 2a shows the exact solution X = x(t).
Points from the closure solution have been given by

small circles. It is seen that a good agreement exists
between the two solutions for x. Larger differences

exist between the exact and closure solutions for

o = o(t) as shown in Fig. 2b. The third moment calculated
from the exact solution is shown in Fig. 2c. After some

oscillations for small t, uz approaches zero.

Figure 3a, b and ¢ illustrate a case where X, =

pol-

19 = 4.36, o, = 1 corresponding to p = 19, B = 192 =
0.23. Fig. 3a and 3b show a very good agfeement between
the exact and closure solutions for both X and o. This

is due to the fact that the third moment shown in Fig. 3c

is small initially and remains so for all times.

The model used in Sections 2 and 3 has been limited
to positive values of x because it applies to a given
population. However, as a mathematical model it has
nevertheless solutions if x,7 0, but these solutions will
approach -« for a finite value of time. Due to the fact
that we have selected the probability density function
(2.6) which is limited to the positive domain, we have
not had to coﬁsider the solutions for x,.0. It is of
interest to consider the stochastic-dynamic solution
briefly in such a case. We may easily do this by assuming
that the function (2.6) is replaced by a Gaussian

distribution, i.e.
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: 1 ‘X—iwzw
p(x) = —— exp| - — (3.17)
V2T 0/2/

in which case X = X(t) is calculated from the following integral

_"12
Xp=Xe

X4 1 1 00v2
X = — e dxs . (3.18)
aXo+l-0 0, VY2T .

Since the integration with respect to xo covers the
whole region from -= to +~ , it is obvious that the inter-
grand for each value of a=oa(t) will go to infinity. We
cannot be sure that the integral (3.18) is finite under

these conditions. It turns out in this particular case

that ¥ = X(t) is finite for all t as we shall show below.

We introduce the transformation

X, —X
L o ae 3.19
£ = * ( )
oo V2
and obtain
1 1o 1 (1 -g2
X = - - ——— — _—_ e de (3.20)

where

aXg+1l-0

of,O’D\/é
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Infroducing further
z = E+n (3.22)

we find that

1 (1-0) 1 [/ 1. —(z—n)2
— — - e dz! (3.23)
o acg, V2 Vn | =z -

XS

The integral in (3.23) has been evaluated in
Appendix 1 of this paper. Using the result from (A12)
we may finally write | |

R R S

— D(n) BN CE L

A o . O

where D(n), known as Dawson's integral, is

D(n) is a tabulated integral. We note from (3.24) fhat

. for t »o o+l we flnd x+1 In Splte of the fact that

x(t) 1s unllmlted for negative Values of x we flnd
thereforé that x(t) is finite and well behaved. Figﬁre
4 shows an example calculated for X, = 1.1, 60 = 015
jvu31ng (3 21) and (3 24) for the calculatlons It éhould
:also be p01nted out that the 1ntegra1 m,, (t) u81ng the "
".Gau851an dlstrlbutlon is. 1nf1n1te and 1t is thus not

posslble’to.cpmplete the'whole analysls in thas:casgi”
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4, Another simple model

The example treated in Sections 2 and 3 is the
most Simple model for the changes in a population of a
single species. More complicated models exist, but we
shall select a second example which to a large extent can
be solved in terms of known functions using the stochastic
dynamic approach. We shall furthermore select our |
example in such a way that x = x(t) is finite for all x
at all times. It is assumed that the population is

governed by the equation

— = X - X3 . (4.1)

The deterministic solution is most easily ob-

tained by introducing y = x2 leading to
2
— = 2y - 2y (4.2)

with the solution

Y.
y = - 3 ) (4.3)

v. - (y. - 1)e-2t

where y. = XOZ and X, is the value of x for t = 0. We

get therefore




XU
X = 4.4
(OLXOZ‘*'l—OL)% ( )

where o« in this case is defined by

o =1 - e 2t (4.5)

We note from (4.1) that three stationary states

exist, i.e. x = 0, x=-1 and x = 1. It isapparent that of these

x = 0 is an unstable stationarystate while x = -1 and

X 1 are stable. In addition, for x, >0, we find x>0

for all t and 1im x = 1, while xXo< 0 leads to x<0 for
tre

all t with limx = -1.

tro

We shall again seek to make a stochastic dynamic

treatment, i.e. we want to evaluate

%X = X(t)=] x(x,,t) ¢ (X, te) dxo . (4.6)

-

The present example is more interesting than the
previous one because we have two possible asymptotic
deterministic states, x = 1, and x = —i. If we want to
avoid any diffiéulties from, say, x =-1, we may naturally
do so by selecting a probability density function p(x)
having non-zero values only for x> 0. A suitable candidate
is then the function ¢(x) defined by (2.6), and this 1is
the choice which should be made if X representé the number

of elements in a population. On the other hand, if the
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physical nature of x is such that it can take both positive
and negatiye valueé, we would rather select a distribution
of the type (3.17), i.e. a normal distribution. Since we
do not have a particular interpretation in mind, we shall

investigate both cases.

Starting with the the Gaussian distribution, we

must consider the integral

: - 2
XO —Xo >

o0
1 Xo B ( 00/5—
X = L e dxs ., (4.7)
0o V21 (axu2+(1-a))*

Before we consider the evaluation for an arbitrary

value of t we shall consider the value of (4.7) as t-o,

We note then that for t-~ we have o = 1 giving x(x,,») =1
for x,>0 and x(x,,>) = -1 for x,< 0. To find X(=) we write
o 2 e
_ 1 hjf (%O—xc> 1 v(“ X, -X¢
X(w) = = —— exp | - dx, + exp | -
o, V2m o, V2 oo V27 q, V2
-~ [«]
(4.8)

By replacing xo by (-x.,) in the first integral, it
is straightforward to calculate each of the integrals. We

get

| %,
(o) = erf( ) (4.9)
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It is thus seen that in this case where we have two
asymptotic sfatés in the deterministic equations, we have an
asymptotic state of the stochastic dynamic problem different
from any one of the deterministic asymptotic states. As long
as o, is small compared to X,, i.e. when X, / (06o¥V2) is large
and X, is positive, X(=) will differ only slightly from unity.
Similarly, when X_/ (o,v2) is numerically large and X, 1is
negative, X(=) will be very close to -1. In other cases,.

there are larger differences. As an example, 1if Xg = Og =

0.5, we find X(») = 0.68.

To compute the second moment, we consider first the

-\ 2
_ (xo—xi
1 - x_ 2 o, V2

mz(t) = \J e dx, . (4.10)
2m

integral:

For t+=, oa»1 we find that mz(w) = 1 and therefore that

1

%\ ¥
o(=) = (1 - erfz( /ﬂ) (4.11)
. Oy 2 .

indicating that o(«) is very close to zero ific / (0.Y2) is
large. Using the above example, we get for X, = o, = 0.5

that o(«) = 0.73.

