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1. Introduction

During the past ten years, it has become increasingly popular

to solve the discretized Poisson equation (and related problems)
by direct rather than iterative methods. Such methods were at
first applied only to the simple Poisson equation on a rectangular
N x M grid, where N was restricted to the form N = ok ( or

N =3 x 2K in Hockney's (1965) important eariy paper). More
recently, direct methods have been extended to other regular
regions (Swarztrauber,1974; Swarztrauber and Sweet, 1973), to
arbitrary N (Schumann and Sweet, 1976; Sweet, 1974), to irregular

regions (Buzbee et al., 1871; Buzbee and Dorr, 1974; Temperton,
1977b),and to general separable elliptic equations (Swarztrauber,
1974). Some applications of Poisson-solvers to numerical

weather prediction have been documented in earlier reports
(Temperton 1977a, 1977b).

The algorithms developed for the simple Poisson equation fall

into two apparently distinct categories : those based on Fourier
decomposition in one dimension, using Fast Fourier Transform

(FFT) techniques, and those based on block-cyclic reduction
(Buneman's algorithm). Both approaches are documented in detail
in the paper by Buzbee et al. (1970). The two approaches can

be combined in various ways, and in a forthcoming report
(Temperton, 1977c) the relationship between them will be
demonstrated. It is natural to ask which of the two approaches,
or which combination of them, leads to the fastest algorithms;
from the available literature, the answer is not clear.

For example, Sweet (1973) found that for a particular problem,
Buneman's algorithm was at least twice as fast as a method based
on FFT, while Fischer et al.(1974) found FFT methods to be the faster.
The reasons for this confusion lie in the variety of methods
available for carrying out component parts of the algorithms
(principally Fast Fourier Transforms and the solution of
tridiagonal systems), and in the assumptions made by different
authors (e.g. whether or not any coefficients required in

solving tridiagonal systems have been precalculated). Hockney
(1977) has also noted the influence of program design, compilers
and computer architecture on the relative performance of different
algorithms. When comparing operation counts rather than execution
times, there are further pitfalls; Hockney (1965) pointed out the
importance of counting additions as well as multiplications,

and the danger of including only the highest-order terms.
Unfortunately, not all subsequent authors have followed this
advice.

This paper has as its main aims the following : to establish
reasonably accurate operation counts for a number of variants

of the direct methods applied to a simple problem; to outline
some alternative variants; to offer hints on how certain methods
may be implemented most efficiently; to compare execution times;
and also to compare the relative accuracy of different methods.

We consider the discretized Poisson equation on a rectangular

N xMgrid ( 1,j), o<i< N, o< j<M, and for simplicity we assume a
unit gridlength in each direction, so that the equation has the
simple form:
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where the boundary conditions at i=o,N are either Dirichlet

X . = X . = 0 o< j<M
0,] H ___J__’

or periodic:

SN , o< J M,

and the boundary conditions at j = o,M are Dirichlet:

X .
0,J

X . =

X, = 0 o< 1 <N,
i,0 i,M ? -7 -

We also assume that N is a power of 2, and that FFT's and
block-cyclic reductions will normally be performed in the i-
direction. Finally, we assume that the same problem has to be
solved a number of times with different right-hand sides, and
that sufficient core storage is available to precalculate and
store any required coefficients; in some cases we will also
wish to store both the right-hand side and the solution array
separately. The consequences of altering some of these
assumptions will also receive mention.

2. Preliminaries

Very careful operation counts for some of the algorithms
which follow show that the number of additions or multiplications
required is typically of the form

M -

(M-1) «g‘thlog2 N + KzN + KglogzN + K
where, however,rthe third and fourth terms within the brackets
are small compared to the first two, and tend to depend on
programming details. We are therefore justified in neglecting
them and simply establishing Kllog2 N + K_, the number of
additions or multiplications pér pdint,

4
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As mentioned preViously, the direct methods outlined here depend
heavily on Fast Fourier Transforms and the solution of tridiagonal
systems; we first establish operation counts for these procedures.

The experiments reported in Section 7 used a general-purpose
Assembler Language FFT package with the following important
characteristics:

(a) the number of data points (N) can be any number for a
complex transform, and any even number for a real transform;

(b) all trigonometric function values are precalculated and
picked out as required during the transform;

(¢) the results emerge in the correct order, in contrast to

most FFT programs which require somewhat tortuous logic to
unscramble the transform (Sweet (1973) found that this feature of
most FFT programs significantly increased the execution time of
an FFT-based Poisson-solver);



(d) factors of 2 are (as far as possible) grouped together into
factors of 4.

The mixed-radix complex FFT was modelled on the algorithm given
by Singleton (1969) with appropriate modifications to eliminate
reordering (Temperton,1977a) and to pick out trigonometric
function values rather than calculating them every time they are
required. The additional manipulations required to use the TFT
for real transforms are due to Cooley, Lewis and Welch (1970).

For general even N, factorized in the form

N o= 2P 3% 4% 5% m f1 w2 L (2)
where p >1 and m. represents a general odd factor, the

operation count Tor a real periodic transform is
N {1.5p + 2.67q + 2.75r + 4s + 0.5 Z(mi + 5)ti} additions,
: i
N {p + 2g + 1.57 + 3.2s + 0.5 ) (m; + 2)ti—1} multiplications,
i

while a real sine transform requires an extra 2.5N additions
and O0.5N multiplications.

