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1. Introduction

In a previous paper {(Temperton, 1977b), the author compared
several direct methods for the solution of the discrete

Poisson equation over an N x M rectangular grid, in terms of
operation counts, storage requirements, speed and accuracy.

The methods considered included FFT-based algorithms, block-
cyclic reduction (Buneman's algorithm), and FACR (1) algorithms,
in which one preliminary step of block~cyclic reduction is

used to halve either the number or the length of the Fourier

transforms.

In this paper we consider the FACR (2) algorithm, in which £
preliminary stéps of block-cyclic reduction are carried out,

the reduced system is solved by the FFT method, and the solution
is completed by 2 steps of block back-substitution. Both the
basic FFT method and Buneman's algorithm are special cases of the
FACR ( © algorithm; with the optimum value of £, the FACR (L)
method is probably the fastest known numerically stable algorithm

for solving the discrete Poisson equation over a rectangle,

Hockney (1970) first introduced the FACR (L) algorithm, using 2
preliminary steps of a numerically unstable form of block-cyclic
reduction, which nevertheless gave satisfactory results for small
values of L. Swarztrauber (1877) used a stable cyclic reduction
scheme based on Variant 2 of Buneman's algorithm (Buzbee et al.,
1970), derived the optimum value of &, and showed that this gave
an operation count asymptotically proportional to MN logz(logzN).
In this paper we replace Variant 2 of Buneman's algorithm by
Variant 1 for the cyclic reduction and repeat Swarztrauber's
analysis under a rather different set of assumptions and definitions.
Again it is shown that for optimum 2 the operation count is
asymptotically proportional to MN 1og2(1og2N); however, it will be
demonstrated that for practicable grid sizes the operation count
is effectively proportional to MN. It will also be shown that

the FACR(2) algorithm arises quite naturally from a study of the

relationship between the basic FFT and block-cyclic reduction methods.
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and Xg = Xy = 0. (Non-homogeneous boundary conditions at
J = 0,M can be handled by modifying pl and ?M_l, and at

e
]

0,N by modifying the first and last components of each bj).

We first set out the cyclic odd-even and factorization (CORF)
algorithm for solving this system as given by Buzbee et al.
(1970;.

petine A% = a, p§0> = by, 1<j<u-1.
Then after r reduction steps we have the block-tridiagonal system

r o+ A(r) X, + x T o=

53“2 X X549 bim T e (1)

involving only those values of j which are multiples of 23’ where

A(r), b§r> are defined recursively by:

A —or o (TTINZ sy (2)
(r) _ . (r-1) (r-1) (r-1), (r-1) (3)
Qj = Qjmgr—l + Q'+2r-1 - A Qj
for j=2%, 2 x 2%, ...., m-2%,

In particular, after k = (log2M~1) reduction steps the system has

been reduced to a single equation:

(k) _ (k)
A §2k = sz ............. (4)
which can be solved for §2k. The remainder of the system can then

be solved by k = (log2M~1) steps of back-substitution, using decreasing
values of r; at each step we use Eq.(1) to obtain Kj for each j

equal to an odd multiple of Zr, the solution having already been

found for all j equal to even multiples of 2",




: - (k-1 (k) _
xk = 8 TC AT sy (k=log,M-1) (8)
o =1 (r) -1 (1) :
and xj = 8 "( A ) S['Q. “Xj_gr = Xj,or 1 | ()
(r=log,M-2,...,1,0; j=2% ) 3x2¥, ..., M-2%).

