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1. Introduction

Despite a considerable amount of research over the past
twenty years, one of the outstanding problems of numerical
weather prediction is still that of initialization, i.e.
providing a primitive equation model with initial conditions
such that the forecast integration is not contaminated by
spurious high-frequency gravity-wave oscillations. There is
disagreement, even between groups involved in operational
forecasting, on the impact of initialization on the accuracy
of the subsequent forecast, and on the best means of achieving
the required balance. For an overview of the initialization
problem, and some of the suggested solutions, see BENGTSSON
(1975). '

It is envisaged that a research program will be carried out

at ECMWF to try to resolve some of the problems by systematically
comparing the results of various initialization procedures, first
using a simple barotropic model but concentrating later on a
full-scale multi-level operational prediction model.

Particular attention is likely to be focussed on a relatively
new approach to the problem, based on the application of the
normal modes of the linearized model equations. FLATTERY (1970)
based his analysis scheme (now used at NMC) on the Hough
functions, which are the normal modes of the linearized
shallow-water equations on a rotating sphere, expressed in
continuous form. DICKINSON and WILLIAMSON (1972, henceforth
referred to as D & W) proposed an initialization scheme based
directly on the normal modes of the finite-difference equations
of a gridpoint model; some experimental results for a shallow-
water equation model were reported by WILLIAMSON (1976). The
normal modes of a multi-level general circulation model have
also been computed and used as a diagnostic tool (WILLIAMSON
and DICKINSON, 1976). The normal mode analysis also provides
information on the linear stability of finite-~difference schemes,
with particular reference to means of improving the stability
of a regular latitude-longitude grid formulation on the sphere,
e.g. by Fourier filtering the higher zonal wavenumbers near the
polie (WILLIAMSON, 1976a).

The results reported by WILLIAMSON (1976b) demonstrated that,
although the amplitudes of gravity-wave oscillations were
considerably reduced by means of a normal mode initialization
procedure, substantial oscillations were still present as a
result of the nonlinearity of the forecast model. Recent
research has extended the normal mode approach to initialization
to include forcing by the nonlinear terms (BAER, 1977;
MACHENHAUER, 1977).

In this paper, the basis of the normal mode initialization
procedure is briefly explained. The derivation of the normal
modes of a shallow-water equation model (using the finite-
difference formulation of the ECMWF gridpoint forecast model)




is outlined, and the results compared with those of D & W.
The effects of Fourier filtering procedures are also
studied.

2. Why normal modes 7

A numerical weather prediction model consists essentially of
a large set of coupled ordinary differential equations. The
dependent variables may be gridpoint values of temperature,
wind components, etc.; or coefficients of prescribed basis
functions, as in spectral models. If all the dependent
variables are combined into a single vector X, then the

system of equations can be written as
dx
-2 o= Lx + Mx (1)
dat ~ ~

where the matrix L represents the linear terms (i.e., L is
independent of x), and the matrix M represents the nonlinear

terms (M depends on x). In order to solve the system (1) we
require a set of initial conditions at time to, say

x(t ) = x .

Mo ~o

In deriving the normal modes of the model, we linearize Eq.(1),
for convenience about a state of rest. From the point of view
of the initialization scheme, this is similar to the assumptions
made in deriving the geostrophic relationship or the linear
balance equation (indeed, for a periodic f-plane the outcome

of the normal mode analysis is precisely the geostrophic

relationship). So, instead of Eq.(1l), we consider the simpler
system

dx

T < (2)

In effect we are assuming that Mx is in some sense small compared

with Lx, and that solutions of E&.(Z) will for some time approximate
solutions of Eq.(1), given the same set of initial conditions.

From the theory of matrices we know that there exist matrices E,A
such that L = EAE™ !, where A is diagonal and contains the
eigenvalues of L, while the columns of E are the eigenvectors of L.
In fact it w%ll turn out that L is real and antisymmetric, so

that E ! = E- (the transpose of E), and the eigenvalues of L are
all purely imaginary; thus it is convenient to write

A = diag (ikf ikz, ...). Substituting for L and writing

y = E 'x |,

Eq. (2) is transformed into the form

&
!

