-LEUROPEAN CENTRE FOR MEDIUM RANGL WEATHER FORECASTS

TECHNICAL REPORT NO. 3

3 she s sfe ok sfe ke e s ofe e she s sk sk oje sk sfe sk sk e sk sk sk kR

FEBRUARY

1977
st ko ok koo ok

b

MIXED-RADIX TAST FOURIER TRANSFORMS

WITHOUT REORDERING

BY

C. TEMPERTON

EUROPEAN CENTRE FOR MEDIUM RANGE WEATHER FORECASTS
Fitzwilliam House
Skimped Hill
BRACKNELL, BERKS.

UNITED KINGDOM

-

CONTENTS

Introduction

Preliminaries

The GENTLEMAN-SANDE form of the FFT
The COOLEY-TUKEY form of the FFT
PEASE'S form of the FFT
Mixed-radix FFT without reordering
Discussion

Implementation

Acknowledgements

Table 1

Appendix 1

Appendix 2

Appendix 3

References

Diagrams

List of Technical Reportes

PAGE NUMBER

9-12

12-13

13-14

14-15

17-18

19

20-25

26-28

29-34

35

g

ABSTRACT

The Fast Fourier Transform (FFT) is an impecrtant tool of
computational physics which has found widespread use in
meteorological applications. Understanding of the
mathematical principles on which the FFT is based is
unfortunately less widespread.

This paper presents a relatively simple proof, in terms
of matrix algebra, of how the FFT works. The proof is
constructive in that it generates not only the usual
forms of the FFT, but also some apparently new forms.
Two of these have the considerable advantage over more
conventional forms that no reordering of the data is
required before or after the transform.

Programming strategies for the various forms of FFT are
described, and a Fortran routine implementing one of the
new forms is included as an Appendix. Timing comparisons
indicate that this routine is twice as fast as an
otherwise fairly similar program using a conventional FFT
algorithm. ' :

Py

1. Introduction

Since its introduction by COOLEY and TUKEY (1965), the
Fast Fourier Traunsform (¥FFT) has become an indispensable
teol of computational physics. Among the more important
meteorclogical applications are the following

(1) In hemispheric or global gridpoint models based on a
latitude-longitude grid, the convergence of meridians
towards the poles leads toc a severe restriction on the lengt
of the timestep in order to maintain computational stability.
This difficulty can be removed by filtering out the higher
zonal wavenumbers near the poles at each timestep (HOLLOWAY,
SPELMAN and MANABE,1973); the procedure involves large
numbers of FOURIER transforms around lines of latitude.

(2) The FFT forms the basis of some of the very fast direct
methods for solving the discretized Poisson equation
("Poisson-solvers'). Although these were originally formulated
for rectangular grids, they can readily be adapted for use

in spherical coordinate systems (SWARZTRAUBER,1974),where

for instance they can be used to solve the balance eguation
(PAEGLE and TOMLINSON,1975). More importantly, they can be
used to solve the HELMHOLTZ equations which arise at each
timestep in a semi-implicit gridpoint model.

(8) Perhaps the most important application is in spectral
prediction models. At each timestep, the nonlinear
interactions are computed by transforming certain fields

to gridpoint space, carrying out the reguired multiplicaticns,
nd then transforming back to wavenumber space (e.g.
BOURKE,1972). To obtain a gridpoint field from a set of
gpherical harmonic coefficients (or vice versa) reguires
LEGENDRE transforms in the meridional direction, and FOURIER
transforms arcund lines of latitude. In describing their
multi-Jlevel spectral model, which includes a fair degree of
physical parameterization in addition to the dynamics, DALEY
et. al.(1976) state that about one third of the total computation
time was spent on performing FOURIER transforms. Pseudo- .
spectral models (MERILEES,1973) also depend heavily on FOURIER
transforms.

The ability to transform efficiently between gridpoint

and wavenumber space is also useful in problems of horizontal
interpolation of data, and in diagnostic studies both of

the real atmosphere and of numerical models.

For problems of the size typically encountered in all

these applications, the advent of the FFT has brought about
an order of magnitude reduction in the computaticon time
required for the FOURIELR transforms. It is clearly

important that meteorologists understand how the FFT works,
and how it can best be implemented for their particular
problems.

A number of different formulations of the FIFT have been
published; besides the original COOLEY-TUKEY form, we
mention here in particular the versions of GENTLEMAN and
SANDE (1966), PEASE (1968) and UHRICH (1969).

The FFT is a fast method for computing sums of the form

we
e

=
- —

s 2R VR £ -
X‘J é‘;“‘c C«k G:EQF’(_&LJzQILX[-‘_}}D Qé\}é‘??}' .g (1)
where % (0 ¢ jEn~1) and {0 £ kEN=1) are

complex numbers. Direct implementation of Eg. (1) would
clearly require N& complex multiplications. If, however,

N can be factorized as a product Nsmnva.....np , then the
FFT reduces the number of complex multiplications from
N.(mhz «v o oo W) to N. (my & nig &+ oo+ 0)

(In fsct we can do considerably better, since it becomes
simpler to avoid multiplications by 1). Unfortunately,
proofs of how the FFT works (COOLEY and TUKEY 1965,
GENTLEMAN and SANDE 1966) tend to involve a plethora of
indices, summation signs, "hatted" and 'unhatted" variables,
and the author suspects he has not been alone in finding
them difficult to understand in detail.

Moreover, these proofs tend to pass rather lightly over the
fact that the usual forms of the FFT produce their answers
in the wrong order, and a permutation is required to
unscramble them. If N is factorized as a power of 2, then
the required permutation is called "binary reversal' and

is easy enough to understand, though rather awkward to
program. In the mixed-radix case (N a product of arbitrary
factors), the permutation is more difficult both to
understand and to program.

A more promising approach (at least for those at home with
matrix algebra) is to write Eq. (1) as

Xz WyC e e (2)

where x and ¢ are vectors with N (complex) elements, and

Wee is an N x N matrix, also with complex elements, Note
that the elements of x and c are indexed from O to N-1, and
the elements of Wyasw;(©& L &8t , OF §& M=t)
this convention will be used throughout. The matrix W

is easily defined in terms of its elements: Wy = w9, where
> = exp (i~). The FFT algorithm then becomes
equivalent to a factorization of the matrix Wy . This
approach was used by PEASE (1968) and THEILHEIMER (1969).

Recently, while writing a mixed-radix FFT program
(TEMPERTON, 1976), the author stumbled upon a Torm which
yielded the results in the correct order, thus eliminating

<
)

the compiicated final permutation step. UHRICH (1969) had
previously presented a compact program with this property
for N=gP , though with no explanation of how it worked.

An effort to explain the workings of the new mixed-radix
FFT program yielded a rather simple proof, in matrix form,
which generated not oanly the new form of the FFT, but also
a number of other forms, including the COOLEY-TUKEY and
GENTLEMAN-SANDE versions, and the formulations of PEASE and
UHRICH referred to above. The proof, and the various forms
of FFT which it generates, form the subject of this paper.

2. Preliminaries

This section is principally a review of some simple
concepts of matrix algebra.