We will not discuss the numerical stability of the algorithm
defined by Egs. (7) - (9), but rather note that it requires

almost twice as many sine transforms (and their inverses) as

necessary. If we first compute
bgg) =Sby, 1 <] <Ml (10)

then the algorithm becomes:

s (r) _ T (r-1) S {r-1) oy (r=1)2 (-1

23 Pj_or=1 * Pyior-1 A b5 (11)
(r=1,2,...,log,M-1 ; j=2¥ 2x2% .. ., M-2")

~ k), -1 2(k

%o =4 DT B (k=logu-1) (12)

s (r)y=-1p2(r)y _ 7 N -

}E‘J ( A ) E?J - ~j_2r = }fj+2r_] (13)
(r=log,M-2,...,1,0; =27, 3x2 ..., M-2T )
and finally

I . ]
§j = 3 %j , 1 < j g M-1 (14)

But the algorithm defined by Egs. (10) - (14) is precisely the
"pasic FFT'" methcd, with the tridiagonal systems solved by
(scalar) cyclic reduction. Thus the block-cyclic reduction method
(stabilized by using the factorization of Eq.(6)) and the basic
FFT method (with the tridiagonal systems solved by cyclic
reduction) are equivalent. By the time the block-cyclic

reduction method has been stabilized instead by Buneman's
algorithm, and the basic FFT method has been modified to solve

the tridiagonal systems by Gaussian elimination, the two resulting
algorithms appear quite different; nevertheless, as the above




After{ cyclic reduction steps, we have the following system:

(L) - (2) (L) | (2)
RN A X, + X 3 A 17
§3~2 i ~ 3 ~j*2 Ng J (17)
with Xy = By = 0, invelving only those values of j which are

multiples of 22 .

If we then define

- (2)

T3 T %3 7R (18)
- (E) (2) (2)

%J - ~j (p Q’ + ¥ 3+2 ): (19)

Eq. (17) can be rewritten as

() -
Vieon T ATV F Yii00 = £y (20)
) 2 2 . o _
for 3 = 27 , 2x2 LGM=-27 ) with yo =Yy < 0.
Now defining y = 8y., gj = ng , and using Egq. (8) to
'\)d -~ ~

factorize A(z), Ba. (20) becomes

ST S LD (S S Ay 21

7i-2 A Y5 ¥3+2 %j 21).

As A (%) is diagonal, Eq. (21) represents a set of (N-1)
independent tridiagonal systems which can easily be solved for
gjj ijQ , ox2% ,BEQMNZQ . From each Zj we obtain vy = S“1§
and hence %j = Xj + g(i)

The remaining XJ are then found in 2 steps of back-substitution:

for r = §-1, 40— ..., O we solve the system
(r) | (1) (r) . .
A (%5 =23 7 ) =95 7 = (yipr + Xyur ) (22)

for =27, 3x27,

JMe2T  ysing once again the factorization of
A () '

given by Eg. (5).




4., Operation counts and optimum £

Swarztrauber (1977) presented an algorithm very similar to the
one described above, the differences being that the block-cyclic
reduction was performed using Variant 2 of Buneman's algorithm

(r)
J

( in which the vectors p. are eliminated), and the tridiagonal

systems were solved by (scalar) cyclic reduction. In deriving

an operation count and hence determining the optimum value

of &, Swarztrauber defined an operation as consisting of a
multiplication or division together with an addition or
subtraction, and included only those operations which contributed
towards the asymptotic operation count., In this paper we

take a somewhat different viewpoint; we count additions and
multiplications separately, and include ail of them ( apart

from some lower-order terms of little significance ).

In fact it turns out that for practicable grid sizes, there are
approximately twice as many additions as multiplications, while
the asymptotic operation count underestimates the actual operation

count by at least 50%.

In deriving an operation count we assume, following Temperton
(1977b), that a tridiagonal system of order n can be solved
in 2n additions and 2n multiplications using precomputed
coefficients, ,while a sine transform of order n takes

(1.5 1og9 n + 2.5)n additions and (10g2 n ~ 0.5) n multiplications.

During the r'h preliminary step of cyélic reduction (1< r<f ),

we have to solve (M-2T7)/2 tridiagonal systems of order (N-1);
altogether these contribute approximately LMN additions and

2MN multiplications, Implementation of Egs. (15) and (16)
involves some extra additions : approximately 3MN/2 for the first
reduction ( r=1 ), since g£0> = 9 for all j, and 6MN/2T for the
rth reduction { 2 £ r & R)f The total number of extra addiﬁions
from this phase is thus approximately MN (3/2 + 6% 2~r) =

MN (9/2 - 6/2% 3, r=2

After § steps of cyclic reduction, we are left with a system
of order L = (N-1) (M/EQ ~1), defined by Eq. (17). Computation

of the vectors gy takes 2L additions; the sine transforms to find
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optimum £:

|2 log,(log,N) + 10 JMN additions
and[2 1og2(log2N) + 2 |JMN nultiplications.