We shall next turn our attention to the time dependént
problem. The evaluation of (4.7) is done by the trans-

formation (3.19) leading to
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_ 1 [‘“” X, +0g V2E —g2
x(t) = — e dg (4.12)
/1 [a(Ro+o, /2E)2+(1-0)]

while m2(t) becomes

i

1 (X, +o,v/2E)2 ~g2
mz(t) = — e dg . (4.13)
o a(ic+cc/§£)2+l—'a

—d

Since it has been impossible for the author to find
analytical expreésions for the integrals (4.12) and (4.13)
in the general case, we must use numerical methods. Integrals
of this type are most conveniently evaluated using the approx-
imations using the properties of.the Hermite polynomials.
A direct evaluation of (4.12) and (4.13) can be performed'
for the special case X, = 0. We find that x(t) = 0 for all t,

while
_ 0 1 52 ‘
my(t) = o(t)” = —{1 - /n.8. e (1 - erf(B)}}. (4.14)
o :

(4.14) will be used later in order to make a.comparison

with a closure solution.

We are next going to consider the problem using the
probability density function (2.6) and thereby restrict the
variable x to the positive domain. The following integral

must be evaluated:

x(t) = X, e ax, (4.15)
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The evaluation of (4.15) creates problems for an
arbitrary value of p, but if p is a positive integer, we may
obtain solutions in a closed form. To accomplish this, we

introduce the variable z by

1 1-a
X, = Baz, a? = — . , (4.16)
B2 «a
We get then
a? 2P —az
x(t) e dz . (4.17)

) Var(p) J V1+z?

We note that

<1 b
—az = — - 4.18
v(@ e dz ; FE, (a)-Y,(a)) ( )

Whereﬁﬂ; (a) is the Struve function and Y (a) is the Bessel
function of the second kind. The formula (4.18) may be used
to evaluate (4.17) for integer values of p. Differentiating

(4.18) p times with respect to a, we find

“ D p p
7 az g, o qyp [ ) TH () ) (a.10)
' /1+z2 2 daP da®?

The main problem is now to express the right hand side
of (4.19) in terms of#_, %ﬁl, Y  and Y, which are tabulated

functions. For this purpose, we have the formulas



dH, 2 day_
= - -l = Y, (a)
da i da
(4.20)
d}{I 1 dy 1
-Ho - - H, Loy -y,
da a da a
Using a step by step procedure, we arrive at the
following formulas:
a .'IT< .
p=1: x(t) = — /) — (F. (a) - Y. (2)) -1
_ /a 9 1 1 )
_ az T 1 B
p=2: xX(t) = —— — 44— It - Y) - FH, - Y.)
Ya 2 [a (4.21)
_ 1 a3 T [, 2 1
p=3: X(t) = = — 1+—-[(—-1)<H1~Y1>——-<Hc—Yo)
2 Vo 2 a? a

We note from (4.16) that

-1 - 1 1
o o= 1+ ptat, t=_ 9, 1. (4.22)
Bzaz

(4.21) and (4.22) can be used to calculate X(t) in
individual cases, and the results can be compared with the
results obtained from (4.12) and (4.13). Such comparisons
will be made later in this section. The solutions (4.21)
satisfy the initial condition that X(0) = X_,. We note that

t = 0 corresponds to a »=, By using the asymptotic expansions
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of H, - Y, %nd~bﬁ - Y,, it is possible to show that the
initial condition is satisified in the cases in (4.21).
We note also that for t+e, i.e. a = 0, it holds that

(=) = 1.

To calculate the second moment, we need to evaluate

wo Xeo

' x02 1 p-1 ~ B
m2(t) = . Xo e dx,.(4.23)

5 0"on""l_O‘ Bpr(p)

Using the same transformation as before we get

i oo

ap ) Zp+1 —az
mz(t) = e 77 dz . (4.24)
aT(p) 1+z2

The following two integrals are known:

'22n+1 "
e™®% 4z = (-1)™1 | ci(a) cos a + (Si(a) - 3) sin a
o 1+z2
n
1 k-1
S > (2n-2k+1)1(-a%) (4.25)
o
a k=1
and
= 2n |
Z m

Ljn 5 e 7 dz = (-1)" | ci(a) sin a - (Si(a) - 5) cos a
1+z

1 = 2 k—l .
+ —— E (2n-2k)i1(-a ) (4.26)
2n-1 —
a k=1
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where Ci(a) and Si(a) are the standard notations for the
cosine and sine integrals Gradshtéyn & Ryzhik, 1965).
Using these integrals, we list the following results for

specific values of p:

- - 1
p=1: m, = a 1a a L_ Ci(a) sin a + (Si(a) - %) cos a
. -1 I~ _ 7
p=2: m, = o a2 a 2 + Ci(a) cos a + (Si(a) - %) sin a
- | - (4.27)
p=3: m, = %a_las a_3(2—a2) + Ci(a) sin a - (Si(a) - %) cos a
I _
-1 4[ - 2 ]
p=4: m, = %a a a 4(G—a ) - Ci(a) cos a - (Si(a) - %) sin a
L .

From the formulas in (4.27) it is possible to show
that the initial condition is satisfied by using the
asymptotic expansions, and it can also be shown that lim mz(t)

toroo

=1, It is thus evident that lim oz(t) = 0,

‘t—)-ao

Comparing the results using the Pearson probability
density function with those obtained from the Gaussian
probability density function, we can conclude that in the
former case (equations (4.15) to (4.27))we find an asymptotic
behaviour similar to the case treated in Sections 2 and 3.

For large values of time X(t) will approach unity just as

the deterministic solution while the limiting value of a(t)

is zero. Using the Gaussian function, the results show

(see (4.9) and (4.11)) that X(t) and o(t) deviate significantly
from unity and zero for large values of t if the initial

uncertainty oo is large compared to the initial value of X,
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This behaviour is due to the fact that two asymptotic
states exist in the full domain from -~ to += used in the
Gaussian case while only one such state can be recognised

in the Pearson case.