The identity matrix I consists of 1's on the diagonal and
O's elsewhere, and has the property that for any matrix

A, TA=AI=A (here and elsewhere we assume that the
dimensions of the matrices are such that the matrix
multiplication is properly defined; all our matrices will
in fact be square). We write the identity matrix of order

N as IN; thus for example
{ < ©
IS= o { (&)
Lo o 1y

The identity matrix is obviously a diagonal matrix, and
we could use the notation IB:diag(l,l,l).

A permutation matrix P also has all its entries O's and
1's;each row and each column contains just one non-zero
element. TFor example, the following is a permutation
matrix of order 5:

[w] & o (] {
G o { o o |\
P= 3! o O i a |
t o 3 O S
o { (! o]
Ry \ -
- }5«2
Hox = then Px = .
il :\3 I
!‘«o .u
o f

In general, the rule for premultiplication of a vector x
by a permutation matrix P is as follows: if pi.zl, then
element 1 of Px = element j of x. J

We can extend this rule to the multiplication of a matrix
A by a permutation matrix P. For premultiplication by P:
if pj4T1, then row i of PA = row j of A. For
postmultiplication by P: if pi' = 1, then column j of

AP = column i of A. J

Example using 3 x 3 matrices:

Let A = f/G"w %oy Qﬁa\\ , P = o ¢
Qe Gy G > 0
%zo gy @,, /} - Q

i.e. Py = i, Doy = 1

!/ ()V;O C‘..H Qk'a. \ / Lls

PA = (“an Gy Gy) , BP=

NOoy Gy Qop

20

G gy

ng‘

Perhaps a less familiar boncept is the KRONECKER product

A ®B of two matrices (e.g. BELLMAN, 1970), defined as

A®B = (aij B). For example, with the 3

defined above and any matrix B,

/ %oo B Ao & Qg B

A @ B = Q“lc& g C—LH rB &92- ’-ﬁ
Qi B A, B D, B/ s
If A and B are both sguare, and of order N and M

3 matrix A

respectively, then A B is a square matrix of order NM.
(The KRONECKER product is in fact equally well-defined
for rectangular matrices). The value of the notation @ is
that it provides a compact way of writing the kind of

operations involved in the FFT. For example,

the

"building brick" from which the radix-2 FFT is constructed

is the matrix

B t i
Wy = (é -

Which replaces a pair of numbers by their sum and
difference. Suppose for example we have a vector x with
6 elements, and that we apply the operator W, to the first,
We can write

second and +third pairs of adjacent numbers.

this as
/ﬁgé/x‘ \ i
B Wy : §
y = Koy - X T
S{Zm ‘:':3
Ay = Re o
_;‘4~ S W& o
= L*\\!g. §’
Wl tad

or more compactly as y = (ISQQWZ) X

Suppose on the other hand that we pair X with

(0 & 1 £2) as follows:

PR 4 X3 ’ I
Ry b Ky ‘

Qzéve‘{ﬁ ¢

Il

<t
i

Ho=¥a i

?{q b '}5“:?- g

X,
i+3

S

f

Rab
—

X
\ nEaS &'a..rjga j
which we can write more compactly as y = (W2§§ IB) X.

Two useful identities involving KRONECKER products are:

I R 1 = I
Y ® q Pq

and _ .

(L,®AYL,®3Y 1, ®c) = T, ® (aBC)
where A,B,C.are square matrices of the same order.
Readers who refer to the paper by PEASE (1968) should note
that his definition of the KRONECKER product is different
from the above, and is non-standard.

The transpose AT of a matrix A is defined as follows:

element (i,j) of AT = element (j,1) of 4, i.e. the matrix
is reflected about its diagonal to produce its transpose.:

If A is symmetric, then AT = A. The product rules are as
follows: for the usual product, (AB)Y = BT AT,

For the KRONECKER product, (A BY = A.T@’BT)

For a permutation matrix P, P’ = p1,

3. The GENTLEMAN-SANDE form of the FFT

We proceed now to the proof of one of the more common forms
of the FFT. First, we write out explicitly the form of the

matrix WN cf: BEq. (2):
‘ e’ 6® T ow® .. @
o’ xS (25 . .o P
: 2 (pt=ty
W. = €° ()92 CD% S .
N . 1] . 13
- 2Cn- S CE
x‘cd’ Lot m’(” 3 ‘ o .b;m Urg=1)

where = exp (2 T i/N).
Now suppose that N=pqg.

Define a diagonal matrix Dg of order pq as follows.

First, define a diagonal matrix of order q by

) . " C(’z“’ : P N X
&q’ = Gii'fagcé}Q;}? (,456'—7.3_'}(_1,’)) 5 tahereg, 6o o Q}-LF;, (aag,,g,/lg}}
. . |

and from it construct the matrix Pg = JQBCIR‘ﬁ&%; @ﬂq B ng}
Examples: let = exp {2/ G) . Then

Dy ¥ Kag (@°, w°, W, ¥, w', C‘:’a)
and i = CLA;Q_S (CGC’) W, @ N , (‘Q@) (e) .
Also, define a permutation matrix ?; by‘pij=1 if
i= rp+s and j=sq+r, where O % L gt and o< 8 £
p-1. To illustrate the form of the matrix P , we

construct an example for p=2, ¢g=3. In the following table,
each value of 1i(0 & i ¢ 5) is written in the form rp+s
(p=2) and the corresponding value of j=sq+r (g=3)
calculated:

i (=2r+s) T s j(=3s+1)

0 0 0 0 poo—l

1 0 1 3 p13=1

2 1 0 1 Psq 1

3 1 1 4 p34:1

4 2 0 2 p42=1

5 2 i 5 p5r“]
Thus the matrix Pg has the following form:

{ o (] (&) < &]

o lw] (! ¢ o Q

P2 © t o o o ()

3" & o 0O o {)

L+ o ! =} & @

o o o o’ o i /[

We now state the following important result.

Theorem 1: Let N=pg. Then with the definitions of P? and
i Dg, given above, 1

Wy=W = P ¢ (T, @ W) D Do (W@ Tg) cvovrnnnn (3)
The proof of this theorem is given in Appendix 1.

Eq. (3) is precisely the GENTLEMAN-SANDE formulation of the
F¥T for two factors, expressed as a matrix factorization
and including the final permutation. It can easily be
extended to three factors

I S P
Wpar = Wiptqry = Poe (Tp® War) Do (W, ® Top)

t’ -] el
‘Paﬁ' <I’€”{P2‘ Tq® We .:J,._ \‘v’q@ze‘)},}'*g (@ -,,M
.. Wpgr = M?‘Q r?)(lpa@ “J }{I,?Q'I} }\TF“,?MQ),@ (&J-ﬁg‘)

14

The generalization to an arbitrary number of factors is
given in Appendix 2.

Eq. (4) shows how the permutation matrices collect at the
left-hand end of the factorization; this is the feature of
the GENTLEMAN-SANDE FFT which becomes difficult in the
mixed-radix case.

