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1. Introduction

While testing various parameterisation schemes for the surface

fluxes, I came across some difficulties using the Monin-Obukhov
similarity theory. Since I was following the method suggested

by Busch et al. (1976) who did not report any such difficulty,

I examined the problem thoroughly. This paper is a report

.0f my findings.

In section 2 I briefly review the similarity theory as applied
to the fluxes in the surface layer.

In section 3 I describe the numerical computation of the fluxes
and discuss the results.

In section 4 I propose a parameterisation method which agrees

- with the similarity law, but which is very much simpler to use.

2. Similarity theory

We define the surface layer as the layer of the atmosphere near
the ground where the wind velocity u and the potential temperature
of the air 6 can vary rapidly with height, but where the fluxes

of heat and momentum do not change much from their ground

values. We assume that the velocity and temperature profiles
depend only on the following external parameters : height z ~
heat flux at the ground w'e"', momentumvféux at the ground w'u'

and expansion coefficient of the air o =2 , and not on other
parameters such as the Coriolis force or the height of the
boundary layer. According to the similarity law we can then

say that, when properly non-dimensionalised, the internal
variables of the flow (velocity, temperature gradients) are universal
functions of all the non-dimensional combinations of the external
parameters.

Let us introduce the following scaling parameters
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- The only non-dimensional combination of the external parameters 1is
a stability parameter
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where k, von Karman's constant, has been introduced to be

consistent with most authors, and L = 0 uk is the
g ' kg 0 %
Monin-Obukhov length. Hence we can write
kz du _ PR :
W, 9z ® (T) (4)
kz 2360 _ (5)
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The flux-profile relationships ¢m (z) and ¢h (z) can be

determined by experiment. Empirical analytical formulae have

~ been proposed for them.

We will use the expressions suggested

by Businger et al. (1971)
-3 tat it ; 6.
¢m (z) = (1~YmC y~# (unstable conditions) (6.a)
1487 (stable conditions) (6.b)
-1 ‘ :
¢h () = (1—yhg) 4 (unstable conditions) (7.a)
R(l+§.g) (stable cbnditipns) (7.0)
with ¥ _ = 15, Yh = 9, 8= 4,7, R = 0,74.
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Using (6) and (7),
( see Paulson (1970),

(4) and

(5) can be integrated analytically

and Barker & Baxter (1975)), and we get:
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where z_is the roughness length (height at which u = o ) ,
60 is the surface temperature, and
1-
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with x =(1—Ym )* (unstable) (10.2)
-8Bz (stable) (10.b)
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In (8) and (9), wm(zo/L) and wh (ZO/L) are often neglected.

We keep them here in order to be conmpletely general.
(They are important for high instab_ility)°

We now have three equations : (3), (8) and (9), which relate
the surface fluxes (ui and u, 9, ) to the quantities present
in the model ( u at the height =z, and A8) through the stablllty
parameter 7( or its dimensional equlvalent L ).




3. Computation of the fluxes

3.a Numérical methods.

We want. to solve (3), (8) and (9) for u, and 9

*o
Let us re-write these equations
= Un 2 -y (2 (Za
Uy uk/[1In Z wm(L) +1pm(L ) j » (12.2)
6 ' Z Z : Z ‘
x« = AO6K/R [in ol wh(im ) + wh(—ﬂ {} (12.b)
o L
L = 2 . f&l_g__,._
° kgo, | (12.c)

Because of the complicated analytical form of the functions
¥ , it is not possible to substitute (12.c) into (12.a)

and (12.b) and solve the resulting system for u, and §,
analytically.

Busch et al (1976) solved this system by successive
substitutions, i.e. making a first guess for L they computed

u, and 0, Dby using (12.a) and (12.b), substituted into (12.c¢)
to compute a new guess for L and procecded in this manner until
the solution converges. I tried this method for various

values of u and A6 , and several values of z_. I found that,
in general, it converged after 5 or 6 iterations, but that for
some small values of u, it did not converge at all.

- I then tried the Newton-Raphson method to solve the system

of equations (12), It converged more rapidly than the previous
method (3 or 4 iterations), but did not converge either in
those cases where the first method failed.

3.b Discussion of the results .

" An example of this computation is shown in Fig. 1, where Uy
and 0, are computed in terms of u and A6 for Z = 20m and %

= 0.01m. The computation does not converge in the hatched ° .
area.