We shall finally consider the problem using the
same closure assumption as in Section 3. Referring to
the procedure established by (3.1) we apply the operator E

to (4.1) assuming that g and Uy vanish, we get:

— =% - %° - 3% . (4,28)

setting g = He The expression for the rate of change of

¢ is found Dby noting that

du dx dx
E (2x —) - 2x — (4.29)
dt dt dt

Substituting from (4.1) and (4.28) in (4,.29) we get

du
— = 2u (1 - 3&2) (4.30)
dt

The system (4.28) and (4.30) form a closed system due
to our closure assumption. It has not been possible to obtain
general solutions to the system. Some numerical solutions
will be presented later. It can, however, be seen that the
system (4.28), (4.30) has stationaryistates not found in the

general exact solution. We note that x = + v3/3 and u = 2/9
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are such stationary states. In addition, the system has the

stationary states p = 0 and X = * 1 corresponding to the
deterministic equation. Of these four steady states, we
find by linearising (4.28) and (4.30) that the first two
states (* Y3/3, 2/9) are unstable while the other two

(i 1, 0) are stable. It is therefore understandable that
the behaviour of the solutions of the system (4.28),

(4.30) will deviate very much from the exact solution if

the initial state is close to the uﬁstable steady state.

As an example, we select an initial state X, = 0.5,

Ue, = 0.25 deviating slightly from the steady state Xg =
0.57735, u, = 0.22222, The solution, obtained numerically
from (4.28), (4.30) by the Runge-Kutta method, is shown in
Figures 5a and 5b. X(t) decreases rapidly from 0.5 to O,
u(t) increases very slowly at first (t <2), - but at the
time when X(t) becomes zero, u(t) increases very rapidly.
ThisAbehaviour is understandable from the system (4.28),
(4,30) because if X becomes zero it will according to (4.28)
stay zero. u will at the same time be governed’by the ‘

equation

du

2u \ (4.31)
dt |

which indicates an exponential growth, i.e.
2ty (4.32)

where n, is the value of u, when X = 0, and t, is the time
at which X = 0. When the curve (4.32) is plotted with

ty = 2.6 and p, = 8.72, we find agreement with the curve in

Figure 5b for t 2.6,

v
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We shall finally give some examples of calculations
based on (4;12), (4.13% on (4.21), (4.27) and on (4.28),
(4.30). Theée examples have been selected in such a wéy that
(4.21) and (4.27) can be applied, i.e. for small integer
values of p. The results show the influence of the probability

density function and the closure assumption.

Figures 6a and 6b show the case with initial conditions
X. = 2, 0,2 =1, It is seen that all three calculations
agree with each other for small values of t. However,'as t
becomes larger, the curve X = X(t) based on the Gaussian
probability density deviates more and more and approaches,
for large t,a value less than unity in agreement with (4.9).
AAsimilar deviation is found for u = u(t) as displayed in
Fig. 6b where the curve based on the Gaussian function,in
the limit for large t,approaches a value different from zero.
Figures 7a and 7b show the case X, = 0.5, 0,? = 0.125. In
this case, we find a somewhat larger deviation between the
curves based on the closure scheme and the Pearson distribution,

while the curves based on the Gaussian distribution deviate

considerably from the other two.
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5n Monte Carlo calculations

The calculations presented in the previous sections
show clearly that the solution given in (2.5) can be applied
only when X(Xo,t) is known in an analytical form. This is
generally not the case., One method to use is then to
introduce a closure assumption as described in Sections 3
and 4. However, it is obvious that this approach will lead
to very time consuming calculations in applications as has
been demonstrated by Pitcher (1977) who applied the stoch-
astic dynamic method to short-range weather predictions.
Another approach is to replace the stochastic dynamic fore-
cast procedure by a finite sample of deterministic forecasts
from different initial states. Such a Monte Carlo technique

has in the meteorological context been analysed by Leith (1974).

The use of the Monte Carlo technique requires a sample
of initial states. From each of these a deterministic fore-
cast is made. At any given time one may use the sample of
forecasts to obtain the most likely forecast and the un-
certainty connected with this forecast by suitable statis-
tical méthodso An average and a standard deviation computed
from the available sample of forecasts is normally a minimum
requirement. In using the Monte Carlo technique at least
two questions arise. The first is if the process leads to
convergence for a sufficiently large initial sample. It
has been assumed in previous calculations that this is the
case. The second question is how many elements we need to
have in the initial sample to obtain a reiiable estimate of

the average and the standard deviation during the forecast
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period. There is clearly no unique answer to this question
because the‘answer will depend on the forecast period and
the physical nature of the problem. However, for the shortQ
range meteorological problem, Leith (1974) has determined
that '"a Monte Carlo forecasting procedure represents a
practical computable approximation to the stochastic dynamic
forecasts" and that adequate accuracy should be obtained

with sample sizes as small as 8.

We shall use the model described in Section 4 to
explore some of the problems which will arise in applying
the Monte Carlo technique on a long time scale. Assuming
that we consider initial states in the interval from -« to
+o, we know that a positiVe initial state will result in a
forecast which at large times will approach +1 while a
negative initial state under the same conditions will approach
-1. It is thus clearly of importance to know if the initial
state, charactérised by a mean value X, and a Standard
deviation oo, with a high degree of certainty is in the
positive or the negative domain. For example, if X, = 2
and o, = 0.1, it islhighly unlikely that any negative
element should be in the initial sample, but on the other
hand, if X, = 0.5 and o, = 0.5, we must include both positive
and negative elements in the initial sample. To explore
the implications.of these very different situations, we consider
first the initial states. In Appendix 3 it is shown how one
can construct a sample of N equidisfant points having a
given mean value X, and a given standard deviation o,. We

may use the procedure to calculate a few examples.
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Figure 8a shows X the average x, as a function of

A?
time for the case X, = 2, o, = 0.5 and for a sample of 5
and 21 initial points. It is seen that the two cases co-
incide for all practical purposes. This is understandable
because the initial sample contains only points with a
positive value of xo, and the curves for each of these points
will approach +1 for large values of the time. Figure 8b
ShowsthatzisimilarstatementcanlxamédeforoA(t). From this
and other calculations we conclude that relatively few

points are necessary in the initial sample if all of the

initial states lead to the same asymptotic state.

We consider next the case %, = 0.5, oo = 0.5. In
this case the initial sample will contain some elements with
a negative value of x, and therefore an asymptotic state
of -1. As shown in Section 4 (see eg. (4.9) and (4.11)
we expect asymptotic states of X and o between -1 and +1
in these cases. In the particular example chosen here we
have X(») = 0.68 and o(=) = 0.73. TFigure 9 shows iA(t) for
initial sample sizes of 3, 5, 7,.., 13 points. It is seen
that while the curves coincide well for small values of t, there
are large differehcés at large values of t. We can explain
this behaviour by finding iA(m) for a number of sample sizes.
The procedure is very simple. All we need to know is how
many positive and negative initial states we have in the
sample. Each of the positive states will approach +1
and the negative states will approach -1 for t»+=. From the
formula given in Appendix 3, we can get this information.

On the basis of this procedure we have constructed the

following table.
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Table 1

The values iA(m) and EA(w) as a function of sample size.