To clarify the picture, we describe how the computation

proceeds for the case N=8=2% . Eq. (4) becomes:

- ‘2\. o A

g = (1¢D P)(l&v{@ Mz.}(:EL‘E T’z }(32.‘“ ® 12‘)'3%;. {""’z@} ety
o 4 & o AN —_p s

A flow diagram for the computation is shown in Fig. 1.
The input to each square box consists of two complex
numbers a and b; the output consists of the two complex
numbers (a+b) and ¥ (a-b), where the integer k is the
label on the box. The diagonal multipliers et are
combined with the transforms Wy in this way, rather than
as suggested by SINGLETON (1967), since the exponents k
then appear in a more convenient order. Notice that the
output from each box can overwrite the input, so that the
transform part of the computation can be carried out in
place, using a single array In this case, the combined
permutation &% (izﬁbPaﬁcan also be carrled out in place,
since it conq1¢ts of pairwise exchanges 1<¥4, 3¢% 6, the
remaining elements staying in place. However, in Lhe
general case it becomes more dlffWCult to carry out the
permutation in place. :

The programming strategy for the transform part of the
general 3- factor case is as follows: 1in the first
transform we collect p complex numbers N/p locations apart,
apply first the transform Wp and then the diagonal
multipliers, and overwrite the original locations with
the results; one loop takes us through the data, both for
indexing the array and for obtaining the diagonal
multipliers in the right order. In the second transform
we collect g complex numbers N/pg locations apart, apply
the transform Wq, and the diagonal multipliers, again
overwriting the original locations; this time p loops are
required. In the third transform we collect r complex
numbers N/pgr locations apart (i.e. they are adjacent),
apply the transform Wr .

{(no diagonal multipliers are required this time), and
overwrite the original locations; pg loops are required.
It is easy to see how thﬂs utvateby generalizes to any
number of factors.

4. The COOLEY-TUEREY form of the FFT

Since W, 1is symmetric, we can transpose both sides of

BEg. (4). We use the identities (AB)T = BT AT

(A®B) = A"® BT , the easily proved lemma (P Py
P% , and the fact that the I, W and D matrices of sg. (4)
are all symmetric. We obtaln

Mpar = (W8 Tar) Dy (1,® W ® Te) (T, ®] ><:rm0w~>< £o® P)1 "y

- &
or exchanging the roles of p and r,

v o= (i 74
Wpar = (W@ Zpg) B, . (Ze ® Wo @ L) 1@ DY N(20e® wga)(w.wg“)?% YL
............ (5)
Eg. (5) is. the COOLEY-TUKEY Fform of the FFT for three
factors; the general form is given in Appendix 2. It

differs from the GENTLEMAN-SANDE form mainly in that the
permutations are carried out before the transform seguence,
rather than after it. Using the example N=8=23”again, we
have: '

‘Ng = (wq (‘“‘.‘.v{,.“DL‘ (Iz® e DIZ)(.F {R‘)’I:'){lu@\"ﬁ’z}i’t')@ ?2){37
L [I\

W o

The flow diagram for N=8 is shown in Fig. 2, where we have
combined the diagonal and transform operations in a
different way from the GENTLEMAN-SANDE form; the input to.
each diamond-shaped box consists of two oomplex numbers

a and b; the output consists of two complex numbers

a + e@h b and a - w* b, where k is the label on the box.
Again the transform part of the program can be carried out
in a single array, and the programming strategy for
indexing the array and obtaining the diagonal multipliers
is just the reverse of that for the GENTLEMAN-SANDE form.

5. PEASE'S form of the FFT

The GENTLEMAN-SANDE and COOLEY—TUKEYAforms of the FFT
involve a sequence of transforms, each of which has a
different "flow diagram'" from the others, even When all
the factors of N are the same (as in the case N=2°%
presented above). PEASE (1968) derived a form such that

for N=pk (for some factor p, in particular p=2), each
transform in the the seguence has the same flow diagram,
thus simplifying the programming. DIXON (1976) has also
considered this form.

The present analysis can be extended to derive PEASE's
form of the FFT as a special case of a more general form
for N a product of arbitrary factors. In the general case,
each transform in the sequence clearly cannot have the
same flow diagram, but they all have the same structure

We require the following property of the permutation
matrices P‘,Jr

Theorem 2: For any square matrices Ap and Bq, of order p
————————— - and q respectively, :

PP (An®Bq) = (B®Ap)Pq (6)
q P : -
and (Ap@Bg)= O (Bg@Ap) Py it (7)

The proof is given in Appendix 1.

We now recall the 3-factor GENTLEMAN-SANDE form of the FFT:

‘ .
Wpqr = Pq,. (zp® Pe)(i pa® Wp}(lpc,) 'I’q \)(I--;® Wq,@ Xr)‘bqr’ (,Wr—*o Tgr)

-(8)
Using (7), we can write:
’ _ - o ‘ il
Ipq Wr = ?qu(w‘”® .,L;ocﬁ)?r
g qr :D‘:% @ T)'PP
Ip D[‘ = PP (T p g

) L .
and (Ip & Wq ® Ir)= (Lp® (wq :['.J) = ?C‘P « Wq®33r°> ;1;@9‘)!@%{_,
. P
(Wq@ Lpr) Por

. . . . P ar -
Substituting in Eq. (8) and using ‘3qr P p = ¢pqp , we
obtain:

e : P A AT DN P ,
Wpqr= ‘qu" (lPQ pc‘i) qu CWFC’@ g)14 r ¢ b (j:’r@uﬁ?}!(%/g@ l;sr':) Fg;- X qr (V"g;s@ Lor
. e (9)

An analogue of the identity pP pd = Ipg, extended to three
factors, is 4 p

7 e~ e
pe 4" P

P. P b P 4 = Ipgr
Pa __ar
or P TDP = Pgr

Hence Eq. (92) becomes:

Wpqr = T’ar (T, ®P})Fm (WPC}MW)T’% (D% ® I) (w q\g‘[pf} Dor (NF@IC&‘

This expression for Wpgr has the same flnal sequence of
permutation matrices as the GENTLEMAN-SANDE form, but
each transiform (u51ng a factor p) is now followed by the
permutation matrix PN/_ . The general form is given
in Appendix 2. Using Lhe example N=2% again, we have:

W% = Pf’ (.® r) PL;- {_L\’z@ II,J (‘3:;_@""'1}("’*"“@14- Ft.;. TDL;. (V"Z@I‘lr\)

JL 4 ¥

N at iy

in which all the transforms are of the form (WQCD Tw),
followed by a diagonal matrix, followed by DHr (reading the
matrix product from right to lefu) The corresponding
flow diagram is shown in Fig. 3, where the notation is the
same as for the GENTLEMAN-SANDE case (Fig. 1). DNote that
the 'internal' permutations are not carried out as
separate operations, but are combined with the diagonal
and transform matrices by storing the output from each
'box' directly into the appropriate locations. This means
that the transforms can no longer be carried out in place;
two arrays are required, acting alternately as input and
output during the sequence of transforms. Notice that

the diagonal multipliers for the second transform of the
case N=2° are required in a different (and perhaps more
convenient) order than for the GENTLEMAN-SANDE case, since
their matrix representation is (Dq'CD Ip) rather than

(Ip & DY).

The programming strategy for each transform is now the
same: we collect p complex numbers N/p locations apart,
apply first the transform Wp and then the diagonal
multipliers, and store the results in adjacent locations
in the output array.

Just as the COOLEY-TUKEY FFT is a transposed form of the
GENTLEMAN-SANDE FFT, so there is a 'transposed PEASE'
FFT. Transp081ng both sides of Eg. (10) and exchanging
Lhe rOles of p and T,

I » L 1q - T
par=(We® Tpg) Biq Pt (Wo® Tpr) (BEBTAPT (w,® o) Py (Te®PF)Y

w12

the general form being given in Appendix 2.