= My (3)



Since A is diagonal, Eq.(3) is simply a set of equations
of the form

dy1
dat 171
dy2
—— = 1ALV
dat 272

to which the solution is clearly
y, (t) = v, (t) exp(ir (t-t_))

y,(t) = y,(t) exp(ir,(t-1 )

and hence yl(to)eXp(ikl(t-to))
x(t) = Ey(t) = E y,(t )exp(ir, (t=t )) (4)

Denoting the columns of E (i.e., the eigenvectors of L) by
{Wj}, we can rewrite Eq.(4) as

x{(t) = At )Y .exp(ir.(t-t 5
x(t) gyj( 0¥ yexp (it (E-t,)) | (5)
Eq.(5) shows that the solution x (t) consists of a sum of

oscillations of frequency A, each associated with a normal
mode ¥. of the system. Thejconstants y.(t_ ) are determined

P O -
from tge initial conditions by the rela%ionship x(to) = B 1§(to),

and are referred to as the normal mode coefficients.

The idea of normal mode initialization is to define y(to)

by setting y.(to) = 0 for those normal modes cor{esponding to
gravity-wave solutions, and to replace §(to) by §(to) = Ey(to),
thus removing the gravity-wave oscillations from the solution
given by Eq.(5).

3. TFinite-difference equations of the model

To set up the finite-difference equations of the model, we first
impose a grid over the surface of the earth, defined by inter-
sections of lines of latitude (6) and longitude (A). We define
gridlengths AXx = 27w /N and A6 = m/2M, so that there are '

N gridlengths around each jine of latitude, and M gridlengths




between equator and pole. The gridpoint (i,j) has coordinates
(iAX, jAe).

For a barotropic model, we have three different variables:

u (zonal wind component), v (meridional wind component) and

¢ (geopotential height). For the finite-difference

formulation of the ECMWF gridpoint model, there are distributed
over the grid as shown in Fig. 1, with ¢ defined at points
(i,3), u at (i+%, j), and v at (i,j+%).

In setting down the equations for the model, we use the
following conventional finite-difference operators:

¥ = 3 [A(x+3bx) + A(x-30x)]

5. A = [A(x+30x) - A(x-3Ax)]/bx

The equations for the multi-level gridpoint model are given
in the report by BURRIDGE and HASELER (1977). TFor the
barotropic model, the corresponding equations are:

au 1 1

S - 55 |BVeose] + zshgp Sy (¢*E) = 0 (6)
. =yl +Le, (o +E)=0 (7
ot - a ®
29 , 1 i
=t * 3oagp 16,0 * 8g(Veosd)} =0 (8)
where % = a coseqb)\e{afcos6 + 8,V - Se(ucose)}
— _— 3
— ] 2 2
E = ${u T (v®coso) }
U = asku
V = 'q_)ev

and f is the Coriolis parameter, a is the radius of the
earth.

The forms of the rotation terms |%Vcos6| and [BU| chosen to
conserve both energy and absolute potential ernstrophy are

given by BURRIDGE and HASELER (1977).

Linearizing the system (6) - (8) about a state of rest
(u=0, v=0, ¢=% everywhere), we obtain the system,



B 1 .- - + ) 1
ST §E€§§{£jcosej—%vj—%+fjcosej+%vj+%}+acose 0X¢ 0 (9)
oV .,
R SPC S N S _
ST + z{fj+1uj+1+fjuj} t 2 66¢ 0 (10)
94 o -
4 e = i1
5t T 55055 {SXu + Ge(vcose)} 0 (11)
where
+ 1
f. = (cos 3 AO.-',2 + =f, ,}
J ) A5ty 373-%
and
- - 1 2
= 1 lr= 2
fj (cos 3 AB) {Sfj+% + Sfj—%}

It will be convenient in the linearized system of equations to
regard ¢ as the deviation from the mean value 9.

As in the multi-level nonlinear model, we have to take some special
measures near the poles. There is a ring of v-points 3A6 from

the pole, and the equations at these points require values of

£ and u at the pole itself. Using arguments analogous to those

of BURRIDGE and HASELER (1977), it can be shown that at the

north pole:

+

£y = (cos % AB)Y ! fM~%
and Culy =0 : (12)
where | | denotes a zonal average, and

(AA)‘I(ui+%,M~ui”%’M) - (%Ae)_lvi,M_%cos 6M~%

= —(%AG)MII:vf]M“% cos B, 4 (13)

and similarly at the south pole. Egs. (12) and (13) are
sufficient to determine the "computational' values of Uy required
by the prediction equations for Vi-1*

-2

The equation for ¢ at the north pole becomes:
oy - 20 - 14
M - arg LV Juey T O (14)

4. Determination of the normal modes

In principle we now have sufficient information to compute the
matrix L of Eq.(1) and to determine its eigenvalues and




(6)

eigenvectors. OHowever, even with the modest resolution

AN = A8 = 3.75° (M = 24, N = 86), a global barotropic model
has 13634 degrees of freedom, and the matrices L and E would
each occupy nearly 2 X 10°® memory locations. (0Of course,
most of the entries of L are zero). Fortunately, a great
amount of simplification is possible.