N X, (=) g, (=)
3 0.3333 0.9428
5 0.6000 0.8000
7 0.5714 0.7285
9 0.5556 0.8315
11 0.6364 0.7714
13 0.5385 0.8426
15 0.6000 0.8000
17 0.5294 0.8484
19 0.5789 0.8154
21 0.6190 0.7854
23 0.5652 0.8249
25 0.6000 0.8000
27 0.5556 | 0.8315

The table indicates that neither the yalues of iA(w)
nor those of EA(m) approach a limiting value for the
relatively small vélues of N, the sample size included in
the list. The curves iA(t) and EA(t) are shown in Figure 10,
a and b respectively, for N = 5 and N = 21. We note the good
agreement for small t and the large disagreement for large t.
The question is if the Monte Carlo procedure is convergent, and
if so, what the limiting value is. We note first of all that
if all the initial values of the sample are of one sign the
process is rapidly converging to +1 if they are positive and
-1 if they are negative. The remaining problem is therefore

the case in which the initial sample contains both positive
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and negative elements. From Appendix 3 we note that a

sample of (2m+1) points may be written in the form:

x(kK) = %. - md + (k=1)d, k=1, 2, ..... ., (2m+1).

If the set (5.1) contains negative elements, they

are characterised by k < k., where

ke =<1l +m-7"g, (5.2)

where < > means the integer part of k-

Using (A.26) for d, we get

Xo

o./3

ky = < 1 +m -

Vm(m+1' > . (5.3)

Each of these negative elements will converge to
-1 for t +» while positive elements will converge to +1.

The average value of x at infinity is therefore:

(2m+1) - 2k,
X(=) = : - (5.4)

“(2m+1)

(5.4) reproduces the numbers ih the table except for
the case m = 3 (N = 7) because this special case includes
x = 0 in the sample. From (5.4) combined with (5.3) we

find that the limiting value of X(«) when m»= is
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ﬁ(w) = . (5.5)

The Monte Carlo procedure is therefore convergent,
and in our special case X, = 0.5, o~ = 0.5, we find that

X(=) = 0.5774 when the sample becomes infinitely large.

We note from (5.4) and (5.5) that quite large samﬁle
sizes are necessary to obtain a good apbroximation to the
value given in (5.5). In addition, it is seen that the
limiting value in the Monte Carlo procedure, with the
design of the sample as given in Appendix 3, will be
different from both the limiting values obtained from the
two probability density functions used in Section 4. Such
a result is to be expected because the Monte Carlo sample
is restricted to the region X_. - 0.V/3 < x < X_ + o /3
in the limit while the probability density functions cover

either the region 0 < X < @ Or - © < X < + o,

The main result from this section is therefore that
the Monte Carlo prdcedures will work very well and approach
the desired limiting value if the elements in the initial
sample belong to the subset having the same asymptotic state.
If the initial sample contains elements from subsets leading
to different asymptotic values, the Monte Carlo procedure
will still be convergent but the limiting value will be

between the asymptotic states for the deterministic problem.
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x|

3t

Fig. 5a : X = X(t) computed from (4.28) and (4.30) hy
numerical integration with inital conditions
%o = 0.5, @ = 0.5, i.e. p, = 0.25.
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6. A simple meteorological example

Some years ago the author (Wiin-Nielsen, 1975)
considered some aspects of a simple meteorological model

based on the advection equation

ou ou
—*ty — = 0 . (6.1)

2t 00X

This equation was transformed into the spectral
domain and the resulting infinifé set of ordinary differ-
ential equations was truncated in wave number space.
Considering the two largest components only and denoting
the amplitudes by x(t) and y(t), we get the following

coupled differential equations:

dx
— = 3% Xy,
dt
(6.2)
dt

The "kinetic energy”_xz + yz is conserved and it is

convenient to set

2+ y.2=1r2. (6.3)

TS,

£ M I
o 4%
i

EQy:
<‘,5'RA$
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solution to (6.2) is then
XsRo . 1
- , (6.4)
cos h (3R t) Rg - yo tan h (3Rpt)
Vo — Re tan h (3R,t)
Ro (6.5)
R, - y5 tan h (zRot)
stochastic dynamic solution can be obtained by

generalisation of (2.6) and (2.7) to two

dimensions. Specifically,
+0T 4O
%0 Rg
2m0,0,Y, e cos h (3Rpt) R,-Ves tanh GR t)
Xg—Fo\2 Vs =¥ 2
X5 -
exp —( ° ‘) B dxs dys ,
o1V2 G.V2
(6.6)
>0 _ 2 —-
1 YO"RO tan h (%Rot) XG_XO Yo "YQ
(t) = — Rg exp |- - dx_dy
— [o] &
2m01029_Y 0o Rg-¥g tan h (3Rgt) 012 02v/2
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Setting
+ 0,v2E, Vo = Vo + 02V20 (6.7)

O (o]

we may write:

1 2 25
%(t) =-—JﬂV[~F<e,n> e (&) gean (6.8)
ﬂ
and
. Pt
- : _(r24n2
F(t) =-—Ji/- a(g,n) e (5T gean (6.9)
T
where
;EO + 01/26 RO
F(E,n) = -
cos h(3Rot) Rpo - (Vo + 0,v2n) tan h(3Rgt)
(6.10)
and

: (§o + ol/ﬁn) - Rg tan h(3Rqt)
G(g,n) = R, — (6.11)
Ro - (Vo *+ 0,v2n) tan h(iBRot)

: !
Ro(E,n) = [(io v 01/2E)2 4 (Fo + Gz/zﬂ)zJ (6.12)

It is seen that the integrals (6.8) and (6.9) are well
defined because the denominator is always different from
zero. This is due to the fact that tan h (3Rot) is always

less than unity and yo < Ro. The numerical evaluation of
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(6.8) and (6.9) is therefore straightforward using the
integration method recommended by Pitcher (1974). Ve
may also use analogous procedures to calculate the

second (or higher) moments. We have:

+66  Lan

10 2 2
-/f F(e )2 e ST gean - (1) (6.13)
T Yoo “%ao .

1 0o 9 2 |
Lor(B) = ;ff az,m? e TETND) grg, - (07 (6.14)

[CER .

1 2 2
a4 (t) = — f F(g n) G(g n) e —(&7+n) dedn - X(t)y(t)
11 ,_/w ’ P

ki)

ulo(t)

—CC

(6.15)

The calculated valueS(yfulo, Ho1 and Hyq can at any

fixed time be used to construct the uncertainty ellipse

according to the procedure given in Appendix 2.