In the present analysis, we are restricting N to be a power
of 2, and for simplicity we assume that the FFT is used 1in pure
radix~2 mode, i.e. r=0 in Eq. (2), so that our operation
counts become the following:
for a periodic transform,
1.5 1og2N additions and (1og2N~1) multiplications per point;
for a sine“transform,
(1.5 log,N + 2.5) additions and (logzN - 0.5) multiplications
per poinfT,
Even for the radix-2 FFT, these counts are not quite optimal,
Bergland (1968) has indicated a slightly lower operation count
for the periodic case by modifying the complex FFT algorithm
directly rather than applying the procedures of Cooley, Lewis and
Welch (1970) to manipulate the real data into an artificial
complex series before (or after) using the complex FFT. Hockney
(1970) has similarly achieved a slightly reduced operation count,

We turn our attention now to the solution of tridiagonal systems.
In the present problem, these are almost all of the simple
form

Xj—l + ij + Xj+1 = bj’ 1 <J iM*l (3)

with X, = Xy 7 0, and ;x; > 2, We use the following algorithm
based on GalUssian elimination and given (for general diagonally
dominant tridiagonal systems) by Varga (1962,p.195):

-1 .
Wy SA T W, o= (A-ijl) , 2 < J < M-1;
gy = Wyby; g, = wj(bj~gj_1), 2 < J < M-1;

X, = Z.-W.X. M-2 2 J 2 1.

M-1 ~ Bm-17 Fj 37V5% 5410




Provided that the coefficients w, have been precalculated

and stored, this algorithm reguires only 2 additions and

2 multiplications per unknown., Other possibilities requiring
less coefficient storage but more arithmetic include cyclic
reduction (Hockney 1965,1970), methods based on the Toeplitz
structure of the tridiagonal matrix (Fischer et al., 1974), and
on the factorization of the matrix into two rectangular
matrices (Evans, 1972). An interesting way of halving the
number of coefficients while requiring no additional arithmetic
arises from the "symmetric Gaussian' or "folding'" algorithm
recently proposed by Evans and Hatzopoulos (1976).

3, The Basic F¥T method

For clarity we derive briefly the basic FFT method for
Poisson's eqguation with Dirichlet boundary conditions at
i = 0,N. On each row, we express the solution values {(including
the prescribed boundary values) as sums of Fourier sine
coefficients:

N-1

%y 5 = £=12k’3 sin (ik 7/N), 0 < i < N, 0 <2 j < M (4)

Substituting in Eg. (1), we obtain (after considerable
manipulation) (N-1) tridiagonal systems each of the form:

2k’j_1 +Ak2k,j + xk,j+1 = Bk’j,l <k £ N-1, 1 £ j £ M-1
(5)
where Ak = 2 cos (km/N) -4
and N N-1
bk,j = (2/N) §=1 bi,j sin (ikw/N) (6)

The solution procedure thus has three stages. In the first

stage, a sine transform is applied on each row of the

right-hand side field to obtain the coefficients b, .. Eq.(5)

is then solved for each value of k. In the third stage, an
inverse sine transform is applied on each row to implement Eq.(4)
and obtain the solution. From Section 2, stages 1 and 3 each
require (1.510g2N + 2.5) additions and (log,N - 0.5)multiplications
per point, usinf a radix-2 FFT; while stage 2 requires 2 additions
and 2 multiplications per point. The operation count for the
whole algorithm is thus ( SlogzN + 7) additions and (ZlogZN + 1)
multiplications per point.

For periodic boundary conditions at i = O,N we use the full
periodic transform:

N/2_ N/2-1
X, o= ) X j cos (2ikm/N) + 7} X

i sin (2ikm/N) (7)
»Jd k=0 k=1

k,J



and obtain ( N/2+1) systems of the [lorm

Xk,j—l + kkxk,j + Xk,j+l ::bk,j, 0< k< N/2, 1 £ 3< M-1
where A‘k =2 cos (2kT/N) -4 (8)
_ ’ N-1 ‘
and b, _=E)/N ) b, , cos (2ikn/N)
er - I i,
i=0
with E(0) = E (N/2) = 1,otherwise E(k) = 2; together with (N/2-1)

systems of the same form as Eg. (5) but with A{,lfi&flﬁ/Zul,
as in Eqg. (8) and

~ -1
bk,j (2/N) ¢ g bi,j sin (2ikT/N) .

This time the operation count is (3hth+2)additions and (m£@2N+U
multiplications per point.

The number of coefficients used in solving tridiagonal systems

is  (N-1) (M~1) or (N/2+1) (M~1) depending on whether the boundary
conditions at i=0,N are Dirichlet or periodic. The solution can
overwrite the right-hand side field; the only work space required
is an area of N locations used by the FFT routine outlined in
Section 2.

4, Block-cyclic reduction

Details of the block~cyclic reduction method (Buneman's
algorithm) are given by Buzbee et al.(1970), and need not be
repeated here. There are two variants; Variant 1 requires two
separate arrays, while in Variant 2 the solution can overwrite
the original right-hand side field, using no additional work
space.