First, we note that the solutions of Egs. (9) - (11) can
be divided intoc two separate classes depending on symmetry

about the equator. '"Symmetric'" solutions have u(i,-j)=u(i,j);
v(i,-j) = =v(i,3); ¢o(i,-3) = ¢(i,3), while "antisymmetric”
solutions have u(i,-j) = -u(i,j); v(i,-j) = v(i,Ji);

$(i,-j) = -¢(i,j). From now on we consider the two classes

of solutions separately.

Instead of considering the equations in the form of the system
(9) - (11), we can separate the longitudinal dependence of the
variables by Fourier transforming the system. This is equivalent
to defining
N-1 A
¢(x,8,t) = [ ¢,(6,t)exp(ik})
k=0

and similarly for u and v. The coefficients ¢, are in general
complex, but the reality of the fields implies that ¢N—k

must be the complex conjugate of ¢k; hence we need consider
only wavenumbers O<K<N/2.

We also assume that the solutions will be periodic in time,
i.e. proportional to exp(ivt) for some frequency v, and that
a leapfrog scheme is used for differencing in time.

The system (Q) - (11) is transformed into the following:

1 e(k) e -
iviug cosej_ﬁa' {fjcosej_%vj_%+fj cosej+%vj+%}

~

ik~ N
2cosb q>j =0 (15)
el ~ ”~ 1 N N e
j_\)‘vj‘*—% + .C.Sz_l_{_). {f;+1u3+1 + f;uj} + m{¢3+1_¢3} 0 (16)
iV o O (ikn, + o [ Vs.,c080.,,-vs jcos0 3 ]}
j = acosdy j 1% J+3 J+d T34 j-%
= 0 {(17)
where v” = | sin(vAt) /At
c(k) = cos(3kAa))
k” = [ sin(3kAX)Y]/(30))



and the wavenumber index k has for convenience been dropped
from the coefficients U, ¥ and §.

Next define the following new variables:

* oA
uj .= uj
* N
Vity T T
* _on _ @%
¢j = ¢j/c, where ¢ =
and Oj = cosej.

Egs. (15) - (17) then become:

o.v Ut~ de(k){£lg. Ve e v N
i® 3 j%3-%"3-3% JTi+y a4
- k)
s BT 20 (18)
a 7]
v £ et u’'}
“3eY Viep T RO Uy
CU .
J+y o 0 * ¥ o
a7 AT FS L R (19)
g. O,
- * 9 - * J+;§ - J"%— * — 0 20
I M alETuy + R Vo - vj—%} \ (20)

As before, there are special cases near the poles.
Eq. (12) becomes: ' ‘

*

Uy = 0 for k=20
and Eq ., (13) becomes:
* *
Uy = Op Yy g for k # 0,
where a, = 2 coseM_%/k’Ae.
Hence for j = M-1, Egq. (19) becomes:
-3 v’V;-% B %C(k){f§“Mu%“kV;~% * f&-1“m-%“g-1}
co
- —arss (o bygd O (21)
Note that ¢§ = 0 for k # 0; for k = 0, we have from Eq.(14):
" COy_3  *

v = 0 (22)

1 -~ e 2
T Oy Vo art VM3




At the equator (j=0), the form of the equations depends on
whether we are considering symmetric or antisymmetric modes.
For the symmetric modes, Egs.(18)~(20) become:

* + * k" e |k

1 - - =
5OV U %c(k)fog%v% + 55 ¢O 0 (23)

P * " %’* = $
o,viv, - %c(k) {fic%al + fod%uo}

2 2
CO 4
-z * *
BE6 {4 - 9.3 =0 (24)
BT VO D 5 S S 25
hogvio, T oglikiug A Vil T (25)

While for the antisymmetric modes we have:

*
u_ = 0
o)
. +k Oy
G%v v% - 3c(k) {flo%ul} S5 ¢1 = 0 (26)
* =0
¢o =

For each wavenumber k (0<kgN/2), and for the symmetric and
antisymmetric modes separately, Egs. (18)~(26) determine an
eigensystem, the eigenvalues of which are the frequencies v’™.
To write down the system compactly, define