Again we use the example N=23:

(wngt@t,):Dl p (wzc}?;u‘,}(“?? @ia}P“' {W»@mwl«)P {,z,,»

. n AJ .. > an? &

for which the flow diagram is given in Fig. 4, where the
notation is the same as for the COOLEY-TUKEY formulation
(Fig. 2). In the general case, we collect p adjacent
complex numbers, apply first the diagonal multipliers and
then the transform W, , and finally store the results N/p
locations apart in the output array. The initial
permutation sequence, and the way in which the diagonal
~multipliers are combined with the component transforms,
are the same as for the COOLEY-~-TUKEY form.

6. Mixed-radix FFT without reordering

The four forms of the FFT outlined so far all require a
sequence of permutations to be applied either before or
after the sequence of transforms; as mentioned in Section
1, this feature becomes somewhat troublesome in the mixed-
radix case. In PEASE's form and its transpose (Section &),
simple permutations are also combined with the transforms
themselves by suitable indexing, using two arrays
alternately. In this Section, we show that this pr1n01ple
can be used to eliminate the troublesome permutation
sequence altogether.

Recall the GENTLEMAN-SANDE form for Wpq:
Wpa = PE (Zp® Wo) Dh (W ® Ig) . (11)

Applying the identity given by Eq. (6), we’cén reorganize
the first two factors: ‘

Wpa = (W ® Ip) Po DY (We® o) e (12)
The important difference between Eq. (12) and Eq. (11) is

made clearer by extending the new representation to three
Tactors:

' LI - :
Wopqd = (Wae® Ip) Por Dor (Wp® Tq4r)

Wpqr

23 y¢

[N 970N e 3 '\ 3 NEY
({ ¢ We @I Yot oI (w%@lr) }@ lp)?‘f&, “Dif (Wp@ Tqr)

Ag‘t,
PZ

rpar = (0 @ Tr) (PO T (DL B Tp Yot @ Tpe) PE D (W@ Tar)

4"

~

~153-

Comparing Eq. (13) with Bg. (4), we see that the
permutation matrices have been distributed through the
factorization, and that each transform is now of the
form (Wp Qg‘tmfyg). The usual example should clarify
the situation:

W = (W, ®Iy)(9 C"wi.q Yoh®), B Iy Y ;;ﬁ»“— ‘:z‘:‘% (v, @ 14_»}
lmmommcnee? | - T

7

for which the flow diagram is given in Fig. 5, with the
notation as for the GENTLEMAN-SANDE form. In the general
case the input to each box consists of p complex numbers
from locations N/p apart; in the box the transform Wp is
followed by the diagonal multipliers, and the output is
stored in locations m apart, starting in the first available
location, where m is the product of the factors previously
used (m~1 for the first transform). The diagonal
multipliers are required in the same order as for PEASE's
form. The final transform in the sequence requires no
diagonal multipliers and no permutation, and could in fact
be carried out in place.

As before, we can transpose both sides of Eg. (13) and
exchange the roles of p and r to obtain:

T T T] T Vw6
Wpgr = (W& “wﬁa‘”ﬂf) *ﬁ'm (,W @—ka)(@ (}(EAREDIE ‘Hﬂ&lqw) .
fThe general forms of both thih edquation and Eq. (13) are
given in Appendix 2). For N=2° we have:
T » o 2 e L!‘ : e ‘,ﬂ o i pum, TT
W% = (\:‘Jaﬁg 3;34,}:?3'%' F 5 (’WZQ“J ,‘ig‘;,}(;;é: @ wlagy }(’?; @ 2 ‘:‘(tl\fz ;'3) r}‘,.lz}p'}

.) I b 2

e e &

for which the flow diagram is given in Fig. 6, where the
notation is as for the COOLEY-TUKEY formulablon Here the
input to each box comes from locations N/mp apart, where
m is the product of the factors previously used. The
output from each box is stored N/p locations apart. This
is the formulation used in the program given by UHRICH
(1969), extended to the mixed-radix case.

7. Discussion

In this paper we have used factorization of the matrix
form of the FFT to generate six different versions of the
FFT algorithm. The GENTLEMAN- SANDE form and its .
transpose the COOLEY-TUKEY form have the advantage that
the transform sequence can be carried out using a single
array, but a permutation. sequence is also reqguired which
necessitates extra programming and execution time, and
becomes particularly complicated in the mlxed—rAdlx case.
PEASE's form and its transpose have the advantage that

14~

each of the component transforms has the same structure
(in his paper, PEASE (1968) mentioned the suitability of
this form for special-purpose FFT hardware design).
However, two arrays are now needed, and the permutation
sequence is still reguired. The new form proposed in
Section 6, and its transpose the generalized UHRICH form,
also require two arrays, but the permutation sequence is
eliminated by combining a simple permutation with each
component transform; the array indexing required is in
fact no more complicated than for the more familiar
COOLEY-TUKEY and GENTLEMAN-SANDE forms.

In choosing the most suitable form of the FFT for a
particular application, the following considerations are

the most important. If core storage is at a premium, then
the GENTLEMAN-SANDE or COOLEY-TUKEY form is most appropriate.
If simplicity of the component transforms is required, then
PEASE's form or its transpose may be the best choice, though
the diagonal multipliers still have to be indexed correctly,
and the need for a permutation sequence must be borne in
mind. In most other circumstances, the forms proposed in
Section 6 appear to have clear advantages.

A preliminary study also indicates that, of all the forms
of FFT presented here, those proposed in Section 6 may be
the most suitable for the new generation of vector-
processing computers. Certainly the permutation seguence
required by the other forms cannot readlly be handled by
vector-processing techniques.

Other forms of the FFT can be generated by exchanging the
order of the permutation and diagonal matrices (using

P TDF = Tb% PF) or by grouping the factors
dlfferently, but these minor variations seem to lead either
to the same program as before, or to more complicated
indexing requirements. It is possible, of course, that
quite new variants remain to be discovered. If so, the
analysis presented in this paper may provide a basis for
finding them: '

8. Implementation

A FORTRAN routine has been written at ECMWF to implement
the proposed new form of the FFT. To date it has been used
for real FOURIER periodic and sine transforms, applying

the procedures of COOLEY, LEWIS and WELCH (1970) to convert
a real transform of length N to a complex transform of
length N/2.

A FORTRAN program (FFFT) to perform a complex fast FOURIER

transform of arbitrary length N is presented in Appendix 3.
For each factor of N, FFFT calls the subroutine PASS, which
is written in such a way that the real and imaginary parts

of the complex numbers can be in independent arrays, and

the addressing increment for these arrays can be specified.
(These facilities are required when performing multi-
dimensional transforms, and in certain circumstances for
orne-dimensional real transforms).

PASS contains sections of coding for factors 2,3,4,5 and

general odd factors & 7. SINGLETON (1969) demonstrated
that if the factorization of N included a number of 2's,

these could he more efficiently treated by grouping them
together in pairs; hence the coding for factor 4. In the
same paper, SINGLETON also presented an efficient scheme

for handling odd prime factorssb5, which has been used in

subroutine PASS.