The exact solution given above may be compared with a
solution obtained through a closure approximation. We shall
use the same closure as in Section 2, i.e. the neglect of

third and higher moments. Starting from (6.2) we find
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diyp 3 _
.=xp11+yp10 (616)
dt
dugq _
= -2X ugy
at
digp 1 _ 1 _
=X Mgy TV M T X Wy
dat 2 2

The system (6.16) may be integrated numerically.
Since we calculate B0’ uOl and Myt as a function of time,

we may also in this case construct the uncertainty ellipses.

It is of interest to find the asymptotic state to
which the system described by (6.6) will arrive for large

values of t. We note that X(=~) = 0 from the first

expression in (6.6). y(=) is determined by the integral
- - 12 - \2
Xo'xo\ Yo-Yo
?(W)= fRoexp - /- _ dx, dy,
2moq0, = o, vV 2 o vV 2
1 2
(6.17)
From (6.5) we note that y(=) = -R,. It is to be

expected that y(=) will differ from y(=) because of the
uncertainty in the initial state. We need thus to
calculate the integral in (6.17). To do this we intro-

duce new variables as follows:



where we have further assumed that 01 = 05 = 04

With this transformation we find

003[5 - ‘ ‘ -
V(=)= - ff /524y exp[— (x-%)? - (y—ir)zJ dxdy -
m
(6.19)

In (6.19) we introduce polar coordinates as follows:

X =rcos ¢, y=7rsin ¢, X =T cos ¢, y =71 sin ¢

(6.20)

and we get

: U6 ) -2 2 ' ’

- -r 9  -r? 271 cos(¢—-6)

y(=) = - e r’ e e 7 ael | dr.

b 5

(6.21)

The. inner integral in (6.21) is well known because
27 O x

2rr cos(¢-¢) 2rr cosb
e de = 2 e de = 2nls (27Tr)

o

(6.22)

where I, is the modified Bessel function.  We have
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therefore

=2 2
F(=) = —0,2 V2 e_r//” r2 I,(27r) e 7 dr (6.23)
The integral in (6.23) may be evaluated by noting

that
I (2Fr) = Jo(2Fir) | (6.24)

where J, is the ordinary Bessel function of order zero.

According to Gradshteyn and Ryzhik (1965) we find that

2

2

(=) = - 0,/ 2 ¥ P Mg, 1, ) (6.25)

where M is the confluent hypergeometric function. (6.23)

can be evaluated from standard tables.

It.is also possible to obtain a formula for u01(w).

We start by calculating

o _ 2 _\2
Xs—Xo Yo —Yo
FOU ou - +
1 Os f@ Oe f“
m, (=) = (%52+y5%) € dx, dye
21r002 “ou U '
(6.26)

Using the transformations (6.18) and (6.20) we may

write (6.26) in the form

2 (7 2
my(=) = 4g 2 e_rb/ﬁr3 I,(2rr) e " dr (6.27)

=Y



- 58 -

which can be integrated to

m, (=) = 20,2 e T M(2,1,72) (6.28)

Since (6.28) can be obtained from the tables of the

hypergeometric function, we can also calculate
Mg (®) = my(=) - §(=)? (6.29)
01 2 . : )

Based on the results in (6.25) and (6.29), we may
take a further step and calculate the third moment. ~Such
a calculation will at least give an answer to how large
the third moment is in the asymptotic state. We start by

calculating the integral

2 27

- : (XO —5&0> <yc—37o>
1 : - +
a. V2 ooV 2

(x52+y02)° el o

oo

dx,dy,

o =

(6.30)
which, using the tfansformations (6.18) and (6.20) becomes
ms(ﬁ) = -"2(20,2)" e r- I,(2rr) e’ dr
° (6.31)
A further evaluation of (6.31) leads to

_2
my(=) = - (20,97 T(3) ™% m3, 1, ¥ (6.32)

N 2o
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With this result we may finally calculate
Ha(e) = my(=) = 3§(=) ug (®) - §(=)° (6.33)
3 3 01 ’

In computing the values in the following table,

it was assumed that X,2+y,%2 = 1. We find then that
¥ = (20@2)‘1 (6.34)

The results have therefore been listed as a
function of o, which furthermore has been restricted to
values less than unity. o, is a measure of the ini£1a1
~uncertainty. We note that the asymptotic values
col(w) = uol(w)% of the uncertainty are less than the
initial uncertainty in our example. The asymptotic
position is (X(=), J(=)) of which X(=) = 0. The table
shows that y(«) is numerically larger thaﬁ unity while a
deterministic calculation gives y(») = 1. The coefficient of
skewness of the distribution, defined as

M3
(6.35)

and computed in the table shows that'the neglect of the
third moment in the approximate calculation is justified

when the initial uncertainty is sufficiently small.
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Table 2

Table of astptotic values of y, 0510 W3 and s

as a function of o_ with 202 + ?OZ = 1.

Op y(=) 0451 (=) | Ho(=) s(=)
1.0000 | - 1.55 | 0.8324 | - 0.81027 | - 1.405
0.7071 - 1.28 0.5972 - 0.08155 - 0.383

1 0.5000 - 1.14 0.4572 - 0.02005 - 0.210
0.4082 - 1.09 0.3861 - 0.00693 - 0.120
0.3536 - 1.07 0.3400 - 0.00293 - 0.075
0.3162 - 1.05 0.3070 - 0.00141 - 0.049
0.2500 - 1.03 0.2457 - 0.00030 - 0.020
0.2236 - 1.02 0.2206 - 0.00013 - 0.012

The above analytical results can be used to compare
an integration based on the system (6.16) which is the
approximate stochastic—dynamic equation with the closure
assumption that third and higher moments vanish with the
exact results for very large values of time. The system
(6.16) was therefore integrated numerically using a
Runge-Kutta approXimation for the time derivations. The
integration was continued until an asymptotic state was
reached. We notevfrom (6.16) that a steady state is

characterized by'i = 0, = 0 and M1 = 0. It is further-

U
. 10
more seen that the following quantity is conserved

2 -2
X +y + o

01 + Hig = const - (6.36)

Applying (6.36) to the steady state we have

2

¥, (6.37)
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The numerical integrations were carried out with
initial values satisfying the condition %,2 + y.?2 =1
and with nugy o = w19 g = 0.1, i.e. ogy ¢ = 019 o = 0.3162.
Under these condltlons we find that the right hand side of
(6.37) is 1.2. If another conservative quantity could be
found we could determine the steady state completely.
However, since it has been impossible to do so, we shall
use the numerical integrations and (6.37) becomes then
a check on the accuracy of the numerical scheme. From
this series of experiments it was found that the Runge- )
Kutta method is very accurate in satisfying (6.37). In
addition, the numerical experiments showed that in the
asymptotic state we have k(=) = p,o(=) = u;1(«) = 0, while
1o1(=) = ug1(0). TUsing this experimental value we find
from (6.37) that ysz = 1.1 and Vg = - 1.0488. This value
was reproduced with excellent accuracy in the numerical
experiments. The solution based on the closure assumption
must then be compared with the exact value which for the
adopted value of np1(0) = p;o(0) = 0.1 is y(=) = - 1.0516.
The difference between the values based on the exact and
the closure calculations is thus in this case about
0.25%. Repeating the numerical integrations for a number

of values of u;g(0) = ng1(0) it turns out that ppi(=) =
ug1(0).