_ x
u,
J
37 Vi+i
¢*
J
5.
J
Qy = S3+3
o,
J
. _ Ko ]
O -—%C(k)ij._l *-a—
- “5-3
Aj = —%c(k)fjoj~1 o) W
k'c %=1 o
. a ahb ]
o Ko} o
"“CO- 1
= 1 + J+s3
By = |~tc(k)f50,,, o FE—
o Ke) o)
. -} "
o) - . .
Jgc(k):EJ”lUJ_J5 0
C. = s} O o) = B?
J j-1
-co._%
© Py °

Egs. (18)-(20) can then be written (for each j) as

v'Q.Y, + C.Y, + A Y. + B.Y. = 0
QJ~J J~j-1 J~J J~j+1

The special cases near the poles yield the following:
For k=0 only,

(27)
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Yy = L ‘b;j
Qy = !: %;O”M‘%]
Ay = o]

B,, is not required

-C0O
- r M-} -
¢y = Lo —=m— ©°
For ko, ¥M etc. are not required.
For j = M-1, Yy 1> Q1 CM_1 are as normal, while Ay 4

contains an extra term _%C(k)fMQM—%@k in the central (2,2)
position; and BM__1 = CM for k=0, otherwise BM_1 is not required.

At the equator (j=o) we have for symmetric modes

3 *
o Y5
*
V3
*
- -
Qo = %OO
O'1
2
+ “c B
o} %c(k)foc% -
co
- + 3
AO %c(k)foc% o ThE
k./'c CO‘;
s 2l o

BO is as usual, and CO is not required.

For antisymmetric modes,

*
Yo = EV%]
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Q, = [oy]

= 0,.,,
¢ Lo + Oy _
B, = [ ~tc(k)fjo, 0 =527

and,Co is not required. For j=1, C1 = Bz.

Now define

%o

where the first vector YM is included only for k=o.

(The reverse ordering used here corresponds to the conventional
organization of latitude lines starting at the pole and reading
southwards}.

Then define

Qy
Qy
QO
Ay  Cy
L=|8 A c
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again including QM’ AM’ CM’ EM__1 only for k=o.
Then Eq. (27) can be written as a single system:
LY + vQY = 0 (28)

Since A. is symmetric for each j, and B, = CT, the matrix L

is symmetric. Also, Q 1is diagonal WithJ—posit%ve entries.
Finally let

Q tg?

Py g >

and substitute in Eq. (28): the result is

LY +vY =20 (29,

which (apart from the sign of v”") is in the standard form Qf an

eigenvalue problem. Since L is real and symmetric, so is L,
and thus the eigenvalues v~ are all real. Recall that the

frequencies v are related to the eigenvalues v" of the system
(29) by

v’At = sin (VAt).
Thus, provided that | v7At | < 1 for all v~ (the CFL linear
stability criterion), all the solutions of the original system

will be periodic in time, with real frequencies.

The order of the eigensysiem (29), and hence the number of
frequencies and corresponding normal modes, is as follows:

Symmetric Antisymmetric
=0 3M+1 3M-1
k#o 3M 3M-2

A program was written to set up the matrix L (given such
parameters as the radius of the earth a, the rotation rate §,

the mean geopotential depth ¢, and the resolution M, N), and
to find the eigenvalues and eigenvectors using the NAG routine
FP2ABF. Some results are presented in the next section.

5. Results

In order to apply the results of the normal mode analysis, we
must be able to distinguish between the Rossby modes and the
gravitational modes. For the continuous case, the classification
is made on the basis of the behaviour of the frequencies as the
equivalent depth becomes infinite (Longuet-Higgins, 1968;

D & W).
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As & -+ =, the frequencies of the Rossby modes approach a
finite value which is positive (i.e. the modes propagate
westwards); the corresponding meridional velocity profile

approaches the spherical harmonic P§+k’ with £ zeros between
the north and south poles. The number of zeros of v is thus
used to index the Rossby modes.

The frequencies of the gravity modes, on the other hand,
approach + « (for westward-travelling modes) or - = (for
eastward-travelling modes), and the geopotential profile

approaches Pk . Hence %, the number of zeros of ¢, is used
to index the gravity modes.

For a particular value of k, the frequencies satisfy

v (Gf) > ... > v (G)) >V (Go) >
vV (RO) > v (Rl) >.... >V (Rg)> ce.> O >
v (GS) > v (6) > ... > v (G

where R, GW, G respectively denote Rossby, westward gravity

and eastward gravity modes, except that for k=o, all the Rossby
modes have zero frequency.