To establish the operation count for Variant 1 with Dirichlet
boundary conditions at i=0,N, we first consider the number of
tridiagonal systems which have to be solved. There are

Uog2N—U steps in the reduction phase; in the rth step we solve

(y/2F-1) systems of the form P x=b, where 25V is the product of
2 tridiagonal matrices (see Buzbee et al.(1970) for details).
Solving for X /2 requires N/2 tridiagonal solutions. There

are then (loézﬁ—n steps of the back-solution phase; in the rth
step we solve 2l systems of the form a s-1) » o b, where =109 _N-r

and A(&4) is the product of 25”1 tridiagonaf matrices. Algogether
there are N(log.N-1) +1 tridiagonal systems to be solved, each of
order (M-1), reauiring approximately ( 2log, N-2)additions and

. . R N . 2
(Zk@2N~% multiplications per point.




Secondly we consider the extra additions required to calculate

the vectors p.r+“ andcﬁr+1)at each stage, using the notation of
Buzbee et al. (1970) Bt replacing j by i to indicate that we are
performing the block-cyclic reduction in the i-direction. In

the first step, pfl) (i=2,4,...,N-2) is given directly by the
solution of the ~% tridiagonal system ap{l)= b, while 3(-1)

additions are required to calculate each torrésponding qil)., In

the remaining ( log.N-2) reduction steps,p:{r and qi(r)(i=2r,“2r s oo N=-2T)
require 3 (M-1) additfons each. The total™ number of extra additions
during the reduction phase is approximately 4.5 (M=1)N. During
the back-solution phase, the solution of each vector x4 requires

3(M-1) additions, except during the final step when, for all odd 1,
xi requires only 2®M-1) additions. The total of extra additions

during the back-solution phase is thus 2.5(M-1)N, and the operation
count for the whole algorithm is (2log N+5) additions and

(2log.N-2) multiplications per point. ZThis is less than the
corrésponding operation count for the basic FFT algorithm given

in Section 3.

Turning now to Variant 2, the number of tridiagonal systems to

be solved is exactly the same. The vectors Q.I?lll§re eliminated;
the equation given by Buzbee et al.(1970) for gir appears

to involve 12(M-1)extra additions, but this can be reduced to

8(M-1) by defining

~(x) _ (x) _ (1)  (x) _ _(x=1) . (x)
4G “T9i-on T dion 4 Zi+n di+on
(x+1) _ = (x) (r) -1} (-1, (=) _ (xr) _ (r
4 =4 e {%j-&h T 3503n " ‘Eij :
where

11=2r~1, and in fact this reduces to 3(M-1) in the first step

since we have simply
(N -1

= + -
94 Thi TR Z

The total of extra additions in the reduction phase is thus
approximately 5.5 (M-1) N, Back-solution for x, ( i even )
requires 5(M-1) extra additions and (M~1) extra multiplications-
for i odd there are only 2(M-1) extra additions (and no
multiplications), a total of 3.5 (M-1) N extra additions and

0.5 (M-1)N extra multiplications during back-solution., The
operation count for the whole algorithm is thus (2log _N+7) additions
and (2log N-1.5) multiplications per point, an increasg over
Variant t of only 2 additions and 0.5 multiplications per point.
Thus the estimate of Buzbee et al.(1970) that Variant 2 requires
approximately twice as many additions is seen to be excessively
pessimistic,
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For periodic boundary conditions at i=0,N the reduction and
back-solution phases each have logoN steps; again, the details
are given by Buzbee et al.(1870), In this case the operation
count for Variant 1 is (210g2N+9) additions and (21og2N+2)
multiplications per point. Comparing this with the counts for
the corresponding FFT method in Section 3, the number of
multiplications is always larger, while for N <256 the number

of additions is also larger. Variant 2 again requires an

extra 2 additions and 0.5 multiplications per point,

The number of coefficients used in scolving tridiagonal systems
is (N-1)(M-1) or (N+1)(M-1), depending on whether the boundary
conditions at i=0,N are ngichlet or periodic. When using
Variant 1, the vectors B; and g£r> r 2 1, can share an array of
dimension (M-1)N which b&comes the solution array, so that the
original right-hand side field is not destroyed. Alternatively,
if the vectors gi“ﬁ overwrite the rightmhﬁ?d side, then the
auxiliary array containing the vectors Eil~ need only be half
the size of the main array, so that Variant 1 only requires 50%
more array space than Variant 2.