Using this experimental fact we may use (6.37) to
calculate ?S = J(»). Under the experimental condition we
have X 2 + 7 2 =1, 1p1(0) = u19(0) = 05? and w19 s =
u1g(=) = n19(0). Consequently, ,

=

F(=) = = (1 + 0,2) (6.38)
Values of y(=) = ?C(w), computed from (6.38),are
listed in the following table as a function of oo together

with the values of J(=) reproduced from the previous table.
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Table 3

showing values of §C(m) computed from (6.38)
as a function of o, together with values of
V(=) from the exact solution. Assumptions:
.2 + §,2 =1, ug1(0) = u1(0) = 0,5% and
ppp(=) = uy0(0).

o F(=) 7,(=)
1.0000 - 1.55 - 1.41
0.7071 - 1.28 - 1.22
0.5000 - 1.14 - 1.12
0.4082 - 1.09 - 1.08
0.3536 - 1.07 -~ 1.06
0.3162 - 1.05 - - 1.05
0.2500 - 1.03 - 1.03
0.2236 - 1.02 | - 1.02

It is seen that ?C(w) deviates little from the
exact V(=) whenever oo is small but quite large differ-
erences are found for large values of o.. The closure
assumption is thus justified for small uncertainties as
also indicated by the fact that the exact values of

pig(=) approach u;(0) for small values of o,.

Some examples of trajectories, computed on the basis
of the system (6.16) are shown in Figure 1la, b, and c.
The first of these, Fig..lla, started from the position
(X5, Vo) = (1,0) with uy(0) = ug1(0) = 0.1, i.e. 019(0)=
0g1(0) = 0.3. The position is shown in Figure 11la in
the uppervright hand corner surrounded by an initial un-
certainty circle. For each point on the trajectory the

uncertainty ellipse (see Appendix 2) has been drawn.
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As the trajectory approaches the asymptotic state, the
uncertainty ellipse becomes gradually smaller until it
collapses into a 1iné (py9(®) = uy1(=) = 0) parallel to
the y - axis. Figure 11b shoWs the trajectory and the

uncertainty ellipses for the initialconditions(io, §o) =
(0.6, 0.8), ug(0) = u19(0) = 0.1, while Figure 1llc

depicts the situation for the initial conditions (io, §O)=

(0.1, 0.995), up1(0) = uy4(0) = O.i. In all cases,
but especially the last one, it is seen that the traject—
ories deviate very much from the deterministic trajectory
Which'in all cases is the unit circle. The shape of
the trajectory in Figure 11lc can be explained qualitatively
ffom the fact that many of the points within the initial‘
uncertainty circle are in the half plane X< 0. These
points will, in a deterministic sense, have trajectories
which are circles in X< 0, but all with an asymptotic

state on the negative part of the y - axis.

Althou@nnosolutions1x)theSystem(6.16)infzclosedform

have been found, we may find some properties which can help to ex-
plain the experimental behaviour shown in Figure 1lla, b,

and c. Consider for.example the area of the uncertainty
ellipse. Using the formulas given in Appendix 2, we find

after some evaluations that the area AE is

[N

Ao = 811(ugiuyg - m112) (6.39)

L

Using the last three equations in the system (6.16)

we can obtain the result that

= 3.A (6.40)
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Since‘AE by definition is positive it follows
from (6.40) that the area of the uncertainty ellipse
increases as long as ¥y > 0, but will start to decrease

when ¥ becomes negative as it will because we know

that y(=~) is negative.

Figure 12 shows a comparison.of trajectories
computed in two different ways. Both trajectories
start from the same point (0.7, 0.7) with the same un-
certainty (ug; = u1g = 0.8) but one of them (marked by
circles) is obtained from the closﬁre scheme, i.e.
numerical integration of the system (6.16), while the
other (marked by crosses) we obtained by an evéluation
of the integrals (6.6). The closure scheme gives
accurate results for small times, but the two traject-
ories differ significantly when they approach the

asymptotic states.
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Fig. 6a : % = x(t) with initial conditions X, = 2,
ge = 1, corresponding to o = 4, B = 0.5,
computed in three different ways. The
full curve is obtained from the Gaussian
probability function, the dashed curve from
the Pearson probability function and the

dashed-dotted curve from the closure scheme.
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05 10 15 20 25 30 35 40 45 5Ot

Fig. 6b : p = p(t) with initial conditions X, = 2,
0. = 1, computed in three different ways,
Arrangement as in Fig. 6a.
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7. Concluding remarks

The main purpose of the present paper is to
illustrate the behaviour of some simple stochastic-
dynamic systems at large times. At the same time, it
has been possible to compare some exact solutions with

solutions based upon a closure assumption.

It is found from the examples that the asymptotic
behaviour of a given system depends on whether or not
the deterministic system has one or more asymptotic
steady states and on the natureof the probability density
fund%ion. In addition, it is seen from the examples that
large deviations between the deterministic and stochastic-
dynamic solutions are found when the uncertainty in the
initial state is non-negligible in some sense as com-

pared to the mean value.

The only closure schéme applied here is the neglect
of third and higher moments. From the examples, it is
found that the closure scheme may introduce steady
states not present in the exact stochastic-dynamic
treatment. In the neighborhood of such a false steady
state, created by the closure assumption, the solutions
from the exact and approximate procedures are very
different. Apart from these cases, there is good agree-—
ment between the exact and the closure solutions pro-

vided the initial uncertainty is small. If this is
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not so, the closure solution becomes inaccurate pre-

sumably because the closure assumption is violated.

In our examples it is also seen that the
asymptotic values of the uncertainty are on occasion
either zero or less than the initial uncertainty.
Such a result isobtained in the examples when the
trajectory of the stochastic-dynamic system deviates
from the trajectory of the deterministic system.

We refer in this respect particularly to Section 6
where the behaviour is governed by the fact that the
sum of the certain and uncertain energies has to

remain constant.
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Fig. 7a : %X = %X(t) with initial conditions X. = 0.5,
o. = 0.3535, corresponding to p = 2, B = 0.295,
computed in three different ways. Arrangement
as in Fig. 6a.



- 70 -

0-30

0-25

0-20

0-0b

o, | | 1
‘b 40 45 50t

0-0 1 1 1
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u = u(t) with initial conditions xX.= 0.5,
o, = 0.3535, corresponding to p = 2 and
B = 0.25, computed in three different ways.