Timing comparisons have been made between the routine FFFT
presented here and a FORTRAN FFT routine written by
NORMAN BRENNER of MIT, which has also been used at ECMWF.
BRENNER's routine is based on the COOLEY-TUKEY version of
the FFT; it too includes special coding for factor 4, but
not for factor 5. ‘ :

In Table 1, the respective CPU times on a CDC 6600 are
presented for complex transforms of length N, for various
values of N. Although the floating point operation count
for the transforms is the same for both algorithms, FFFT

is consistently twice as fast as BRENNER's program. Some of
this increase in speed is due to the fact that FFFT uses a
precalculated table of trigonometric function wvalues for

the diagonal multipliers; the remainder results from the
elimination of the permutation sequence.

Experiments with a special-purpose radix~2 version of the
new FFT algorithm indicated that a further increase in
speed of ‘around 30% could be achieved by reorganizing the
FORTRAN loop structure and placing the vectors in blank
COMMON,

9, Acknowledgements

The author wishes to thank ECMWF staff members for
reviewing the manuscript, and Miss A. Cara for typing
it. Some of this work was carried out at the U.X
Meteorological office.

-~186~

Table 1

CDC 6600 CPU times (in milliseconds) for complex
transforms of length N

New routine

N Brenner's routine (FFFT)

32 = 2 x 4 3 5.41 2.86
36 = 3 x 3 x4 6.62 2.99
48 = 3 x 4 x 4 6.82 3.55
49 = 7 x 7 9.23 4.55
50 = 2 x 5 x5 10.35 - 4,33
64 = 4 x 4 x 4 8.78 4.41
96 = 2 x 3 x 4 x 4 114.64 6.86
100 = 4 x5 x 5 20.30 " 7.50
121 = 11 x 11 ~ 24.03 11.74
128 = 2 x4 x4 x4 19.54 65.85

—17-

Appendix 1:

Proof of Theorem 1

We wish to show that

o= ¥ = pb N s F =
Wy =Wpa = Pg (5 ® Wa Y Do (W, ®Iq),

where the matrices W, P and D are defined in sections
1 and 3.

Firstly, note that the matrices (Ip(@ g), ’:@2 and
(Wpe (& I Y, all of order pqg, can all be conveniently
partitioned into p?* square blocks, each block being of
order q - For instance,

L%
6o° :l;ci COC‘ Ivci [N Iq P e e e &30 Inzg 3
w° Ig wiz w™ 1 w® Iq
] q Ta - . . .
X, = S il
Wp ® iq w® T WA wht . mrﬁ(td Dq T
3 q -9 q
' (Pt 2 {p-idq Cretlpmig
\ 0° Ly o qi’.{;‘ EV) _'Lq SRR <®) F ’.,LOL! i
where o = exp (R L re) (and hence s = exp
(a1 ¥), leading to the appearance of the factor

cg-dn-the-exponents of ‘w» in the above representation of

(fp @ Ig).

Secondly, with this partitioning the matrices (Ip G W)
and "DE are_block diagonal, and hence the product
can easily be computed block by block.

Let the blocks be indexed in the same way as the individual
matrix entries. Then block (m,n) (CXIME P~ , CE N p~t)
of (Wp & Iq) is "™ Ig. The wm i diagonal block of
8 is (Aqy and the wh diagonal block of (Lp@Wq) is ‘g
Tl;us block (m,n) of W™ (Zp® \,LJq)'_‘DE;,“ (“"'i? @ Iq)

mn ™,
is L5 “wc.v (Aq) R

Finallly, premultiplication by the permutation matrix P‘;
permutes the rows of Wypq . Recall that ?Lj = 1 if

i=rptsand J=sqg+r(0o 2vs g1, 0 £s85xp=-t)
So row (rp + s) of ”l"; ?JF‘& = row (sq + ») of WFQV

We now show that element (i,j) of "‘F’g "‘;jry%‘ = element

-18-

(i,j) of Wpg. Suppose i = rp +s, j =kg + L (© £vca-i,
0 €5 pot, CFRE pt, 0L Eq-1, L
I>

Then element (i,j) = element (rp + s, Kq + {) of P% Cf:!bp

!
= element (sq + r, kg + 4) of Wpg

element (r, {) of block (s,k) of Wpq

element (r, &) of 5F% WQ (‘ﬂq,) ,

i

Now o
N T A G a
3 < g [l
6° Wl WL w(%"‘)%’ » S
wq {z.‘;% }‘5’ = o PP otr 2@-9p W
. i 2-) : Q)) N '
RCEP R Gty o (4 ‘5F‘- ‘ ‘agq-»!)(%-vl}p /i\m. wqu)s

where G = exp (27% L/ %"’L)}, and hence C@p=exp(;Z':"Cg',/cg,).

So element (r, {) of (stq Wq/ (éc{,)s

K L :
PSR APASR PN

— cpleqg sk i ' ;
= wPRY %Y TP 58 sihee @FY =
= Lg(rp-¢~s")(!¢cé +1}

= @Y
= element (i,j) of Wpq = WN , as required.

Hence Wpq = F?’Z WF% = ’Pg (ip@ ‘“"%) ’,bf{) (w@.@ iq").

Proof of Theorem 2

We wish to shbw that
P)
F“% (A;:: ECL) = (’Bq(i./”) AP) P:

We show that element (i,j) of the matrix on the left hand
side of the eguation is the same as the corresponding
element of the matrix on the right hand side. Let
t=vp+rs, jo kgel (0€rgqgei, 0 & 5 & =1,
O k& p-t, 0= L 5 g=1),

Since premultiplication by P& permutes the rows, element
(rp + s, kg + {) of ‘F‘EZ(Ap Bg) = element (sq + v,
kg + €) of Ap@ Bg = 65k, (by considering the blecck

strucgture of Ap & Bg). Similarly, since postmultiplication
by B permutes the columns, element (rp + s, kg + &) of
(Ba ® Ap) {:Ci; = element (rp + s, Lp+ k.) of Bqg@@ Ap =
b csie . Hence Theorem 2 is proved, and the
corollary. < . o .

ry Ap ®@ Bq = Py (Be® Ap) r—";

follows immediately.

-39~

Appendix Z2: General Forms

For the six formulations of the FFT presented above, the
general forms are given below for N the product of any
number of arbitrary factors. We assume

N = "FT un
L=
and that the factors are used .in the order w, ,f, ; ..., ¥, .
Define
L~} 3 :
T 2 S G N NP L= TT 5
m ® ,J'ﬁ'::\ “J (m‘.—l,) {'b - N/ménl- = J'"-é-%\ iy (Lkg i,

The notation ;t& for a matrix product indicates that the
e.

product is written out in reverse order,

"‘E’”’"" A = AlgAk"iAt‘i"a e p\z‘_ff‘i\,‘ .

twk

ica
g.
Note that 'p‘: = Bl = Iy .