Considering now the discrete system with finite depth, we find
that the Rossby and gravity wave modes are always clearly
distinguishable in terms of their frequency. Appealing to
considerations of symmetry, it is clear that the "symmetric' system
includes the odd-indexed Rossby and even-indexed gravity-wave
modes, while the "antisymmetric'" system includes the even-indexed
Rossby and odd-~indexed gravity modes. The number of zeros does
not always correspond exactly with the index %, partly because

of the finite depth and partly due to round-off error as the
modes become very close to zero over certain latitude ranges.
Howe ver, the indexing can still be done in terms of the frequency
ordering.

We find that the eigensystems yield the following modes:

w W W

symmetric, k#o: GZM-Z""’ G2’ GO, Rl’ Rg, .- RZle’

symmetric, =0: Gy o» --+» Gy Gy, Bys Ry, , Boya,
Gg» O3 -+ Ogy_p:

antisymmetric, k#o: GgM—B’ . Gg, Gg, RO, RZ’ s R2M—2’
G, G5 -+ s Goy_g-

antisymmetric, k=o: GgM—l’ e, Gg, GY, Rys Rgy -0 RoM-47
63» G5 «++s Goys-
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We begin our comparison with the results of D & W by
considering a coarse resolution of AX = A0 = 10 (M=9,
N=36), with a value of ¢ = 10° m? s  ? (mean equivalent
depth D = 10 km.). D & W present the frequencies v
derived grom the eigenvalues 8’ assuming At = 12 min.
for a 10  grid, 6 min for a 5 grid, etc. Their model
uses a non-staggered grid, for which the maximum stable
timestep is about twice that for our staggeredogrid.
Accordingly, the results shown here for the 10~ ECMWF
grid assume a timestep At = 6 min.

Table 1 presents the frequencies of the Rossby modes for
k=1. Itois immediately obvious that the resglts on the
ECMWF 10  grid resemble those of the D & W 5  grid, and
indeed for large % they approach those of the D & W 2%0
grid (see D & W, Table 1). 1In particular, they do not

show the phenomenon of '"bad modes", i.e. computational
Rossby modes which propagate in the wrong direction. These
bad modes are a consequence of aliasing in the finite-
differencing scheme on a non-staggered grid, and we do not
find them on our staggered grid (see Appendix).




Table 1 Frequencies of Rossby modes for D

© 0 ;O U s W N O =

T ™
™G W N RO

ECMWF, 10

[ I s BT N S N« N ¢ T T - T N B P B 1 B ¢ « I R &)

11
.44
.64
.72
.98
.87
.14
.63
.27
.01
.10
.62
.52
.70
.11
.75
.13

E-05
E-G5
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-07
E-07
E-07
E~-07
E-07
E-07
E-07

15

D & W, 10

Table 2 Frequencies of eastward

© W -3 O U W N = O

kbt b b et el ped
GO b W N O

ECMWF, 10

.44
.31
.87
.35
.79
.22
.63
.01
.36
.69
.98
.23
.44
.61
72
.94
.94

E-05
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E~04

.07
. 39
.08
.12
.32
.13
.27
.96
.07
.96
.27
.13
.32
.12
.08
.39
.07

E--05
E-05
E-06
E-06
E-06
E-06
E-06
E-07
E-19
E-07
E-06
E-06
E-06
E-06
E-06
E-05
E-05

o}

= 10 km.

D&W, 5
.12
.43
.60
.73
.02
.93
.20
.69
.32
.04
.18
.43
.99
.77
.71
.75
.60

CO k= D W o B 00 ket b ek DD T 00 - O

gravity modes for

& W, 10

.33
.28
.81
.22
.55
.78
.93
.11
.86
.86
.09
.85
.60
.30
.97
.65
.31

E-05
E~-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E~04
E-04
E-04

O

, K

D =

=1

(o]

E-05
E-05
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-06
E-07
E-07
E-07
E-07
E-08

10 km.,

& w, 5°

.38
.30
.85
.33
.78
.20
.61
.00
.34
.67
.96
.21
.42
.59
.68
.75
.91

E-03
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-04
E~04
E-04
E-04
E-04

k=1
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Table 2 presents the corresponding results for the k=1
eagtward gravity modes. Again the freguencies of the ECMWF
10” grid resemble those of the D & W 5° grid. This time the
consequence of aliasing on the non-staggered grid of D & W
is that for & > M the frequencies start to decrease in
magnitude instead of continuing to increase like the
frequencies of the corresponding modes of the continuous
equations.