Several observations are in order here. Firstly, the optimum
value of 2 and the total number of operations per point depend
only on N, the length of the Fourier transforms. Secondly,
assuming that the range of practicable grid sizes is 16<N¢256,
the operation count for FACR(L) with optimum 2 is 14-16
additions and 6-8 multiplications per point; hence the FACR(%)
algorithm represents a very close approach to the elusive
"stable 0(N?) algorithm" (Bank and Rose, 1875; Dorr, 1875),.
Even for N=4096 the operation count is only 17 additions and 9
multipiications per point. Thirdly, while the actual count for
practicable grid sizes is 20-24 operations per point, the
"asymptotic” couﬂt is 4 1og2(10g2N) or 8-12 operations per point,

an underestimate by at least 50%.

It has already been mentioned that this analysis is only valid

for 1 < QSlogEMME; in Table 1 the approximate numbers of additions
and multiplications per point are presented for the NxN Dirichlet
problem with 8 <N <128 and all possible values of £, including

2 = 0 (the basic FFT method) and 2 = 10g2N {(Buneman's algorithm).
In deriving Table 1, some lower-order terms, omitted in the fore-
going analysis, were included. Notice that for N=8, Buneman's
algorithm requires fewer operations than for any £ <log2N.

For N »16, the operation count is minimized at % =2 or ¢ =3,

in accordance with the analysis above; the minimum is quite

shallow.

Throughout this discussion we have assumed that all tridiagonal
systems are solved by Gaussian elimination using precomputed
coefficients. It is of interest to determine the number of such
coefficients which are required, since this affects both the
storage requirementsland the time taken for preprocessing. For
the simple tridiagonal systems encountered here, a system of order
n requires n precomputed coefficients, which can be calculated

with (n-1) additions and n divisions.
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requires fewer coefficients {and hence alsc less preprocessing)
than either of the basic methods.
TABLE 2
Number of precomputed coefficients v required

for tridiagonal systems for the N x N Dirichlet

problem; tabulated value is v/ (N-1).

2 N

8 16 32 64 128
0 7 15 31 63 127
1 4 186 32 64
2 4 6 10 i8 34
3 7 14 22
4 - 15 18 22
5 - - 31 32 34
6 - - - 63 64
7 - - - - 127

As outlined in Section 6, the number of coefficients can in fact
be further reduced by almost a factor of 2 if a modified form

of Gaussian elimination is used for the tridiagonal systems.




TABLE 3

CDC 6600 CPU times (sec.) for the
N x N Dirichlet problem

)
8 16 32 64 128
0 8,41x10"3 3,14x10’2 9.70x10"° 3,80x10"1 1.39x10°
- - - -1 -
i 4.40x107°  1.79x10”2 6.20x107%  2.60x10 5.96x10 "
- -~ - - -1
2 2.97x10"° 1.29%107%  4.79%107%  1.94x10”" 7.44%10
3 1.06x107° 1.06x107° 4,40x10'2 1.80x10" " 7.44x10""
- - -1 -1
4 - 9.47x10 3 4.18x10 2 1.86x10 ! 7.43%10
-2 -1 =1
5 - - 4.,79%10 1.97x10 8.79x10
6 - - - 2. 12x10 1.02x10°
7 - - - - 1.07x10°
TARLE 4
IBM 360/195 CPU times (sec.) for the
N x N Dirichlet problem
% N
8 16 32 64 128
- - - - ~1
0 1.38x107°  5.75x10"° 2.11x107°  9.04x10" 2 3.60x%10
1 9.38x10°%  3.97x107° 1.53x10" % 6.49x10 2 2D63x10Wl
- - - - -1
2 6.70x10° % 3.22x107°  1.31x10"%  5.54%107 2 2.26%10
3 5.91x10" 2 2.93x107° 1.31x10” 7 5.55x10" 2 2.28x10'1
- - ) -1
4 - 2.92x107°  1.37x10"° 5.99x10"2 2.49x10
= - - -1
5 - - 1.43x107°%  6.49%107 2 2.76x10
- -1
6 - - - 6.86%10 7 3.02x10
7 - - - - 3.2ox10"1
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TABLE 5