5. TFACR (1) methods

(a) Hockney's FACR (1,j) algorithm,

Hockney (1965) pointed out that half the transforms in the basic
FFT method could be eliminated by first performing one stage of
cyclic reduction in the j-direction, i.e. by eliminating all X5
with j odd. The resulting equation is ’

*i,9-2 7 Fiez,g T8 T8RS 5T B¥iar 5 T Xiaa 5 T Ky jen
= pl1) -

Pi,3 7 Pi,5-1 7 Picn,y TPy T Paer 3 TPy g L (9).
Again we can write x. . as in Eq. (4) (this time for even j only)

and we obtain (for Diridhlet boundary conditions at i = 0,N)
(N-1) tridiagonal systems each of the form:

5 5 - (1) o
ﬁk,j_z + Aka,j + Xk 542 = Bk’j , 1 < k £ N-1, j=2,4,...,M-2
5 (10)
where Kk = 2 - 4 (cos(kn/N) - 2)
and H-1
(1) _ (1) .,
b 5= (2/N) ;zl by 3 sin(ikm/N) (11)

Thus we first obtain ggi) for even j using Eq.(9), this requires
2 additions and 0.5 mul%iplicatigﬂg per point (of the whole grid).
Next we perform the sine transform using Eg. (11) for even j,
requiring (0.75 log,N+1,25) additions and (0.5 log, N-0.25) multi-
plications per point. The tridiagonal systems (Eq? 10) require 1
addition and 1 multiplication per point; the inverse sine trans-
forms (Eq.(4)) for even j require (0.75 logoN+1.25) additions and
(0.5 logogN-0.25) multiplications per point.




Finally the solution xj j for odd j is obtained by solving
tr%diagonal systems alonhg rows, taking 2 additions and 1 multi-
pllcation per point. The total operation count for the whole
algorithm is (1.5logoN+7.5) additions and (logoN+2) multiplications
per point. * ‘

Comparing with previous operation counts for Dirichlet boundary
copd%tions, we see that Hockney's algorithm (using Gaussian
elimination for the tridiagonal systems) is always faster than the
basic FFT method; the number of additions is less than in Buneman's
?lgo§it?g for N s 32, and the number of multiplications is less

or > .

For periodic boundary onditions at 1i=0,N a completely

analogous algorithm can be derived; the only difficulty is that
a cyclic tridiagonal system of order N has to be solved for each
odd—numbered line. A number of techniques are available, some
of which were discussed by Temperton (1975); Algorithm 4 of that
paper requires the least computation, namely 3N additions and
2.5N multiplicaticns, but as N is here assumed to be a power of
2, cyclic reduction is almost as efficient, and requires little
or no coefficient storage.

Using Gaussian elimination for tridiagonal systems and cyclic
reduction for cyclic tridiagonal systems, Hockney's algorithm

for periodic boundary conditions at i=0,N takes (1.5 1og2N+6)
additions and (loggoN+1.5) multiplications per point, the smallest
operation count so far obtained.

For Hockney's method, the number of coefficients required for the
tridiagonal solutions is (M/2-1)(N-1) or (M/2-1)(N/2+1),
depending on whether the boundary conditions at i=0,N are
Dirichlet or periodic. As in the case of the basic FFT method,
the solution can overwrite the right-hand side, and the only work
space required is for FFT's.

(b) FACR(1,1)

In comparison with the basic FFT method, Hockney's algorithm halves
the number of Fourier transforms required by forming a set of
equations involving x; ; for even j only. An alternative strategy
is to halve the 1engt%’8f the Fourier transforms by forming an
analogous set involving x4 3 for even i only. The resulting '
equations are of the form:’

Xi_g. 3 " Xy gop * 8Ky yoq T 18%i g ¥ BXi g1 TR, G2 t Xi+2,j
= b{1) = by g 3 - Pi,g-1 * 4Pi,5 - Pi gl ¥ P, gL (1)

On each line we now have (N/2+1) values of x5 5 (including the
boundary points), and these can be expressed é% sums of (N/2-1)
sine coefficients:



N/2-1
*21,3 ° %31 Xy 5 sin (2ikn/N), 0 <i <N/2, 0< j <M (15)

Substituting in Eq.(14), we obtain N/2-1 pentadiagonal systems,
each of which can be factorized into the form

(o
D, 5-1 7 Mok iy Yk g0 T PRy
. . . . { (16)
“i,0-1 7 Mk, T R ge1 T Vi )
where Ak = 2 cos{kmn/N)-4, and
. N/2-1
(1) _ (1) s o
by L= (4/N) ]  Pyyly sin (20kWN) (17)

The algorithm thus proceeds as follows: the right-hand side

of Eq.(14) is calculated at all gridpoints with i even, taking

2 additions and 0.5 multiplications per point. Eqg. (17) is then
implemented; this inveclves (M-1) sine transforms each of length
N/2, and takes (0.75 logoN+0.35) additions and (0.5 loggN- 0,75)
multiplications per point. The solution of (N/2-1) pentadiagonal
systems takes 2 additions and 2 multiplications per point.

(M-1) inverse sine transforms each of length N/2 are then
performed to obtain X94 4, requiring (0.75 log2N+O,5) additions
and (0.5 logoN-0.75) mui%iplications per point. Finally, x; 3
for j odd is obtained by solving simple tridiagonal systems 1ih the
J-direction which (including setting up the right-hand sides)
takes 2 additions and 1 multiplication per point. The operation

count for the whole algorithm is (1.5 logg N*7) additions and
(logoN+2) multiplications, a saving of juSt half an addition per

point over Hockney's algorithm. For N=16, the FFT method with
one preliminary level of cyclic reduction in i takes the same
number of additions and multiplications as Buneman's algorithm;
for N »16, the number is less.