Arrangement as in Fig. 6a.

Fig. 7b :
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Fig. 8a : X = %(t) computed by a Monte Carlo procedure with

initial conditions ¥. = 2, o = 0.5. Squares and
triangles indicate points computed from samples
of 5 and 21 points respectively.
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Fig. 8b : o-= o(t) for the case described in Fig. 8a.
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Fig. 10a : x = x%(t) computed by a Monte Carlo procedure
with initial conditions %X, = 0.5, o, = 0.5.
Arrangement as in Fig. 8a.
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Fig. 10b : o = o(t) for the case described in Fig. 10a.
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X

x = x(t), Vv = y(t) based on a numerical integration

of the system (6.16) from initial conditions

x =1, y. =0, u (0) = u01(0) =0.1, o (0) = 0.
10 11

The uncertainty ellipses are constructed according
to Appendix 2.
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Fig. 11b : Initial conditions X.
p (0) =n (0) =0.1, v
10 01 » 1

Arrangement as in Fig. 1la.
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1lc : Initial conditions x. = 0.1, y. = 0.995,
=y (0) =0.1, v (0) = 0. Arrangement
11

u =
01 10
as in Fig. 1lla.



1-0

Fig. 12 : x(t), y(t) with initial conditions
%X. =y. = 0.7, u01(0) = ulO(O) = 0.8,

u (0) = 0 computed from the exact solution
11

(crosses) and the closure approximation

(circles). Connecting lines give positions
at the same time.
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Captions

X = X(t) with initial conditions x5 = 0.5 and

Tp 0.5 obtained from the closure solution

(3.13) and (3.14).

o = o(t) with initial conditions X, = 0.5 and
0o = 0.5 obtained from the closure solution

(3.13) and (3.14).

The third moment Hg = u3(t) with the initial
conditions io = 0.5 and g, = 0.5 calculated

from (2.29) and (2.30).

% = %(t) with initial conditions X, = 0.3 and
0o = 0.1732, corresponding to p = 3 and 8 = 0.1
calculated from (2.15). The small circles are

points x = X(t) calculated from the closure

solution (3.13) and (3.14).

o = o(t) with initial conditions io = 0.3 and
oo = 0.1732, calculated from (2.24) and (2.25).

The curve with the small circles is o = o(t)

with the same initial conditions computed from

(3.13) and (3.14).

The third moment Wg = uB(t) with the initial
conditions X5 = 0.3 and op = 0.1732 calculated

from (2.29) and (2.30).
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Do

Initial conditions are Xgo = 19°%, oy = 1,

corresponding to p = 19, g8 = 19

(S

Arrangement

as in Fig. 2a.

‘Initial conditions Xp = 19%, o, = 1, corresponding

_1
to p =19, B8 = 19 *., Arrangement as in Fig. 2b.

— Ey
Initial conditions X, = 19°, ¢, = 1, corresponding
top =19, B = 19—%. Arrangement as in Fig. 2c.

X(t) computed from (3.24) with X = 1.1, o=

el
1l

. X = %(t) computed from (4.28) and (4.30) by

numerical integration with initial conditions

X, = 0.5, o, = 0.5, i.e. g = 0.25.

p = u(t) computed from (4.28) and (4.30) by
numerical integration with initial conditions

Xp = 0.5, ug = 0.25.

% = %(t) with initial conditions %o = 2, 0o = 1,
corresponding to p = 4, 8 = 0.5, computed in

three different ways. The full curve is obtained
from the Gaussian probability function, the dashed
curve from the Pearson probability function and

the dashed-dotted curve from the closure scheme.



Fig. 6b
Fig. 7a
Fig. 7b
Fig. 8a
Fig. 8b
Fig. 9

Fig.10a

p = u(t) with initial conditions X, = 2, g, = 1,
computed in three different ways. Arrangement as
in Fig. 6a.

X = X(t) with initial conditions io = 0.5, o, =
0.3535, corresponding to p = 2, 8 = 0.25, computed

in three different ways. Arrangement as in Fig. 6a.

u = p(t) with initial conditions io = 0.5, 0o =
0.3535, corresponding to p = 2 and B = 0.25, computed
in three different ways. Arrangement as in

Fig. 6a.

X = %(t) computed by a Monte Carlo procedure with
initial conditions X, = 2, o, = 0.5. Squares and
triangles indicate points computed from samples of

5 and 21 points respectively.

Q
I

o(t) for the case described in Fig. 8a.

: X = %X(t) computed by a Monte Carlo procedure with

initial conditions X, = 0.5, o, = 0.5. The
curves are obtained from samples with the number
of elements marked on each curve. The theoretical

value is indicated by the line marked 0.68.

: X = %(t) computed by a Monte Carlo procedure with

initial conditions X, = 0.5, g, = 0.5. Arrangement

as in Fig. 8a.
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Fig.10b : o© o(t) for the case described in Fig. 10a.
Fig.1la : X = X(t), ¥ = y(t) based on a numerical integration
of the system (6.16) from initial conditions
ic) =1, ?o = 0, 1110(0) = U01(0) = 0.1, u;1(0) =
0. The uncertainty ellipses are constructed

according to Appendix 2.

Fig.11b : Initial conditions Xy = 0.6, Yo = 0.8, uio(0) =
1p1(0) = 0.1, uy;(0) = 0. Arrangement as in

Fig. 1la.

Fig.llc : Initial conditions Xs = 0.1, Vo = 0.995, ug1 =
u10(0) = 0.1, pp1(0) = 0. Arrangement as in

Fig. 11la.

Fig.12 : X(t), y(t) with initial conditions Xy = Vo = 0.7,
up1(0) = no(0) = 0.8, u;1(0) = 0 computed from
the exact solution (crosses) and the closure
approximation (circles). Connecting lines give

positions at the same time.
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Appendix 1

We consider the integral

1
—(z—n)2
J =qu — e dz . (A.1)
Z

To evaluate (A.1) we write it in the following

way
-€ -
2 2
J = lim ‘Jﬁz_l e ~(2 )7 4, +V§ z "1 em(Z2m) 4,
e~+0 e
e . (A.2)
Replacing z by (-z) in the first integral we find
. _ ~(z-n) : 2 ,
J = 1im z 1 <e - e ~(z+m) dz (A.3)
e+0
€
or, oo
2 2
J=¢e 1 lim z—l.e_z ‘<;2nz - e—2nz dz ., (A.4)
e~>0

Using the series expansion for the exponential

functions, we may write (A.4) in the form

- or+1
9 2 = (2n)
J=em e? 2> ———— 22T gz, (A.5)

r=0 (9p+1) !
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Writing u = 22 we get

20

(A.6)

which may be integrated term by term giving:

G .2
J = e g (r-3). = (-3)! e
(2r+1) ! '
r=0 r=0
where we have made use of the identity:
1y = 1 §_ 1 1y = 13yt
(r-3). = (r—z)(r‘z)--(z)(—z)- = (-%).