Mean maximum error for the N x N Dirichlet problem

(CDC 6600, old version of sine transform)

) | N
8 16 32 64 128

0 a.10x10” % 1.38x107 13 4.24x10" 3 2.16x10*12 8.3ax10 12

1 3.02x1074  g.20x107 M4 3.59x107 0 1.67x107'2  7.62x10712

2 2.49x107% 5. 0ax107M 2.35x10713 7.57x107 13 3.87x107 12

3 2.42x107%  4l17x107M* 1.09x10713 4.28x107 13 1.99x107 12

4 - 4.05x107"%  6.s5x10714 2 1ex107' g.40xi0713

5 - - 6.73x10” 4 1.22x107 13 4.16x107 13

6 - - - 1.14x10" 3 2.24x107 13

7 - - - - 1.71x10713

TABLE 6
Mean maximum error for the N x N Dirichlet problem
(CDC 6600, new version of sine transform)
2 N
8 16 32 64 128

0 5.68x10 4 1.14x107 2.10x107 13 4.30x107 13 8.94x107 13
1 3.38x107 4 7.30x10" 14 1.22x107 3.17x107 13 5.80x10 3
2 2.42x10" 1% 4.73x107 4 6.65x10" 14 2.05x107 13 3.81x107 13
3 2.02x107 alomxio! aisoxio™!? 1aexto”!d 2.gsxio”!d
4 - 4.05x107 14 6.64x107 14 1.17x107 03 2.20x107 13
5 - - 6.73x10 14 1.11x107 13 1.92x107 3
6 - - - 1.14x10713 1.79x107 13
- -13

- - - - - 1.71x10
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optimum value the coefficient array is much smaller than the
solution and right~hand side arrays. As noted by Temperton
(1977b), the storage requirement for the coefficients can be
almost halved by using "symmetric" Gaussian elimination

(Evans and Hatzopoulos, 1976); with this modification available,
it appears that using alternative methods for the tridiagonal

systems will seldom be worthwhile.

i
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APPENDTIZX : PSOLVE

WARNING: In accordance with the notation specified for the
GAMM Workshop on Fast Solution Methods for the Discretized
Poisson Equation (for which PSOLVE was originally written),
the definitions of M and N are interchanged from those used

in the rest of this Report.

Description of algorithm

Subroutine PSOLVE solves the discretized Poisson equation under
Dirichlet boundary conditions using a form of the FACR (%)
algorithm (Hockney, 1970; Swarztrauber,1977; this report).

The % preliminary levels of block-cyclic reduction in the
y-direction are performed using Variant 1 of Buneman's algorithm
(Buzbee et al,, 1970); however, the tridiagonal systems are
solved by Gaussian elimination., The real Fourier sine transforms
in the x-direction are converted to periodic complex Fourier
transforms using the inverse of the procedure of Cooley et al.
(1970); the transforms are computed in "radix 4 + 2" arithmetic
using a form of Fast Fourier Transform in which the usual re-
ordering procedure is eliminated (Temperton,1977a). The
resulting tridiagonal systems are solved by Gaussian elimination.
The solution of the problem is completed by inverse sine
transforms in the x-direction followed by block back-solution in

the y-direction.