In order to understand why the method does not converge in some
part of the (u, A6) plane, let us also show a graph of ¢
in terms of u and A6 (Fig. 2),
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It can be seen that the iterative methods do not converge
in the regions where ¢ is very large, either positive or
negative. One should emphasize that these regions are out-
side the area where experimental data exist to check the
theory. The data published by Businger et al (1971)

are for -2.5 < ¢ < 2. The reasons why the theory fails

for small wind velocity are different in the stable and
unstable cases. Let us look first at the stable region.
Near the 1limit of the zone of non-convergence (area A in
Fig. 2) we have

z > e

It is easy to show that there is a direct relatlonshlp
between T and the Rlchardson nhumber

_ g 26/3z
Ri=§ Gur oo

Using (3), (4) and (5) we obtain : b
¢, (Z)
Ri=¢ h 7
(6 2> 17 | (13)

From the expression (6.b) and (7.b) it is easy to see that
for ¢ ~+~ , Ri» 1/8 = 0.21. This value is close to the
generally accepted value of the critical Richardson number
(0.25) beyond which the flow becomes laminar. Hence

in region A the theory is not valid because the flow is no
longer turbulent. The fluxes can be safely put to zero in
this region.

The area B in Fig. 2 corresponds to the region of free
convection : high instability and low wind. There is a
singularity for u = O since, in this case, the momentum
flux ui vanishes while the heat flux u*,e should remain
finite, implying

e*—> —00

Close to the axis the problem becomes ill-conditioned and
the iterative process does not converge.



For use in a forecast model the computation described above
suffers from two important defects. First of all it is
expensive in terms of computing time : It is an iterative
computation and it also involves several functions
(logarithm, arctangent) which are slow to compute. The
second -difficulty is that the method does not converge for
some values of u and A6 . It may be that the model will
never enter these regions, but one must take the
possibility into account.

In order to get around the need for an iteration procedure
in the model, one can do computations of the fluxes, as we
have done, for a' wide range of u, A6 and Zo’ then either
store the results in a table or try to fit an analytical
three-dimensional function of u, A6 and Z0 to them. If we
can find a simple analytical function, this latter method
is the best. Before we do this, however, let us make a
slight modification to the method.

~ Let us define a bulk Richardson number;

gz AD

8 u?

R1B=

Using (3), (5) and (9) we can write directly
) oz ZO 2

~ Jinm= “u (o) oty (=)
r = Ri [ O m m Z ]

( (14
BRInZ _v_(ty +v_(Zor ) ] oo
| N 'n(=) *p(z2o )

This is an implicit relationship between Z_,% and Ri,.
It can be solved for T in the stable case ~(Barker

and Baxter,1975) but not for the unstable case. Formally,
however, we can write

ug = u2 F (

, Ri (15.a)

SEEN

B )
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uy 9y = ub® G (Z-, Rip)

o ) (15.b)

where F and G are now the drag coefficient for momentum and
heat respectively. The advantage of these expressions over
(12) is that Ri, is an explicit function of the model
variables u and 480 , whereas in (12) L is a function of u,
and 6 , making the expressions implicit in u'and A6 .




The functions F and G can be computed numerically, using-
the iteration procedure outlined above. Figures (3) and
(4) show F and G respectlvely, in terms of RlB, for

different values of Zy e :

The problem is now to find simple analytical formulae for
F and G. Let us first look at the behaviour of F and G
for small RLB

From (14) we caniwrite

L = Ri_ I 2o gor T<< 1,
B R .

Making a limited expansion of wm and ¥ and retaining -~
only the first order terms in C, we tBen have, using

(8) and (9) -
- Tz R & .
u,=uk/ (1n E; + a R - Rig ) L (16.2a)
- '1n‘;
6 = o “OR4
* k/R(1n o + ay N RlB) (16.b)
and, finally, for RiB small
,kz“‘ ,
F= A (1 -"o RiB) (17.2)
(1n>—)
Z
Q
K2 |
G= , (1 -~ bh RiB) (17.b)
R(1nZ- )2
Z .
(e}
For Ri_ = o we find again the well-known 1ogar1thm10 law,

The cogff1c1ents bm and b can be determined by using the
polynomial expansion suggested by BuSLnger et al. (1971)
to fit the data near = o.