GENTLEMAN-SANDE: W, = T“E (mm ® P) L { (Im c;;‘ja ‘)(;rm ® W, ® T,)

i=

izl
| ¥y
COOLEY-TUKEY : 'T L (lLbU Wi ® Ly, NI I, ® o }} C’Q (1 LB,)
PEASE: W, = (bm Q f“) FT‘ {PN/ ‘.:' Qan ")(w,ﬂ ® Loy,),

Transposed PEASE:

‘ .
- - = Il . . , ' EE'B .
W e'T}k. v <Wﬁ‘3@ 1“/”‘»)(mm:(g 'EL;)?:Zm -} (E—L| <IL¢ ® ‘F’:z)

New form:

W"": T‘TZ {(P ® T,)(T;> @I.“, }(wh ® Loy,)}

{=le

Generalized UHRICH: .
|
- § vig K‘E;
W = T { (Wi, @ Tyym, M, ® T)T @ 1,,) 3

oo

QOO0

Appendiﬁ 3. A FORTRAN I'I'T program

SURROUYINT fFFFTT® « PLRFORMS A

ON & CUMPLEX I}

X)) =CUnMK=0,.
WHZRY T=SQRT(=1

iPUT VELTIR C OF

-',‘”"1)((l'\)’P(

CALL FFFTI(CsXy3TRIGS gNORKsIthqm

C IS THZ COMPLEX INPUT VIECTOR ¢
THE ADORESS OF THE FIRST 1M

PASE)

X IS THL COMPLEX QUTPUT VICQTOR

SUEROUTINE

TRIGS IS A COMPLTY ARRAY OF DIz

COHPLEY FAST FOURITR TRAHSFro:
L[NGTH Ni

2RIAJHKAPT/NY)y JT05 eew sloisy

FAX s N)

TREATED HERI aS ?rAL, S0 THAT
AGIWARY PART CAN BRE SUPPLTED D

(SIMTLARLY TREATZID HERE 4% REAL)
NSTON Ny PREVIQUSLY SET 1P,

CONTAINING THE VALUES TRIGS(K)=EXP(2%I* (K- i)’PI/N)y
HHERE I=SQRT(~1)
WORK TS A WORK AR:A OF (COPPL X}
IFAY IS AW INTYGTR ARRAY CONTATI
NFAX IS THE NUMBEZR OF FACTORS QF
N=IFAX (1) *IFAX(2)* e *IFAX(NFAX)

SUBROUTINE FFFT(CsX,TRIGS, HORK,

DIMENSION
NING THE FACTORS OF N
NE . "HUS .

TFAY; NFAX M)

OIMENSION C(N) sX (H) s TRIGS (H) s HORK(H) s IFAX (NFAX)
" LA=4 .

IF (NFAX:GT.1)

"OHLY ONE FALTO

10

CALL pASS(C(L),
RETURN

IF (HOD (HFAX,2).5Q01) GO 70 20

FIPST FACTOR,

- CALL PASSIIC(1)

CLASIFAY (1)
O INSXT=5(

2D

30

&0

50

.60

7n

"GO TO 30

GO TO 4110

&%

(?)sx(1)9>~'(21§T

NFAX EVEN

RIGT,Z;Z,H IFAY(i),Lﬁ)

;C(E),HORK(i),NORK(Z),TRTG 72 27VsIFAX(1)»Lﬁ)

FIRST FACTOR, HFAX 00D

CALL PASSI(C(1),0(2) s X (1) 5X(2) yTRIGS ;2,2 Ny TFAX (L) 4LA)

LA=TIFAX {1}

INEXT =60

MAIN LOOP. STATEMENTS 40 & 50 A

PASSES THROUGH THE LONP

NO 70 L=2, HFAY
IF (INEXT.FEQ.R

catl PLSS(Y(i),X(2)94OR

INEXT=E0
G2 TO c0

CALL PASS(HORK(1)

ITHTXT =40
LASIFAY (L) *LA
CONTINIE

RETHRN
END

09

GO0 TO 50

s HORK(2) ¢ XT1) s

RE EXEGUTED ON ALTERNATE

(J),UORK(Z)g4QTG§§2929N9IFAX(L),LA)

XK(2) s TRIGS 32452 s N IFAX (L) ¢ LAY

SUBROUTTINT 2485 - PURFORMS ONT PASS THROUGH DATA AS PART oF
COMPLEX FF™ ROUTINE
A IE REEL INPUT VECTOR
B IS IMAGINARY THNPUT Y7CTOR
C IS RTAL QUTPUT vECTOR
D IS IMAGINARY QUTPUT VECTOR
TRIGS IS P“FCALfULAlFD TABLE OF SINES ANOD COSINES
INCLI IS ADORZSSING INCRIMINT FOR A4 & 9 :
INC2 I8 ADURESSING INOREMENT FOR ¢ & D
N IS LENGTH OF v=CTORS : o
IFAC IS CURREMT FACTNR OF N
LA I3 PRODUCT UOF PPFVIHUJ FACTORS

OO0 O 0

DOoOOO0O00CO O

SUBRQOUT INE PAJS(A Bs C DsTRIGSyIMNCL,INC2sNsIFAC,LA)

DIMENSION L(L);b(i)qP(i)gﬂ(l)gT?IF (1}

DATA SINZG/0.587785252292473/,C0836/0, 809016994374Lg47/,
SIN72/0. 510)6)Jh Q51547 PﬁQ?K/Da00901699437H947/7
SING0/0.866025L03734437/

L

o

M:H/IFﬂC

 TINK=M¥*INC1
CJINK=LA¥INN2 y E T e T T
JUMP=(IFAC=1)* JINK i
TA=1 N o IRl e e T e T
JA=1 e mm e e s e e s o o
IGO=TFAC~4 R LI R e TeAT s

. IF (IG0.GT.5) IG0=5

GO TO (10540570, 100,150,,160

U206 % CODING FOR FAGTOR 2 - F i

10 DO 30 K=iyM,LA aioeln T T
KR=K4 K= e
. D0 20 L=1i,LA T
... IBTTIA+IINK e,
CEESLT U UB=JA+JTIHK R T e R
crom e COJRY=A(IA SO (IRY o
LI D(JAY=BLIAY 43 (I3) ‘
- ClUB)Y=A(TA) -0 IB)
ool DAJBY=B(IA)=BR(IR)
mtm e TAETA+INCL e . R
e IF (KBsEQeN) GO TO 20 S LT s
e TEMPR=C(UB) *TRIGS(KR+1) =D (UBY*TRIGS (KB4 2)
Ce TEMPI=C(JB) *TRIGS(KB+2) 40 (J3) *TRIGS{KB+1)
C{J3)=TEMPR UL G name it Ll s mmeemmem s s ie e
S D(JBY=TEMPI ‘ ,'-h;,xf»,-‘f';:iﬁ».:ﬂﬁtjsr;_
20 JA=JA+INC? T
C 30 JA=JA+JUMP e e N L L G e e
RETURN e mireeenmmen el o

CODI’\IG FOD\ FACTOR' 3 ,"17' - - .- »,.: . fl:y_",_,“"..i - : "‘f._,:;‘._ '. _: - :,”,"ﬂ ‘, .',j.: L'.p..w»

OO0

40 N0 B0 K=1,M LA e R EEET e T o 2 e
KBzK+K~2 o LT R
KC=KB+KR
DO 50 L=1,LA
I3=IA+TIINK

. CODING FOR FACTOR &

50
60
70

D0 80 L=i,LA
Ta=TA+TINK
S IC=I8+ITNK

L UB=JA+JINK

L JD=JC+JINK A
CAD=A(TAYHALIOY .