In most applications, the discretized Poisson equation on a

given grid will be solved a number of times with different right-
hand sides; consequently, all the trigonometric function values
required by the FFT routine, and the coefficients required ﬁo solve
tridiagonal systems by Gaussian elimination, are computed and

stored by preliminary setup routines.
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L, the number of preliminary levels of block-cyclic reduction,
can take any non-negative integer value provided that N is a
multiple of ZLG If L = 0, then the algorithm consists simply
of sine transforms, tridiagonal solutions and inverse sine
transforms, without any block-cyclic reduction. If N = 2L,
the solution method is equivalent to Buneman‘s algorithm (Variant 1),
and in this case there are no sine transforms, so M need not

be a power of 2,

The RHS and Q arrays can be the same (i.e. the solution over-
writes the right-hand side) for L =0); otherwise they must be
separate,
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80
94

14

§=TRIGS(I+1)

BETA==2.0%(2.0-5)

IF (L.EG.Q0) GO TGO 80

DO 70 K=1i,L

BETA=2.0-BE/A*ZETA

CALL TRIUGO(COEFFS (IC)sHYsBETAD
IC=IC4+NY

RETURN

END

SUBROUTINE TRIODCU(COEFFS,NY,5)
DIMENSION COEFFS{NY)
COEFFL (L) =-1.0/3

IF (NY.EQel) Gu 70 23

BO 10 I=2,.NY

COEFFS{IV==1.0/ (S+COEFFS(I-1)}
COEFFS{HY}==COCFFS (NY)

RETURN

END




EvAsieReNvErieirNoleRoNoloNaRaNsNeoNoloNe Yol o NoNo v RrRe e Rr R ol ol R ols o Re Rt el v R e Re R e

10

=31~

SUBROUTIHE "PSOLVEf = SNLVES POTSLONTS EQUATION OVER A
RECTAHGULAR M X N GRIJ WITH GRIDLENG'H = 1, UNDER DIRICHLET
80JNUARY CONUITIONS.,

THIS ROUTIME USEs THE FACRIL) ALGOPITHM (SFE PaN. SWHARZTRAUBER,
THE METHOOD> OF CYCLIC REDUCTION, FOURIER ANALYSIS AND CYCLIC
REDUCTION 7/ FOURIER AHALYSIS FCR "HE OIRECT SOLUTION OF POISSON'S
EQUATION ON A RECTANGLE™)Y.

BLOCK=CYCLIC REDUCTION IH THE Y-DIRECTION IS PERFORMED USING
BUHEMARN®™S ALGORITHM VARIANT 1

FAST FOURIER TRANSFORMS IN THE X=JIRECTION ARE SERFORMED USING
RAGIX 442 ARITHMETIC WITH A FORM OF FFT REQUIRING NO
UNSCRAMBLING

TRIDIAGONAL SOLUTIONS ARE PERFORMED BY GAUSSIAN ELIMINATION

{(i4+1} (INCLUDING BOUNDARY PUINTS)
(M+1) (INCLUJING BOUNUARY POINTS)

HOe "OF POINTS IN X~OIRECTION
NOe OF POINTS IN Y=DIRECTIUN
RHS IS RICHT=HAND SIDE ARRAY
Q@ IS SOLUTLON ARRAY ‘
P IS AN AUXILIARY 4RRAY WHICH CAN 9E “INTERLEAVED®™ WITH THE 0O
ARRAY, I.E. (EQUIVALENCE (P(1),Q(M+2))) OR EQUIVALENCE (P(1,1),
Q1,231

COEFFS TS AN ARRAY OF COEFFICIENIS USED IN SOLVING TRIDIAGON:L
SYSTEMSs AHD SET UP BY SUBROUTINE “PSETUP™

TRIGS IS AN ARRAY OF TRIGONOMETRIC FUNCTION VALJES USED BY THE
FFT ROUTINE, Add SET UP BY SU3ZRQUTINF *STRIGS™

HORK IS A WORK AREA OF LENGTH My UStD BY THE FFT ROUTINE

L IS THE NUMBER OF PRELIMINARY LEVELS OF CYCLIC REDUCTION

o

L CAN TAKE ANY VALUE SUCH THAT N IS A MULTIPLE QF 2%¥{
FACR(O) CORRESPONDS TU SIMPLE FFI/TRIDIAGONAL SOLUTIONS/INVERSE
FFT METHQD