Similar results were obtained for k=4, for which the frequencies
are also tabulated in D & W.

For k=N/2, the Rossby modes on the ECMWF grid are stationary,
since on a staggered grid the two-gridlength waves behave as
if the earth were not rotating.

In order to compute the profiles of u, Vv and ¢ corresponding

to the normal modes of the eigensystem (29)L%the eigenvectors
must be multiplied by the diagonal matrix Q Z. Some typical
results are shown in Figs. 2-5, which can be compared directly
with figures presented by D & W; in all these cases the profiles
obtained closely resemble those of D & W. ‘

6. Fourier filtering & chopping

A familiar problem with regular latitude~longitude grids on the
sphere is that the convergence of meridians towards the poles
necessitates a very short timestep for computational stability.
The solution usually put forward is to filter out the higher
wonal wavenumbers in high latitudes (e.g. Holloway et al, 1973).
There are several variants of this procedure. Williamson (1976a)
discussed the effects of two of them on the normal modes of a
barotropic model, and in particular derives the maximum linearly

stable timestep associated with filtering out various wavenumbers.

The procedure discussed by Williamson is to filter out completely
("chop') zonal wavenumber k at latitude 0 if

cosb cosf
k N/2
for some critical latitude 6. This procedure is applied either
to all the variables, or just to the zonal pressure gradient
term in the u-equation and the zonal divergence term in the

p~equation.

Burridge & Haseler (1977) have proposed an alternative procedure
for the ECMWF gridpoint model; at each timestep, the coefficient
of zonal wavenumber k at latitude 6, for the tendency 3/93t of
each variable, is multiplied by



Table 3 Eigenvalues for D = 10 km., 5° grid, k=7

2 unfiltered filtered chopped
Westward gravi%y modes:
34 4.00 E-03 1.78 E~03 -
32 2.13 E~-03 1.64 E-03 -
30 1.57 E-03 1.55 E-03 1.58 E-03
28 1.34 E-03 1.34 E-03 1.34 E-03
4.74 E-04 4.74 E-04 4.74 E-04
e} 3.76 E-04 3.76 E-04 3.76 E-04
Rossby modes:
o} 1.74 E-05 1.74 E-05 1.74 E-05
2 1.04 E-05 1.04 E-05 1.04 E-05
14 1.66 E-06 1.66 E~06 1.65 E-06
16 1.33 E-06 1.33 E-06 1.31 E-06
18 1.08 E-06 1.08 E-06 1.05 E-06
20 8.92 E-07 8.90 E-07 8.61 E-07
22 7.50 E-Q7 7.47 E-07 7.18 E~07
24 6.46 E-07 6.43 E-07 6.18 E-07
26 5.75 E-07 5.73 E-07 5.54 E-07
28 5.13 E-07 5.08 E-07 4.55 E-07
30 3.77 E-07 3.61 E-Q7 -~
32 1.77 E~07 1.13 E-07 -
34 2.26 E-08 4.71 E-09 -
cosd
MO === sin%%k&l)
if Ak(e) <1, i.e. if
sigsz %) < cosf - (30)

In this study we will reserve the term "filtering' for this
procedure. It has also been suggested that simple Fourier
chopping be applied to each variable, again based on tge
criterion (30). The current proposal is to set g = 45.
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The Fourier filtering procedure can be incorporated into
the matrices set up in Section 4 by redefining Gj as

T
. = AT (8.) cosb,
J k(J' J

if Ak(e.) < 1. Tor Fourier chopping, the rows of the matrix
correspgnding to chopped variables for wavenumber k should be

deleted, or (for simplicity of programming) set to zero.

For comparison with the results of Williamson (1978a), the

normal modes of a barotropic version of the ECMWF gridpoint model
were computed with the following parameters: ,

¢ = 10° m? s 2 (D = 10 km.), A} = A6 = 5°, using unfiltered,
filtered and chopped versions. -Since the maximum stable timestep
At depends on the filtering procedure, Table 3 presents the
eigenvalues v~ rather than the frequencies

_ -1 . -1
v = (At) sin
synoptic scale in the zonal direction. For theseemodeS5
filtering or chopping takes place beyond 6 = 77.5 . As Table 3
shows, the last few modes are missing in the chopped case,
while in the filtered case their frequencies are reduced;
away from the limits of resolution in the meridional direction,
filtering or chopping has little effect on the frequencies,
especially for the gravity modes; for the Rossby modes, filtering
has less effect on the frequencies than does chopping.