We get bm = 8.1 and bh 9.5.

Let us look now at the very unstable, or free convection case,
There we want ;2 = o but us 84 finite. TFrom (15, b) We see
that for u »o, G must behave like 1/u, i.e, like
We suggest then the following expr6851on for the uns%able
cases: .
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with a = [k/lh(%—d 12 .
o .

We can now use dimehsional analysis to find the form of
Ch (z/zo)° In the case of free convection the only external

parameters of the flow are the heat flux w'6', the coefficient
of expansion o and the height =z.

The scaling temﬁerature is now

273 1/3  _ "1/3

e>k: W'@' . 0 Z ‘ (19)

Hence if the similarity theory holds for free convection
we can write

Z 36 _ ' '

where C is a constant. Substituting (19) into (20) and
integrating from Z to z, we get

B A Yk B V£ _ s T

AB= C w'g! o (z -z )

- i/s - 1/3  3/z2
-z, ) - (21)

— _ P 42
or w'8' = ugé, = C'a “[A6] /2 /( z

Let us now write (18) for u-o ( i.e. RiB > = ®)

a bp
Z
C,. (<)
h Z

1 1

Uuby = - lAG l 32 dzjzz , (22)

Comparing (21) and (22) we find
1 - 1/3 ~ 1/
z . & bpz® (= - %0 )
Ch(_Z_- )'—. -
o} c!

Z 1/3, 3f2
= C, ab, [(E;) - 17]

Using the value given earlier for a and taking z»>zo we have:

Z k2
C. (=— )y=2¢C_Db - ( )
h “z, h "h gy 2yt %
N |

1
2

(23)

Nlm
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' The curves are undistihguishable for ppsitive stability.
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Similarity theory, iterative computation

————- - Analytical formula.
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Because of the similarity between the curves in Fig. (3)
and (4), and for the sake of symmetry, we suggest

a form similar to (18) for the momentum flux in the
unstable case :

u - Z . —
ﬁ'ﬁ‘*‘ = F(-Z:; ) RlB) = a (1"‘

(24)

3
os}
N

This expression insures that u* goes to zero for u -o,
1 .e. for Ri, - — o ‘ '

B
In the stable side we must have F, G and their first
derivative equal to zero for RiB = 1/8

This can be seen by looking at the limit g=~ in (14),
using (10.b) and (11.b) . Hence if we use second degree
polynomials we have

2

u
= * = . 3 2 i 2

F=——=a (1-28 Rip +8% Rij®) (25.a)
SR

G = - = % (1 -28 Rip +8% Riy?) . (25.b)
' ungd

with Rig S o1y8 (25.¢)
and a = k?°/ (ln g-)z (25.4)

o]

It can be noticed that the curves suggested for F and G
in the stable and unstable regions do not have the same

slope at Ri, = o. For the sake of numerical stability
in the forecast computation it may be advisable to remove
this discontinuity by making b_ = = 28 = 9.4. The

difference between this value and tﬁe ones computed from
Businger's curves is not great, well within the uncertainty
due to the scatter of the observations near RiB= o.

Using this wvalue for b_ and bh (18) and (24) “can then be
used to compute the parameters c¢p and ch for a best fit of
the curves. The values that we obtained are ¢ = 7.4 and

¢, = 5.3. These curves are shown on Flg 3 - :

and 4 (dashed lines).



B. Conclusion

In the above discussion
was along the x axis.

formulae for‘ the surfac
for a general wind dire

Unstable case

-13-

it was assumed that the wind
Let us now write the suggested
e fluxes of momentum and heat
ction.

X

.w'u'(ground)= ally] -
75T (ground)= %IV! -
_ gz AD
with x =
0
5.b Stable case
w'u'(ground)= a ( 1-
W‘S'(ground)= % ( 1-
for»gz AB < 2
8 V]2

b
w'u'(ground)= w'8'(g

for gz AD >

G!V[%

o

The numerical values of

a = k?*/ (ln-z——-)2 with k
o]

b =90.4 R =0.74 c

2 H

m

]Ae_

V| +abe, (2| x|
o]

b x 2v
LX)t v

round)=}o

the parameters are

0.35 ( von Karman's constant)

It

7.4 and c 5.

h

(26.a)

(26.b)

(26.¢c)

(26.d)

(26.¢e)
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