For periodic boundary conditions at i=0,N a similar algorithm

can be derived, with an operation count of (1.5 logoN+4.5) additions
and (logoN+0.5) multiplications per point. The improvement over
Hockney's algorithm is 1.5 additions and 1 multiplication per

point, the gain being greater in the periodic case since the

final step involves strictly tridiagonal systems rather than cyclic

tridiagonal systems as in Hockney's algorithm.

The number of coefficients required for the tridiagonal systems
is the same as for the basic FFT method. Again, the solution can
overwrite the right-hand side, and the only work space required
is for FFT's.
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Yet another way of combining the FFT method with one step

of cyclic reduction is included here, not because it leads
to a more efficient algorithm but because it has some
interesting aspects, and because it has applications in the
direct solution of Poisson's equation over irregular regions
(Temperton, 1977b). In Sections 5(a) and 5(b) we halved

the number of unknowns by eliminating x; ; either for i odd
or for j odd. A third alternative is to’%liminate Xj ] for
(i+j) odd, resulting in the following equation:

Xi,q42 FXi, -2 ¥ Xy_g g * Kisg g P 2(Xio1, 541 T Fie1, -1
+ . . + 12 . R ’b(l)
Xi+1,§+1 * Xyuq go1 ) 7 12FiL T OPLL)

=4 by 5+ by g+41 * Py jo1 * Pi+1, 5 T Pi-1,3 (18)
3 QJ

with appropriate modifications near the boundaries. The retained
points lie on alternate diagonals, as shown in Fig. 1, which
also indicates the nine-point operator represented by the left-
hand side of Eq. (18). For even j, we introduce the same sine
summation as for FACR (1,1i):
N/2-1
X9i,j = E ) %k’j sin (2ikm/N), 0 < i < N/2, j even  (19)

while for odd j, we introduce the following modified summation:

N/2
X2i-1,5 ~ g_l Xk, j sin ((2i-DkwN), 0 s i s N/2-1,
j odd (20)
Notice that this series has an extra term (k=N/2). Introducing

(19) and (20) into Eq. (18) and performing the usual manipulations,
we obtain (N/2-1) pentadiagonal systems of order (M-1), which
factorize into the form:

W . . NEY
Yk,j-1 * Mg Vi, 5 Y Yk, 5+1 T Pk,
(21)

Xk, -1 % M Xk, 5 T Xk, g1 Yk, j
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FIGURE 1 : "Diagonal'" cyclic reduction
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‘where A% = 2 cos (kn/2N) -4, X£ = 2 cos (kn/2N) +4,
(1) N/2-1 (1) . .
B = (4/1) 2:1 byi)s sin (2ikn/N) ... (22)

for j even, and
A N/Z2
(1) _ (1) . .
bk,j = (4/N)§=1 b21~1,j sin ((2i-1)kn/N)... (23)

for j odd.

In addition, for k=N/2 we obtain a tridiagonal system of order
M/2 of a rather special form:

~15;k’1 +%k,3 = Eé?;
R jip LAR 5t Ky gy = ﬁéf% . 3=3,5,...,M-3 (24)
%k,M_S "IS%R,M—l - Bé%ﬁ-1
wher?(l) N/2 1)
by = '(4/N>§=1(“1) byl (25)
The algorithm is thus implemented as follows: First, b<12

is determined, using Eg. (18), at all points with 1.J

(i+3) even. The Fourier sine coefficients bfl} are then computed
using a simple sine transform Eq.(22), on eveh"lines and a shifted
sine transform, Egs. (23) and (25), on odd lines. The pentadiagonal
systems (21) and the tridiagonal system (24) are solved for the

sine coefficients Xk, j - The solution at points with (i+Jj) even

is then obtained using a simple inverse sine transform (19) on even
lines and the inverse shifted sine transform (20) on odd lines.

Finally the solution at points with (i+j) odd is determined from
the scalar equation
be = - b

1 o . S . + X, A . .
'SR Bl S CSFCRP TR L SRS B B LS B U IS B W D

since all the quantities on the right-hand side are by now known.

The manipulations required to convert a real shifted sine transform
into a real periodic transform are given by Swarztrauber (1977).

The operation count, including the manipulations for the shifted
transforms, 1is (1.51og2N+7.5) additions and (10g2N+2.25)
multiplications per point, very similar to the counts for Hockney's
FACR (1,j) algorithm and for FACR (1,i). The algorithm can be
modified to eliminate x4 j for (i+j) even; the roles of odd and
even lines are then intefChanged.



-19-

An analogous algorithm can alsc be derived for periodic
boundary conditions at i=0,N, with an operation count of
(1.5 1og2N+5) additions and (logoN+2) multiplications per
point.

The process of diagonal cyclic reduction is similar to the

first step of the "total reduction" method of SchrBder and
Trottenberg (1973). It should be possible to continue the
process, eliminating half the diagonals at each stage, and

thus to generate a ''diagonal' variant of block-cyelic reduction.
It is interesting that in this application of block- cycllc
reduction, the blocks are of varyving size.