(v'At), for k=7, corresponding to waves of

Williamson (1976a) presents no results for larger values of k.
For completeness, we consider here the case k=18, corresponding
to four-gridlength waves in the zonal direction, for which
filtering or chopping is applied beyond 6 = 60°. The frequencies
are shown in Table 4; as expected, more modes are lost in the
chopped case, and have their frequencies reduced in the filtered
case. Nevertheless, at & = 18, corresponding to an average
meridional wavelength of 4A8, the frequencies of the gravity
modes are unaltered by filtering or chopping, while the
frequencies of the Rossby modes are reduced by 3% by filtering,
and 9% by chopping.

Turning now to the associated normal modes, Figs. 6-13 show

the meridional ¢ profiles for the westward gravity mode and

the Rossby mode, for zonal wavenumbers k=7 and k=18, and
meridional indices =6 and % = 18, for the unfiltered, filtered
and chopped cases. The £=6 modes are identical to within graphical
accuracy, regardless of the filtering procedure, since they
contain very little energy near the poles. The 2=18 modes are
slightly distorted by the filtering procedure, the effect being
most noticeable for the k=18, 2=18 Rossby mode. The chopped
modes are forced to be zero beyond a certain latitude depending
on k, and so their structure tends to be compressed towards the
equator. Again this is most noticeable for k=18, 2=18; the
corresponding Rossby mode in the unfiltered case has its maximum
amplitude at 8=65O, while in the chopped case the amplitude
mustobe zero there and the maximum is Zorced equatorwards to
6=60".
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Table 4 Eigenvalues for D = 10 km. 5° grid, k=18.

2 unfiltered filtered chopped
Westward gravity modes:
34 9.26 E~-03 1.87 E-03 -
32 4.70 E-03 1.76 E~-03 -
30 3.21 E~03 1.69 E-03 -
28 2.49 E-03 1.65 E-03 -
26 2.08 E-03 1.63 E-03 -
24 1.82 E-03 1;62 E-03 1.77 E-03
22 1.64 E-03 1.61 E~03 1.62 E~-03
20 1.53 E~03 1.53 E~-03 1.52 E-03
9.28 E-04 9.28 E-04 9.28 E-04
o 8.32 E-04 8.32 E-04 8.32 E~-04
Rossby modes:
e} 5.92 E-06 5.92 E-06 5.92 E-06
2 4.53 E-06 4.53 E-06 4.53 E-06
10 1.83 E-06 1.83 E-06 1.82 E-06
12 1.50 E-06 1.49 E-06 1.47 E-06
14 1.24 E-06 1.23 E-06 1.18 E-06
16 1.04 E-06 1.02 E-06 9.63 E-07
18 8.82 E~07 8.58 E-07 8.00 E-07
20 7.65 E~07 7.42 E-07 6.87 E-07
22 6.74 E~07 6.46 E-07 5.47 E-07
24 5.69 E-07 5.21 E-07 -
286 4.38 E-07 3.53 E~07 -
28 2.97 E-07 1.86 E-07 -
30 +1.65 E-07 7.34 E-08 -
32 6.30 E-08 1.68 E-08 -
34 7.21 E-09 6.36 E-10 -

7. Calculation of normal mode coefficients

In this section we summarize the procedure for calculating the
normal mode coefficients, given the fields: u(it+}, j),
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v(i,j+}), o(i,j) for O < 1 < N-1, -M < J ¢ M.

Step 1 Split the fields into symmetric and antisymmetric
components: for example the u-field becomes

u (1+3,3) = 3 {u(i+h,j) + u(i+d, -3}
UA(1+%,3) = }2’ {Ll(i+%;j> - u(l+3§9"3>}
Henceforth we consider two separate systems (u_, v,, ¢S)
and (u , ¢,), and for convenience regard both systems as

, v
being %efiﬁed 8ver one hemisphere only.

Step 2 Fourier analyse the fields around lines of latitude:

-1

~ N .
W) = e uEe e’
i=0
~ N-1 .
Sk, 348 = & 1 v(3,3+pe’S
i=0

N-1 .
A . 1 .. ¥
baLD = 5 1 #(i,3)

i=0

where w = exp(27i/n), and for example u stands for ug OT U,.