COALEACIRIAA (TN
o RZEA(IA)=AC(IT)
S R3=A(IR)-A(IN)
. BO=5(IA)+3(I%)
. BL=B(IE)+3{IN)
B2=3(I8)=3(IC)

. KB=K+K=2

DJB)=E2+A3
LC(JCY=a0-A1

TC=TIn+TTHK

JO=JdatJd TR

JC=JnEJI K
Al=A(T) A {IC)
RL=B(IB)+3(IN)
AP=A(YA)=0.5%81
R2=R(TA)=~0.5%31
AZ=SINGO* (A(IBY~A(IC))
B3I=SINGD¥ (3(I3)-3(IC)).
ClJUAY=p(TIAY+AL
D(JAY=B(TA)+RB1
ClJysy=A2=n3
D(J3)=B2+A%
C(JC)=p2+R3
n{JC)=p2=-A3

IA=TA+INCL

IF (KB-EQ.9) GO 70 50 . :
CTEMPR=C(UB)*TRIGS(KB+11-D(JUR)*TRIGS(KB+2)
CTEMPI=C(JB)*TRIGS (

K3+2)+D (UB)*TRIGS{KB+1)
C(J3)=TEMPR . .
2(JB)=TEMPT
TEMPR=C(JCI*TRIGS(KC+1)=D{(JCY*TRIGS (KC+2) .
TEMPI=C(JR) ¥ TRIGI(KC+2)+D(JCY*¥TRISS(KC+1)
C(JC)=TEMPR L
D(JCY=TEHMPI
Je=JA+INC2
JA=JAa+gunP L

00 90 K=1,MsLA

KC=KB+K8
KN=KC+KB

ID=IC+TINK

JC=JRB+JINK

B3=8(IB1-3(ID)
CJpry=A0+A%1

D (JA) - B 01" Bi S "‘ : : '.E'AV . 4* e L Dl T e LTTTIILT L T

C{JB)=R2-83

N(Jo)=8g-01
ClUn)=A2+33

R Re]

80
90

iao

.00 110
S IB=TA+TINK
L ICRYBWIINK oo
CID=ICH+TINK TR R e R T
S IE=Y04TINK
JB=JA+JTHY

JD=J0HJITHK

DOJN)=n2-4%
TA=TA+THOA

IF (K3:.EQ.0) GO Tg 30

TEMPO=C (UB)¥TRIGS (KR+1) =D (J3) ¥ TRIGS (KB+2)
TUMPISC(J2) #TOIGS (KB42) 40 (JBI *TRIST (KE+1)
C(JB) =TT MPR

D(JR)=TEMPT :

TEMPR=C (JC)*TRIGS (KC+1) D (ul) #TRI
TEMPI=C (JCI*TRIGS (KC+2)+0
C(JC)=TEMPR

D(JC)=TENPT |
TEMPR=C (JD) *TRIGS (KD+1)~D (JD) *TRIGS (KN+2)
TEMPI= L(JJ)‘TRIGS(KQFZ)*U(JJ) FTRIGS (KD+1)
ClJD)=TEMPR

D(JD) =TT HPT

JAZJA+TINC?

JA=JB+Jump

RETURN

GE(KC+2)
(JC)¥TRIGS(KC+1)

CODING FOR FACTOR 5

=1 sMs LA

[

3
faew]
;_.'..

R ANDO
G inQ
1
AR

EN
N

~
o)
non
NS
OL':JJ_.
g
ﬁJ&fJA}R
t

VE kDJ

JC=JB+JIRNK

JE=JD+JTHK L

L AL=A(TDY +A
U A2=A(IC)+4 (IN)

.. 82=B8(IC)+

- B20=3(IA)=31% T
. B21i=A3*SIN36=-A4*RIN72
CUJAY =8 (TA)+41 +A2 L T nes DT
CD(JA) =3 (IA)+B1+732 i

CAL=A(ICY=A(ID)

_BiL=B(IC)=8(IN)
CRID=A(TIA)4ALFCOS72=A2%C
L AL1=B3I*SIN72+RL* N
S A20=A(IA)=AL¥C0336+A2%00S72
. h21=B3¥SIN36-34%STN72 o
- B10=B(IA)+31%*C0372-82%CN336

. D(JB)=E104p1l o
S C(J0) = R
U (JC)=820+821

(1)
A3=A(IR)=h (IF)

B1=3(IG) +3(TZ)
B(ID) e
B3=5(IB)=0 (1) e

Oq3‘é “.“ B P
*SIN35

B311=A3*CIN72+A4*SIN3B
CO336+82%0D%s72

C(uyl)=A10-A11

r20=-p21

L i § L A V' - v‘ e ‘ .;".A”;"V‘.“.,V‘;’.;"',‘v.".i.‘." o '..'.“:..‘:; ':;:.‘_'“.:‘. I A‘ e "‘-“‘; ‘- -" e "““""‘ .

L NNENAN
 KINK=K+K-2

. IB=IA+IINK
. IMEIA+MINK
S TZ=TA+LINK R
. I0=17 e
. U SUMA=AC(IA) ”.;!:rfm
. SUM2=3(IA) o
D0 140 EP=IB,ItsIINK
~ U TEMPR=ACIPY+ACIQ)
el ALIQ)SALIO) = (IQ) e o T s
L A(IP)=TEHPR e o
 SUMA=SUMLI+TEMPR B o e

CRETURNM

o BOIQY=B(IPI-3(1IQ)
CBUIP)=TEMPI

C{JO =17 U7L7
D(!“) 2022
COJEY=ni0+Adi
Dy ~T10«j11
TA=TA+TNCL
IF (KR.2Q.0) 60 ™n 110
TEHRPR L(Jq)*TQIGJ(K»+j)wﬂ(Jq)’JPI S(KR+2
TEHRPI=ClUR) ¥TRIGS(KB+Z) +D(JB)*TRIGS(KB+1)
Ciday= ‘ii”?

DOJ3)=TeMby

TEMPR= C\JL)XTPTGQ(KC%i)mj(J“)ffPIGP(”'%Z)
TEMPI=C{JC)*TRIG S(KC+2)+D (JC) ¥TRIGS (KC+1)
ClJC)=TrupR

DEICY=TEMPT i ’ '
TEMPR=C (UM *TRIGS(KD+1) =D (JUDIY*TRIGS (KO1+2)
TEMPI=C(JD) *TRIGS(KN+21+D{JD)Y*TRIGS (KD+1)
CJDY=TEMOR

DIJDYI=TEHMPT ’ T
TEMPR=C (JEN)*TRIGS(KE+1) =D (JE)FTRIGS(KE+2}Y

i
i

TEMPI=C(JZ)*TRIGS (KE+2) 4D (JE) ¥*TRIGS (K 4+1)

ClJE)=TrMPR
DOJEY=TEMPT
JA=JA+INC2
JA=JA+ JUMP

LODING FOR GrNPRNL ODU FACTOR

KT=H4M

o LINK=(IFAC=-1Y*TIINK

MINK=LINK/?2
DO 190 K=14M; LA }W

DO 180 L=1,LA

TEUMPI=0{IM)+3(IQ)

SUM2=SUM2+TEUP T
10=1Q-TIHK
C(JA) =CUMe
D(JA)=C1H2

S JP=JASJTIHK

JQ=JA+Jump
KU=KT
DO 360 I=IBsIM,IINK

!