6. Summary of operation counts

In Table 1 we summarize the operation counts for all the

algorithms outlined in Sections 3 - 5., We remarked in Section 4,
that for Dirichlet boundary conditions at i=0,N Buneman's algorithm
appeared to be faster than the basic FFT method, while for

periodic boundary conditions at i=0,N the reverse was true,

except for very large values of N, (Note here the misleading
effect of comparing "asymptotic' operation counts). Combining

the FFT method with one step of cyclic reduction to halve the
length of the transforms, we obtain a scheme which requires

fewer operations than Buneman's algorithm for N >16 under

Dirichlet boundary conditions at i=0,N, and for all N under periodic
boundary conditions at i=0,N,

It is worth reiterating at this point that we have been solving
all the tridiagonal systems by Gaussian elimination, using
precalculated coefficients. If this is ruled out by lack of
space, cyclic reduction may be used instead. To solve a tri-
diagonal system of order M by cyclic reduction requires
approximately 4M additions and 2M multiplications, an increase
over Gaussian elimination of 2M additions. Now the number of
tridiagonal systems to be solved in Buneman's algorithm is
approximately N(logoN-1) for Dirichlet boundary conditions at
i=0,N, and N(logpN+1l) for periodic boundary conditions at

i=0,N; while in the FFT-based algorithms the number is approximately
N, or at most 3N/2. The consequences of changing from Gaussian
elimination to cyclic reduction for simple tridiagonal systems are
thus as follows: for either Variant of Buneman's algorithm, an
extra (2logoN-2) (Dirichlet) or (2log,N+2) (periodic) additions
per point; %or basic FFT or FACR (1,12 2 extra additions per
point; for Hockney's FACR (1,j) algorlthm, an extra 2 (Dirichlet)
or 1 (periodic) additions per point; for FACR (1,1i), 3 extra
additions per point. In this situation, the use of FFT-based
methods appears even more advantageous.




TABLE 1

Summary of operation counts

B.c.'s at i=0,N Dirichlet periodic

adds mults adds mults
Buneman (Variant 1) | 2logoN+5 2loggN-2 210g2N+ 9 2logoN+2
Buneman (Variant 2) | 2logoN+7 2log2N«1.5 2logoN+11 210g2N+2.5
Basic FFT 3loggN+7 2logoN+1 3logoN+2 21logoN+1
Hockney's FACR

g » 1.561 N

| (1,3) +7°%g2N log,N+2 1;glog2 logoN+ 1.5
(FACR(1,1) 1.5logoN 1og2N+2 1.510g2N 10g2N+O.5
i +7 +4.5
FACR(1,i+3) | 1.5log,N log,N+2.25 | 1.5log,N  log,N+2
j ‘ 2 2 2 2
i +7.D +5
| |

7. Numerical results

In the preceding sections, we have considered a number of
algorithms in terms of operation counts; here we turn to their
actual implementation on a computer., Now although it is clear that
direct methods for the solution of Poisson's equation are much more
efficient than simple iterative methods such as successive
overrelaxation, they are considerably harder to program, and for
their superiority to be fully realised it is important that they
be efficiently coded. The author's personal preference is for the
use of a low-level language, and the timings reported here relate
to programs written in IBM Assembler Language. This preference
was reinforced by the following experiment.

Two Fortran subroutines were written to implement Buneman's
algorithm (Variant 1) for Poisson's equation on a rectangle with
Dirichlet boundary conditions. One treated all the arrays as two-
dimensional (i.e., doubly-subscripted), while the second treated
them as one-dimensional (singly-subscripted). The two subroutines
were then each compiled at levels G,H and H+ (the latter

including special optimizing features for the 360/195 on which

the programs were run). The Fortran style was intended to be as
helpful as possible to the compiler, and as efficient as possible
at run time (e.g., no branches to subroutines, or from one section
of the program to another,apart from simple loops).
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TABLE 2

Execution times (in msec) for 32x32 problem
by Buneman's

algorithm (Variant 1)

Language Compiler 2-d indexing 1-d indexing
Fortran G 58.5 39.6
Fortran H 14.9 10.5
Fortran H+ 14.2 9.4
Assembler 5.33

The six resulting programs, together with a corresponding
Assembler Language subroutine, were then timed on the Dirichlet
‘problem with N=M=32. The results are given in Table 2. The
conclusions are clear; even the best Fortran subroutine took

75% longer than the Assembler version. If a high~level language
must be employed, the indexing should be one-dimensional and

the best possible compiler should be used.

Assembler Language versions of four algorithms described in
Sections 3,4 and 5 ( the basic FFT algorithm, Buneman's
algorithm Variant 1, Hockney's FACR (1,j) algorithm and the

FACR (1,i) algorithm ) were timed on N x N problems, with N
ranging from 8 to 128, and with both Dirichlet and periodic
boundary conditions at i=0,N. The FFT package (Section 2)

was used in its 'radix 4+2' mode, thus slightly improving on the
operation counts given in Section 6. Also, the cyclic tridiagonal
systems arising in Hockney's algorithm with periodic boundary
conditions at i=0,N were solved using Algorithm 4 of Temperton
(1975). The results are shown in Table 3 (Dirichlet boundary
conditions at i=0,N) and Table 4 (periodic boundary conditions
at i=0,N).