The multiplier outside the summation sign in the u~-equation
arises from the staggering of the u-points around the line
of latitude. We need only consider wavenumbers O £ k < N/2.

Step 3 Scale the variables as follows:
ur(k,j) = u(k,j)

vk(k,j+3) = -iv(k,j+%)

p%(k,3) = #(k,3)/c, where ¢ = 9%,

In the following steps, the vectors and matrices are as
defined in Section 4, modified as necessary to include the
appropriate filtering procedure.

Step 4 For each wavenumber k, form the vector Y and multiply

3

by the diagonal matrix Q¢ to give Y.

Step 5 Multiply Y by ET, where E is the matrix whose columns
are the eigenvectors of L. This gives the coefficients of
the normal modes, ordered in the same way as the columns of E.

Linear normal mode initialization can then be performed by
setting the coefficlents of the gravity modes to zero and
backtracking through the above procedure to recover a new set
of u, v and ¢ fields.



8. Conclusions

Computation of the normal modes of a barotropic version of
the ECMWF gridpoint model shows that they closely resemble
those of a model with twice the resclution on a non-
staggered grid. It has also been demonstrated that the
Fourier filtering and chopping procedures proposed to
increase the maximum stable timestep have a significant
effect only on those modes which are of such small
horizontal scale that they are in any case inadequately
handled by the finite-difference scheme.
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APPENDIX: On eastward-moving Rossby modes on a non-staggered
grid

The existence of the eastward-moving "bad" Rossby modes in
Dickinson and Williamson's model, and their absence in the
ECMWF model, can be explained by considering the Rossby

wave equation on a beta-plane.

In the continuous case, the linearized equations are

oty + 2 =0 (31)
ELARE %% = 0 (32)
2(32) - 3(31) = %(gl - g§) + fD + Bv = O

where D = %% + %%. Setting D=0, u= -3y/3dy, v= 3y/3X,

we obtain

L (V) + g32 = 0.

Inserting a solution of the form ¥(x, ¥y, t) = P(t)exp(ikx+ily),

(k2+22)gY = iBky (33)
ut) = yexp(BEEE)

So the analytic solutions have positive frequency Bk/(k2+22).

On a staggered grid analogous to that in the ECMWF model, the
linearized equations are '

au =Xy -
?5':6 - fv + 6X¢ = 0 (34)
oV =Xy -
=T + fu + 637(17 = 0 (35)
- 9 - 5%y SXVY o

SX(35) 6y(34) => 3t((SXV Syu) + fD + Bv 0 (38)

where D=6Xu+6yv, Setting D=0, u=n6yw, v=6xw, we obtain

8 XYY _
gg(ﬁxxw+5yy¢) + BOLY = 0
Inserting a solution ¥(x, y, t) = y(tlexp(ikx+ily),

(k +zz)gi = ipkpYY




= =ksin(%kAx) -  sin(3lAy) B _ sin(kAx)
where k ~Tix g = iy k = g,

which gives the following analogue of Eq. (33):

{§2+§2)%% = ik .3(1l+cos(RAY))V.

Since }(i+cos(fAy)) > o for all & (with equality only for 2-
gridlength waves), there are no solutions on this grid with
negative fregquencies (i.e. no eastward-moving solutions).

On a non-staggered grid, as in the model of Dickinson and

Williamson, the linesrized equations are

U . S

TE fyv + qu) = { (37)

oV -y _» '

=T + fu + (Sy(j) = 0 | (38)
5.(38F - 6_(T¥ 3 (6 T -5, 1) + £D + g7(%¥) = ¢ (39)
X" v at* X y

X ==X

where D = §_u +6y§y, Setting D=0, um—SyEy, v=5_1",

X

we obtain
—(2y)
3 =KX ~yy -% _
S (8 B+ 077) B8 YT = 0.

Inserting a solution Y(x, y, t) = p(t)yexp(ikx+ily),

(F2T%) 2= 10572

where % = §i%%&é¥l, which gives the following analogue
of Eq. (33) '
(§2+f2)%%= igkcos (2AY)Y.

For values of & corresponding to wavelengths shorter than
4Ay, cos(RAy) < o, and so the solutions on this grid with
short meridional wavelengths will propagate in the wrong
direction, i.e. eastwards.

The crucial difference between the analyses on the two grids
lies in the meridional averaging of the Bv term in the Rossby
wave equation - compare Egs. (36) and (39).
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