P N :

60

[Eo R v N

o I aion S

L’

CORETURN o
SOEND L e sl

SUMI=A(TA)
SUMZ2=0.0
SUMI=2(1AH)
SUMg=0,0
KV =K
IQ=17

DO 150 IP=T8,1#;ITHK

ITF KV GEGHN) KV=Ky=in
SUML=SUMLI+A (TP) *TRIGS (KY+1)
SUMZ=SUM2+L(TQI*TRIGS (Ky+2)

SUM3=SUMI+D ([P)*T

RIGS (KvV+1)

SUM4=SUML+A [{IQ) *TRIGS (KY+2) e

KV=K\V+ KU
IQ=IG-TINK
Clir)=UMi=Se
D(JP) =5UM3+SUML
ClJdy =SUML+TUMP

S D{JQ) =SUMB-SUMG

JP=UP+JTINK
JA=JQ-JINK
KU=KKU+ KT

TA=TA+INCY

IF (KINK.EQ.0) GO TO 180 . .

KU=KINK
JP=JA+JTINK
JA=JA+JUMP

DO 170 J=JP,J0,JINK L
CTEMPR=C () *TRIGS (KU+1) =D (J)*TRIGS (KU+2)

TEMPYI=C{Jy *TRIGS(
C(Jr=TEMPR

DGy =TEMPT

K= KU+ KTHK
JA=JALTNG?
JA= JA+gUHP

KU+2) #d (D *TRIGS (Ku+d)

References
Bellman, R. (1970) "Introduction to Matrix
Analysis', Mc Graw-Hill,
2nd Edition.
Bourke, W. . (1972) "An efficient, one-level,
primitive-equation
spectral model",
Monthly Weather Review 100,
683-689. '
Cooley, J. W. - (18658) "An algorithm for the machine
and Tukey, J. W. calculation of complex Fourier
series'", Math. Comp, 18,
267-301.
Cooley, J. W. (1970) "The Fast Fourier Transform
Lewis, P. A. W, “algorithm: programming
and Welch, P. D. considerations.in the
calculation of sine, cocsine
and Laplace transforms',
J. Sound Vib. 12, 315-337.
Daley, R. (1976) "Short-term forecasting with
Girard, C. a multi-level spectral.
Henderson, J. primitive equation model,
and Simmonds,; I. , Part II - hemispheric
prognoses and verifications',
Atmosphere 14, 117-134.
Dixon, R.) (1976) "A special versign of the
' FFT", Met.0 11 Tech. Note 54
(unpublished Meteorological
Office Technical Note).
Gentleman, W. M. (1966) "Fast Fourier Transforms -
and Sande, G. for fun and profit",

1966 Fall Joint Computer
Conference, AFIPS Proc. 29,
563-578.

Holloway, J. L. (1973)
Spelman, M. J. and
Manabe, S.

Merilees, P. B. (1973)

Paegle, J. and (1975)
Tomlinson, E. M.

Pease, M. C. (1968)
Singleton, R. C. (1867)

Singleton, R. C. (1969)

Swarztrauber, P. N.(1974)

"Latitude-longitude grid
suitable for numerical time
integration of a global
atmospheric model',

Mcnthly Weather Review 101,
69-78.

"The pseudospectral approximation
applied to the shallow water
equations on a sphere",
Atmosphere 11, 13-20.

"Solution of the balance
equation by Fourier transform
and Gauss elimination',
Monthly Weather Review 103,
528-535.

"An adaptation of the Fast

Fourier Transform for parallel
processing™, JACM 15, 252-264.

"On computing the Fast Fourier
Transform", ~
CACM 10, 647-654.

"An algorithm for computing the

mixed radix Fast Fourier ,
Transform'", IEEE Transactions
‘on Audio and Electroacoustics,
17, 93-103.

"The direct sclution of the
discrete Poisson equation on
the surface of a sphere',

J. Comp. Phys. 15, 46-54.

Temperton, C. (1276) "An all-purpose mixed-
radix Fast Fourier Transform
program",
Met. 0. 2b Tech. Note
No. 25
(unpublished Meteorological
office Technical Note).

“Theilheimer, F. (1269) "A matrix version of the
Fast Fourier Transform",
IEEE Transactions on
Audio and Electroacoustics,
17, 158-161.

Uhrich, M. L. (1969) "Fast Fourier Transforms
without sorting",
IEEE Transactions on
Audio and Electrcacoustics,
17, 170-172.

G

N

(e)

N

o]

N

N

{b)

(a)

7 b) ST -
{ 3 \\\J \. Y e \.SzJ P
R D N O
it ,;// Y - AN . S ¢
~SLT T " .
PN
/ S e ™~ s
/ ~. ol
~,
/ ~

onrmeeemeeeres |

., -
i, e e S N
.\. ..v A.\.]fjw .\\ Jw\ /./x, P Azuwv.‘.»....‘.....?,#h \.v,la..‘i.
Y N o/ i) { 3 { i
g 5 \w S, P n,i/vun\.\ f# — \\« WVJI'\»\

-

<2
i

)

(a)

I ® w,® I,)

2
2

(T, ® »

(b)

(d)

(e)

=93

i The Gentleman-Sande FFT for N

Fig.

O

¢

(a)
(b)
(c)
(d)
(e)

Fig.

/)~“w 2 Yoo 7 7N

(a) (b) ()

e

P :\\\‘ s .

I,® ek

Ly ® Wy

(T, ® W ® T)(L, ® D5)
(W, ® I,)}

2 the Cooley-Tukey FFT for N=23.

(d)

(e)

5
e

=31

)

3
L

(

(b)

(a)

Ty (v ® Ty

2
L

(a)
(b)
(e)

2 \)(Wz@ -I't:-}

X

®

(3
(Wy @ llj

2
PH-

g

o2
Y2

&

Ix]

~~

o]

(e)

N=25.

FFT for

se's

Pea

[ap]

Fig.

e E

(e)

(d)

(b)

(a)

i
i
i
H
! 5
\
| /
. e
i
i
i
A
Y
\
j

l}!«
}
é.l\.\.\
- .
<
S /
s
{ ;,,.
PR \
.
T ~
S T A O R T A N U A S
§
..... >4
o
E
[
v

2
2
(W, ® 14) P,

PN
7 s

,®F

M 4o

(a)
(b)

i
%

Frs

(c)
(d)

=23.

The "transposed Pease' FFT for N

4,

Fig.

(c)

(bj

e et

b

2 _2
Py D

(a)
(b)

(W, ® Iy)

> @ Ly)W, ® 1,0

%
2

A2
23

4
A

W, ® L,

(2

(c)

=23.

5. Proposed new form of FFT for N

Fig.

(a) Wo® T,
B (%@) (201, (ri®r,)
(c) (w,® 3, '):bf;_ ’i:’;j’;r

Fig. 6. Uhrich's FFT for N=23.

EUROPEAN CENTRE FOR
MEDIUM RANGE WEATHER
FORECASTS

Regearch Department (RD)

Technical Report No. 3
No. 1 A Case Study of a Ten Day Prediction

No. 2 The Effect of Arithmetic Precision
on some Meteorological Integrations

Mixed-Radix Fast Fourier TransLorms
without recrdering

No.

o

.