Several points are worthy of note.
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For Dirichlet boundary

conditions, the fastest algorithm was Buneman's for N <32,

and Hockney's for N2 64.
the fastest was Hockney's throughout the range.

For periodic boundary conditions,
These results

are in line with the comparisons given in Section 6, though for
Dirichlet boundary conditions the value of N at which Hockney's
algorithm becomes faster than Buneman's is somewhat larger than
predicted, evidently because of the extra addressing arithmetic
required by the FFT.
with Hockney's algorithm, especially for small values of N;

again the reason lies in the extra addressing arithmetic for the

FFT.

FACR (1,i) is disappointing in comparison

In terms of total execution time it is clearly faster to

do M/2 transforms of length N rather than M transforms of length

N/2,

operation count.

though the latter has a slightly lower floating point
This suggests that all the FFT-based algorithms

could be made more efficient by performing the transforms in

parallel rather than one at a time.

Finally,

notice that,

in

agreement with the timings reported by Hockney (1970), the
execution time for each algorithm is roughly proportional to N2,
the total number of points.

TABLE 3

Fxecution times (sec) for Dirichlet b.c.'s at i1=0,N

Method N = 8 N = 16 N =32 |N=64 N = 128

Buneman 5.33x10~% | 1.12x1073| 5.33x107% |2.54x1072 | 1.58x107"

Basic FFT | 5.60x10~% | 2.24x1072| 8.81x1073 |3.04x1072 | 1.64x107"
-3

FACR (1,3)| 3.85x107% | 1.42x1073| 3-61%10 "o 45x10” 1.02x10° "
-3

FACR (1,1)| 5.33x107% | 1.60x1073| 8+97%10 "o 61x10” 1.14x107 "

TABLE 4
Execution times (sec) for periodic b.c.'s at i=0,N

Method | N = 8 N =16 [N = 32 N = 64 N = 128

suneman | 3.80x10% | 2.28x1073 | 1.10x1072 | 5.24x107% | 4.44x1077

Basic FFT 4.70x10~% | 2.10x1073 | 7.68x1073 | 3.35%x1072 | 1.55x107"

FACR(1, )| 3.26x10"% | 1.40x1073 | 5.31x1073 | 2.23x1077 1.01x107 %

FACR(1,1) 5.07x10-4 | 1.70x1073 | 7.21x1073 | 2.71x1077 1.36x107 7
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We consider now the question of the accuracy of the various
algorithms. For each value of N and each set of boundary
conditions, a random number generator was used to set up ten
NxN "true' solutions with values in the interval [—1,+1] )

from which corresponding right-hand sides were computed. Each
algorithm was then used to recover the solution from the right-
hand side, and the computed solution was compared with the original
field to determine the maximum absolute point error. (Note

that the computation of the right-hand side is itself a source
of round-off error). The maximum errors, meaned over ten
solutions in each case, are shown in Tables 5 and 6.

TABLE 5

Mean maximum errors for Dirichlet b.c.'s at i=0,N

Method N = 8 N = 16 N =32 |N =64 N = 128
Buneman 2.56x10" 0| 4.95x107%] 2.908x107°| 1.28x10"% | 6.05x107%
Basic FFT 3,60x10“6 1010x1o“5 4,18x10”5 3,10x1o'4 9.65x10_4
FACR(1,3) | 4.04x10"%] 2.55x107°| 8.96x107°| 4.90x10™% | 1.57x107°
. -6 . -5 -5 4 4
FACR(1,i) | 5.82x10 1.43x10 5.38x10 9.23%10 8.03x10
TABLE 6

Mean maximum errors for periodic b.c.'s at i=0,N

Method N = 8 N = 16 N = 32 N = 64 N = 128

Buneman 3,49x10—6 7.33x10“6 4.59X10_5 2.30x10"4 9.95x10_4
Basic FFT 4.42x107° 1.61x107° 7.05x107° 2.83x1o“4 1.10x1073
FACR(I,j} 5.00x10"°% | 1.00x107%] 7.27x107%| 2.98x10™% | 1.14x107°3
FACR(1,1i) 4.76x107°| 1.88x107°| 7.34x107°| 2.99x10"% | 1.09x107°
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Buneman's algorithm is the most accurate, while Hockney's

is generally the least accurate, though in practical terms

the difference between them is unlikely to be important.

The variant of Hockney's algorithm described by Temperton(1977c),
in which the preliminary cyclic reduction step is "stabilized",
yields smaller errors than the form used here.

For the Dirichlet problem, the algorithm of Cooley, Lewis and
Welch (1976) was used to convert a real sine transform of length

N to a real periodic transform of length N, and hence to a complex
periodic transform of length N/2. Since the sine transform is

its own inverse (apart from a scaling factor), one can
alternatively "invert™ their algorithm, and since these experiments
were run it has been discovered that the inverted procedure gives
smaller round-off errors. See Temperton (1977c) for some
comparisons obtained on CDC 6600. Nevertheless, the round-off
error for the basic FFT method remained greater than that for
Buneman's algorithm,

Tables 5 and 6 also show that the errors are roughly proportional
to N2, TFor Buneman's algorithm at least, this behaviour appears
to be computer-dependent; compare with the results reported

by Temperton (1977c) on a CDC 6600. The results of Tables 5 and 6
also show that for large grids (say N >128 ), single-precision
arithmetic on an IBM machine may give insufficiently accurate
results.