FACR(K) CORRESPONDS TO BUNEMAN®™S ALGURITHM (VARIANT 1) IF N=2¥¥K

RESTRICTIONS? A

M MUST BE A POMWER OF 2, EXCEPT FOR F'"CRI{K} IF N = 2%¥%(K

N MUST BE A MULVIPLE QF 2¥%L ’ '
THE RHS AND Q ARRAYS CAN BE THE SiME FOR FACR(Q) 3 OTHERWISE THEY
MUsT BE SEPARATE,

D N3 AP mh TS GO R AR GU G D S G Gl S5 OD G5 n UD O OGP WR GH W A G0 T U OB G5 @ GD o o e oR P WD UD U5 OF YD an U0 an U N D 00 ob on WD OB Wb 92 mu O et w9 @

SUBROUTINE PSOLVE(RHSsQsP,COEFFS,TRIGSy WORKsM Ny L)
UIMENSION RHS(1) Q1) 5P (1) COEFFS{LY s TRIGS (1) 4HIRK (L)
MX=M+1

NX=HN+1

LOT=MX*NX

MAz=HM=1

NA=N-1

FIND KKs WHERE M = 2%¥KK

Li=2

Kk=1

LL=tiL+elL

KK=KK+1 ' -

IF (LL.LTeM} GO 7O 10

PARAMETERS FOR FFT ROUTINE
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NY=MY/2
ITJA=JUMP ¢4
DO 150 TUuK=ILJA;LA, JUMP
TU=TJUK+1
DO 100 I=1,MA
QIS =P{Id=-LLY+P (I J+LLY-G(TIU)
2006 Td=Id+l
IC=ICOACE
DO 130 IQ=1,.NN
IJ=TJK
G=0.0
DO 140 I=1.MA
IC=IC+4
IJd=1d+1
G=COEFFS{ICI* LG+ (I )
116 Q(IJ)i=G
DO 120 I=2.MA
IC=1IC~-1
Tu=1J-1
G=COEFFS(ICI*G~-U(I N
126 Q€IJ)=¢C
130 IC=I0+MA~1
DO 1440 I=1,MA
PUTJI=PLIN+Q (I}
QUIJY=Q{TJd=-LLI+Q(TJ+LL) =~ (P (T JY+PLTU))
140 IJ=Id+1
158 COnTINUE
160 ICBASE=ICoiSE+TICRASE+MA
1ot IF (LE.EQ.LY GO TO 260

SOLUTICOH FOR Q(1i/72) BY 3BUNCHANT™S ALGORIVHM

PHN=NN+UN

IC=TICBASE

JU 190 I0=1,uH

TJd=TIJA

G=0.0

DO 176 I=1,MA

IC=1C+1

Td=T J+1

G=COEFFS{ICI¥(G+Q (T )]}
170 QiIJgr=a6

0O 180 I=24MA

IC=iC-1

IJ=1d-~1

G=COEFFS{ICI*G-0(1J}
180 Q(TIJ)=G
180 IC=IC+MA=-1

NN=NN/2

GO Tn 215

200 IF (HY.GT.41) Gu T0O 238
: SOLUTIUON FOR Q1/2) 3Y SINF TRANSFORH
CALL FFT(QU{TIJAY JHORK OQITUAY s TRIGS 31 eMsiNFAXGZLAST, #1)
IJ=TJ8+1
IC=TLBASE+L
50 210 T=4 ¢4p
QUIJY=COEFFS{IV)I»QIT )}