Rearranging (A.7) we get:

2r+1

J = 2(-1)!

n
(2r+1)

o 1
-1 —:-
e - —
r!
=0

We note that

n
2r+1
n

SZr ds =

2r+1

(A.7)

(2r-1)!

221 1y

(A.8)

(A.9)

(A.10)
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Substituting (A.10) in (A.9) we find

r

. . ]
_n? (s%) »
2V e EE ds (A.11)
A =0 r!

oy
]

or.

2 2
J=2me‘nf S ds. (A.12)

o

(A.12) is didentical to (2.21) which thus has been

established.
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Appendix 2

The uncertainty ellipse has been used by Fleming
(1971) and is defined by the expression

2 ' 2

X r y 9

_ =2 xy + —— = 2(1-r"){ (A.13)
H1g {(d1p-¥H01) Uo1

Dol

in which r is the correlation coefficient, i.e.

H11

=
i
-

(A.14)
(ugp-Ho1)

while @ is a constant chosen in such a way that
1 - exp(—ﬂ) measures the probability that a point is
inside the ellipse. J{ is normally selected as { = 1n.2

in which case the probability is 0.5.

Using (A.14) we may write (A.13) in the form:

2 2
X 11

¥ 2
_—— 2 ——— Xy + — = 2f(1-r7) . (A.15)
Hio HipHo1 Hp1

The equation (A.15) may be brought into the
standard form by turning the coordinate system an angle 6.
It turns out that 6 is determined by the expressions

U10-Ho1 2u11

cos 28 = ——— , sin 26 =
S S

ol

2 2
s = | (ug1-w10)" + 4u11 - (A.16)
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while (A.15) becomes

%q y12

- - = 1, (A.17)

20(1-12) (28(1-r2)
A B

where
1 \
A= —— [(upgy *+ uig) - ﬁ) 7 (A.18)

2ugi1Myo

1 : '
B= — <(U01 + pyp) * %)- (A.19)

2up1M10
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Appendix 3

Consider a sample with the mean X and the

standard deviation o. We have

N

X = — g X. (A.20)
i A

N =1

1

and-
2

(xi—i) (A.21)

Q
N
]
=
P ‘
M-

We shall consider a simple procedure to construct
a sample of points which has given values of X and

o. Let us select

ReVpr o0 1. i—yl, X, i+y1, aee %+ym"(A.22)

It is obvious that the mean of this sample of
2m+1 = N points is X. If we select a set of equidistant
points which are d apart, we have Vi T d.i. Requiring

that o2 shall have the prescribed value, we get

2

2 m 9 2 o o 2d 1
STy o= a“> 3% = .« — m(m+1)(2m+1),
om+1 = * om+1  _ om+l 6
j=1 j=1
(A.23)
or
1 2
— m(m+1) d° = o2 (A.24)
3 ,
- giving 3

3
d=0 I R (A.25)
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We note that the distance from the mean value

to the largest value is

which for large values of m is

(A.26)
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Appendix 3

Consider a sample with the mean X and the

standard deviation o. We have

1 N
X = — X, (A.20)
N i .

i=1

d N

an 2 1 2
g = — (x.-X) (A.21)
2 i
N 42

We shall consider a simple procedure to construct
a sample of points which has given values of X and

o. Let us select

i—ym, cee i—yl, X, i+y1, oo %+ymv(A.22)

It is obvious that the mean of this sample of
2m+1 = N points is X. If we select a set of equidistant
points which are d apart, we have v; = d.i. Requiring

that o2 shall have the prescribed value, we get

2

2 . m 9 2 o m o, 24 1
ST vy o= a“> 37 = . — m(m+1)(2m+1),
2m+1 j=1 2m+1 j=1 2m+1 6
(A.23)
or
1 9
— m(m+1l) d° = o2 (A.24)
3
-giving 3

3
d=o — . (A.25)
m(m+1)
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We note that the distance from the mean value

to the largest value is

which for large values of m is

(A.26)
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Appendix 4
Integrals involving Ep(x).
The stochastic dynamic solutions presented in this
paper require a knowledge of a number of integrals. In
this appendix we collect a number of results which are

not listed in the standard collections of integrals.

Consider first the integral

zta

This integral may be calculated by considering the

more general integral

w ,P

I(m) = g m(z%a) 4o
z+a

o

We note that for m = 1, we have
_ -2 . _ .a
I(1) e I1 ; I1 e I(1).
We find furthermore
a7
— = ,f ,P om(zra) .
dm s
ar _ - e 2 Jﬁ zP e ™% gz
drn . S
dI —ma. r(p+l)
e —_— - e .—__—A. o
p+1
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Noting furthermore that I(=) = 0, we find

e —~Ma
e

—-ax
' e
I(m) = + T (p+1) dm  or, I(m) =T (p+1)
+1
Lm mp Xp+1
We have consequently:
< —aXx
e
I(1) =T (p+l) dx
p+l
X
1
or,
_ a
I1 =T (p+tl) . e Ep+1(a)
which is the result of the integration.
Consider next the integral
el Zp
I, = e ? dz .
2
(z+a)
(=]
We note that
d 00 Zp L dIl
12 = - — e dz = - =
da /. (z+a) da
and we obtain by differentiation
d .
I, = -—|T(p+l) e E__.(a) | = +7(p+l) e [E (a) - E__.(a)]-
2 da p+l p p+1

The result is thus

12 = T'(p+1) o? (Ep(a) - Ep+1(a)>

dx .
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We may expand this result further by considering

o5 Zp
I = e—Z dZ “
3 3
(z+a)
We write
(<]
1 d 22 1
13 = e e 5 © dz = - = =
2 da (z+a) 2 da
or,
1 a
- Pprl) e |- By 4(a) + Ep(a) + Ep(a) - By q(2)

'or, finally:

1
_ a
I, = " r(p+l) e (ﬁp_l(a) - 2Ep(a) + Ep+1(ai)

" The next step is

dI
oo Zp 1 d Gy Zp 1 3
I, = e % dz = - — e ? dzl = —
4 4 3
(z+a) 3 da (¢ (z+a) 3 da
giving
1 1 a :
= -s ST e (—Ep_z(a) + 2B (a) “E () * B (a) -
ZEp(a) + Ep+1(a9
or,
1 a
= — - + -E a
I, T (p+l) e (Ep_z(a) 3Ep_1(a) 3Ep(a) p+1()
6

Although further generalisations are obvious, we shall

not need them for our purposes.
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