8. IExtensions

In Section 6, we noted the consequences of limiting the available
core storage so that tridiagonal systems could no longer be
solved by Gaussian elimination using precomputed coefficients;

it was shown that under these circumstances the advantages of
FFT-based methods over block-cyclic reduction became more
pronounced., We now consider the effects of relaxing some of the
constraints on the problem itself which were laid down in Section
1.

If the gridlengths in the i and j directions are unequal, the
algorithms require only slight modification; the number of extra
multiplications per point ranges from zero to two, depending on
the algorithm used. It is generally more efficient to scale the
problem to give unit gridlength in the j-direction, so that the
tridiagonal systems to be solved in that direction retain the form
of Eq. (3), with 1's on the sub- and superdiagonals of the
corresponding tridiagonal matrices,



The operation counts for Neumann boundary conditions at i=0,N

or at J=0,M are the same as for Dirichlet boundary conditions.
Periodic boundary conditions at j=0,M require the solution of periodic
tridiagonal systems, and again it is the FFT-based algorithms,

with fewer such systems to solve,which require less extra computation.

The most general form of elliptic equation which can readily be
handled by the techniques developed in this paper is

V¢ +8. 8 - k.d = 1. | 26
bRy Sy 0Ky i, (26)
where V2,8 are the finite-difference analogues of V2,3/3y, and 8
K, are fdnctions of J only. Hockney's algorithm and FACR(1,i+j)

become less straightforward, but for the remaining algorithms the
only changes are to the tridiagonal systems in the j-direction.
These now have the more general form.

“jxjul +ijj +vjxj+1 = bj’ 1 <3 < M-1

with x, = x, = 0, It is possible (though not very easy) to solve
such a system by cyclic reduction (Heller,1976); more suitable

is Gaussian elimination using precomputed coefficients. This
requires 2 additions, 3 multiplications and 2 precomputed
coefficients per unknown. With the increased operation count for
the solution of each tridiagonal system, it is again the FFT-based
methods, involving only about N such systems, which score over

the block-cyclic reduction method. For the basic FFT method,

the change from the simple Poisson Eq.(1) to the more general
Eq.(26) increases the operation count by only one multiplication
per point, though it doubles the number of precomputed coefficients
required for Gaussian elimination.

Swarztrauber (1974) has shown that block-cyclic reduction can

be extended to equations even more general than Eq.(26), though
the resulting algorithm is very complicated. Some extension is
also possible for the FFT methods; see for example Le Bail (1972).

Finally in this section we relax the restriction that N be a

power of 2, Sweet (1974) has extended Buneman's algorithm to

the case N=2P345Y,..; the operation count rises rather rapidly

as larger factors of N are included. A more flexible, simpler

and more efficient approach is to use FFT methods with a mixed-
radix FFT (see Section 2). For particularly awkward values of N,
e.g. large prime numbers, Temperton (1977b) has suggested an
FFT-based algorithm in which the rectangle is embedded in a larger
one with a more convenient value of N, using a capacity-matrix
technique.

However, for general N the most «fficient method may not after all
be FFT-based. Schumann and Sweet (1976) have recently proposed

a new block-cyclic reduction algorithm which has an operation
count approximately proportional to MNlogoN for arbitrary N.
Although their algorithm is for a grid staggered with respect to
the boundaries, a similar algorithm can be derived for the grid
specified in this paper.
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9. Conclusions

Some of the most important conclusions of this study may
be summarized as follows:

(1) 1In calculating operation counts for direct methods, it

is important to include both additions and multiplications,
and to include terms of order MN as well as those of order
MNlogoN.

(2) Under the assumptions of Section 1, Buneman's algorithm

(block-cyclic reduction) is faster than the basic FFT
method for the Dirichlet problem, but the introduction of
periodic boundary conditions in one direction tends to reverse
the position.

(3) Buneman's algorithm (especially Variant 2) can be implemented
with fewer operations than quoted, for example, by
Hockney (1970).

(4) TFACR (1) algorithms, combining the FFT method with one
preliminary level of cyclic reduction, are faster than

either of the basic methods except for the Dirichlet problem

on small grids, for which Buneman's algorithm remains the fastest.

A forthcoming report (Temperton, 1977c) will examine FACR(%)

algorithms, in which the FFT method is combined with ¢ preliminary

levels of cyclic reduction to give a further increase in speed.

(5) The cyclic reduction step for the FACR(1) algorithm can
be incorporated in at least three different ways.

(6) Programming details are important; in particular, Fortran

routines should treat the arrays as one-dimensional rather
than two-dimensional, even when a sophisticated compiler is
available.

(7) Buneman's algorithm is generally the most accurate of those
considered here, but the differences are unlikely to be
important, at any rate for small grids.

(8) For large grids, single-precision arithmetic may be inadequate
on IBM machines.

(9) More complicated problems, and storage restrictions, tend to

favour the FFT method since it requires fewer tridiagonal
solutions than Buneman's algorithm.
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