360
374

384U
391

400

430
440
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CONTINUE

BACK=u0LUTION

00 450 IP=1,LR
ICBASE={ICRASE-HA) /2
TJA=LL+L

00 440 TJK=TJAsLA,JUHP
IJ=TJK+1

IF (IP.EQ.LR) GO ¥0 370
DO 360 I=1,MA
QUIJI=Q(IJ=(QEIJ=LL)+Q(IJ+LL))
IJ=TJ+1

Gu TO 390

N0 38y I=1,MA
QUIJY=RHS (TN = (QEIJ-LLI+Q{TI+LL))
IJ=1J+1

IC=IC3ASE

DO 420 1Q=1,HN

TJ=TJK

6=0.0

D0 400 I=1,MA

TC=1C+1

IJ=Tg+t
LG=COEFFS(ICI¥(G+Q(IUN)
QlIJ)=6

00 410 I=2,MA

IC=IC-1

TJ=1J-1
G=COEFFSIICI*G-0(IJ)
QEIJI=6

IC=IC+MA-1

IF (IP.EQ.LR) GU TO 443
TJ=IJK+1

DO 430 I=1,MA
QUIJY=P(IJ)=Q(Id)
Tu=TJ+1

CONT INUE’

JUMP=LL

LL=tL/s2

NN=NN/2

RETURN

END

rmnrorg
5
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TEMP=HORK(1}Y=HGRK(2])

HORK (1} =HORK (1} +WORK(2)
WORK{(Z2)=TEUP

IF (N-EQsw) GO 7O 30

K=2

AQ=HWURK (L) +HORK(N+2~-1)
AL=WORK(L)~HORK{N+2Z=T1)}
A2=HORK(I+1} +HURK(N+3=-T1)
AI=WORK(I+1)-HURK(N+3~1)
TEMP=AL¥TRIGS(K)Y +A2¥TRTIUVL{K+NQ)
HORK (I I1=AQ+TEMP

WORK (N+2=1) =A0=TEMP
TEMP=p2¥TRIGS(K)=A4¥TRIGL (K+MQ)
HORKI(I+1)=TEMY +A3
HORK(N+3=1)=TEMP =43

K=K+

HORK{(1{H+1) =HORK(IHIH+1L}+HORK {NH+1}
HORKINH+2 ) =HORK (NH+2 ) +HORK {NH+2)

POSTFROCESIING - SECOHL STAGE

3{1}=0.0
BUINC+1)=HORIL{L)
J=INK+1

IF (N.EQ.%) GO 70O 50
D0 430 I=gsHN,2

BOJ) =WdORK{I=2}
g{J+INCY=3(J-INC) +WORK(I=3)
J=Je INK

B{J) =HORK {4}
BlJ+INC)==HORKI{2}
RETURHN

END




OO0

~

Zu
34

40

-39~

D(JA+J)=B0+B1

C{JUB+JI=A2~-83

DOJL+JY=B2+A3

C(yC+Ur=A0-AL

DU+ 3)=g0=-31

ClUn+J) =A2+33

DLJD+4)=82~A3

I=I+INCL

IF (K.EQe1} GO T0O 20

TEMPR=CL¥C{JB+ I =S1¥D(U3+J)

TEMPI=L1¥C(UB+J) +0L* 0 (U344}

C{JdB+J)=TEHMPR '

DI+ ) =TEMPI

TEMPR=CZ¥CUJYC+ ) =S2*DJL+J)
ExPI=S2%C{ac+d+02%0(3C+d)

C{JCrJ)=TEMPR

D{JC+IY=TEMPI

TEMPR=C3¥C{JU+ J) =S3¥L(J14d)

TEMPI=S3*C(J0+J) +C3¥u U0+

ClID+J) =TEMPR

UDEJa+vg=TEMPL

J=J+INC2

JEJHJSUMP

RETURN

COUING FOR FACTOR 2 = S5SUMES THAT 2 MUS: bR

HENSE WO RUTATING FAC (rS ARL REOUIRED

00 50 L=1,LA
TEMPR=A(IA+L)-A4(IB+1I)
TEMFI=E(IA+T)~3(IB+I}
ClJA+UY=ALTA+T}+ACIB+T]
DIJA+ ) =BLTA+T)+3(I8+T)
ClJB+UI=TEMPR
DUJB+UI=TEMPI

I=I+IHC1L

J= U+ INC2

RETURN

END

LAS

4

FACTOR,

st
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